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Abstract—Diffuse optical tomography (DOT) has been in-
vestigated as an alternative imaging modality for breast can-
cer detection thanks to its excellent contrast to hemoglobin
oxidization level. However, due to the complicated non-linear
photon scattering physics and ill-posedness, the conventional
reconstruction algorithms are sensitive to imaging parameters
such as boundary conditions. To address this, here we propose
a novel deep learning approach that learns non-linear photon
scattering physics and obtains an accurate three dimensional
(3D) distribution of optical anomalies. In contrast to the tra-
ditional black-box deep learning approaches, our deep network
is designed to invert the Lippman-Schwinger integral equation
using the recent mathematical theory of deep convolutional
framelets. As an example of clinical relevance, we applied the
method to our prototype DOT system. We show that our deep
neural network, trained with only simulation data, can accurately
recover the location of anomalies within biomimetic phantoms
and live animals without the use of an exogenous contrast agent.

Index Terms—Deep learning, Diffuse Optical Tomography,
framelet denoising, convolutional neural network (CNN), con-
volution framelets

I. INTRODUCTION

Deep learning approaches have demonstrated remarkable

performance in many computer vision problems, such as image

classification [1]. Inspired by these successes, recent years

have witnessed many innovative deep learning approaches

for various bio-medical image reconstruction problems such

as x-ray computed tomography, photo-acoustics, ultrasound

imaging, etc [2]–[4].

Unlike these imaging applications where the measurement

comes from linear operators, there are other imaging modal-

ities whose imaging physics should be described by compli-

cated non-linear operators. In particular, the diffuse optical

tomography (DOT) is notorious due to severely non-linear
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and ill-posed operator originated from the diffusive photon

migration [5]–[7]. Although near-infrared (NIR) photons can

penetrate several centimeters inside the tissue to allow non-

invasive biomedical imaging, the individual photons scatter

many times and migrate along random paths before escap-

ing from or being absorbed by the medium, which makes

imaging task difficult. Mathematically, these imaging physics

are described by partial differential equations (PDE), and the

goal is to recover constitutive parameters of the PDE from

the scattered data measured at the boundary. This is called the

inverse scattering problem. Many dedicated mathematical and

computational algorithms for the reconstruction of location

and parameters of anomalies of different geometrical (cavities,

cracks, and inclusions) and physical (acoustic, optical, and

elastic) nature have been proposed over the past few decades

[8], [9]. However, most of the classical techniques are suited

for entire measurements or strong linearization assumptions

under perfectly known boundary conditions, which is usually

not feasible in practice.

There are a few preliminary works that attempted to

solve the inverse scattering problem using machine learning

approaches [10]–[12]. For example, to obtain a non-linear

inverse scattering solution for optical diffraction tomography,

Kamilov et al. [10] proposed the so-called beam-propagation

method that computes the unknown photon flux using the

back-propagation algorithm. The method by Broek and Koch

[11] can be also considered an earlier version of the beam-

propagation method using a neural network to calculate the

dynamical scattering of fast electrons. Sun et al. [12] recently

proposed a deep learning approach to invert multiple scattering

in optical diffraction tomography. However, these methods did

not consider direct inversion of 3D distribution of anomalies.

Recently, Ye et al. [13], [14] proposed a novel mathematical

framework to understand deep learning approaches in inverse

problems. Rather than considering neural network as black-

box, these frameworks lead to top-down design principle so

that imaging application-specific knowledge can be used for

neural network architecture design, even though the specific

type of nonlinearities, numbers of channels and filter sizes

should be still tuned by trial and error.

Specifically, the non-linear mapping of Lippman-Schwinger

type integral equations is fundamental in inverse scattering

problems as shown in [15], [16], so this perspective gives an

idea how this imaging physics can be exploited in the design of

the network. In particular, our network is designed to invert the

Lippman-Schwinger equation, but due to the ill-posed nature

of the Lippman-Schwinger equation, we impose an additional

requirement that the output of the inverse mapping lies in

a low-dimensional manifold. Interestingly, by adding a fully
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connected layer at the first stage of the network followed by a

CNN with an encoder-decoder structure, this physical intuition

is directly mapped to each layer of the convolutional neural

network.

As a clinical relevance, we designed a DOT scanner as a

part of simultaneous X-ray digital breast tomosynthesis (DBT)

and DOT imaging system and applied the proposed network

architecture as an inversion engine for optical imaging part.

Although the network was trained only using the numerical

data generated via the diffusion equation, extensive results

using numerical- and real- biomimetic phantom as well as in

vivo animal experiments substantiate that the proposed method

consistently outperforms the conventional methods.

II. THEORY

A. Lippman-Schwinger integral equation

In diffuse optical tomography [5]–[7], [15], [16], the basic

assumption is that light scattering prevails over absorption.

In this case, the propagation of light can be modeled by

the diffusion equation. Let Ω be a domain filled with some

turbid medium with ∂Ω as its boundary. In a highly scattering

medium with low absorption, the total photon fluence rate u(x)
at position x ∈ R

3 at the source modulation frequency ω
can be modeled by the following frequency-domain diffusion

equation:
{

∇ ·D(x)∇u(x)− k2(x)u(x) = −S(x), x ∈ Ω
u(x) + ℓν · ∇u(x) = 0, x ∈ ∂Ω

(1)

where ℓ is an extrapolation length parameter related to the

diffusion coefficient, dimension and reflection on the bound-

ary; ν denotes a vector normal to the measurement surface,

µ(x) and D(x) are the absorption and diffusion coefficients,

respectively; S(x) is the source intensity profile, and the

diffusive wave number k is given by k2(x) := µ(x)− iω/c0
with c0 denoting the speed of light in the medium.

In particular, our DOT system is mainly interested in the

absorption parameter changes due to the hemoglobin concen-

tration changes:

µ(x) := µ0(x) + δµ(x) (2)

whereas µ0 denotes the known background absorption pa-

rameters and δµ refers its relative changes of the anomalies.

Additionally, the diffusion parameter D is considered known.

Then, the scattered fluence rate, us(x) := u(x) − u0(x), can

be described by the so-called Lippman-Schwinger equation

[5]–[7], [15], [16]:

us(x) = −

∫

Ω

G0(x,y)δµ(y)u(y)dy, (3)

where the background Green’s function G0(x,y) satisfies
{ (

∇ ·D0(x)∇− k20(x)
)

G0(x,y) = −δ(x− y), x ∈ Ω
G0(x,y) + ℓν · ∇G0(x,y) = 0, x ∈ ∂Ω,

(4)

where k0 =
√

µ0 − iω/c0 denotes the known background

diffusive wave number, and the incidence fluence u0(x) is

given by

u0(x) =

∫

Ω

G0(x,y)S(y)dy. (5)

We assume that the absorption perturbation is described by

non-overlapping piecewise constant or spline approximation:

δµ(x) =
N
∑

i=1

δµibi(x), (6)

where bi(x) denotes the i-th basis function centered at xi ∈ Ω
and δµi is the corresponding coefficient. Then, Eq. (3) can be

represented by

us(x) = −

N
∑

i=1

G0(x,xi)u(xi)δµi (7)

Let ums (x) be the scattered photon fluence at the m-th source

intensity distribution given by

Sm(x) = S0δ(x− tm),

where tm ∈ R
3,m = 1, · · · , Nt denotes the point source loca-

tion and S0 is the source intensity. We further assume the point

detector at the detector location dn ∈ R
3, n = 1, · · · , Nd.

Then, the measurement data can be described by the multi-

static data matrix:

g := M[δµ] (8)

:=











u1s(d1) u2s(d1) · · · uNt

s (d1)
u1s(d2) u2s(d2) · · · uNt

s (d2)
...

...
. . .

...

u1s(dNd
) u2s(dNd

) · · · uNt

s (dNd
)











∈ C
Nd×Nt

The Born or Rytov approximation assumes that the optical

perturbation δµ is sufficient small, so that the unknown fluence

u(x) within the integral equation (3) can be approximated to

the background fluence rate, i.e. u(x) ≃ u0(x). This approx-

imation, however, breaks down when the optical perturbation

at the abnormalities are significant. On the other hand, the

original form of Lippman-Schwinger equation in (3) does not

assume small perturbation so that the total optical photon

density u(x) also depends on the unknown perturbation. This

makes the inverse problem highly non-linear. Furthermore,

due to the dissipative nature of the diffusive wave and a

smaller number of measurements compared to the number

of unknowns, reconstructing an image from the scattered

optical measurement is a severely ill-posed problem [17].

One could decouple the non-linear inverse problems from

Lippman-Schwinger equation in two consecutive steps - joint

sparse support recovery step and the linear reconstruction

on the support- by taking advantage of the fact that the

optical perturbation does not change position during multiple

illuminations [15], [16]. In this paper, we further extend this

idea so that the optical anomalies can be directly recovered

using a neural network.

B. Neural network for inverting Lippman-Schwinger equation

The proposed neural network is designed based on the

recent deep convolutional framelets for inverse problems [13],

so this section briefly reviews the theory.

For notational simplicity, we assume that the ab-

sorption perturbation is one dimensional, but the exten-

sion to 3D is straightforward. Specifically, let δµ =
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[δµ[x1], · · · , δµ[xN ]]T ∈ R
N and ψ = [ψ[1], · · · , ψ[d]]T ∈

R
d and its reverse ordered version ψ[n] = ψ[−n], where the

superscript T denotes the transpose operation, and N and d
denote the number of voxel and the convolution filter tap size,

respectively. Then, the single-input single-output convolution

of an input δµ and a filter ψ can be represented in a matrix

form:

y = δµ⊛ψ = Hd(δµ)ψ , (9)

where Hd(δµ) is a Hankel matrix [13]:

Hd(δµ) =











δµ[1] δµ[2] · · · δµ[d]
δµ[2] δµ[3] · · · δµ[d+ 1]

...
...

. . .
...

δµ[N ] δµ[1] · · · δµ[d− 1]











(10)

Consider two matrices pairs (Φ, Φ̃) and (Ψ, Ψ̃) satisfying the

conditions

Φ̃Φ⊤ = IN×N , ΨΨ̃⊤ = Prow, (11)

where Prow represents a projection onto the row space of the

Hankel matrix. Then, we have

Hd(δµ) = Φ̃Φ⊤
Hd(δµ)ΨΨ̃⊤ = Φ̃CΨ̃⊤, (12)

with the coefficient matrix C given by

C = Φ⊤
Hd(δµ)Ψ. (13)

One of the most important discoveries in [13] is that an

encoder-decoder structure convolution layer is emerged when

the high-dimensional Hankel matrix decomposition using (13)

and (12) is un-lifted to the orignal signal space. Precisely,

they are equivalent to the following paired encoder-decoder

convolution structure:

C = Φ⊤ (δµ⊛ α(Ψ)) (14)

= Φ⊤
[

δµ⊛α1 · · · δµ⊛αr

]

δµ =
(

Φ̃C
)

⊛ β(Ψ̃) =

r
∑

i=1

(

Φ̃ci

)

⊛ βi, (15)

where (14) corresponds to the single-input multi-output con-

volution, and (15) is the multi-input single-output convolution

with the encoder and decoder filters α(Ψ) = [α1 · · ·αr] ∈
R

d×r and β(Ψ̃) = [β1 · · ·βr] ∈ R
d×r that are obtained by

rearranging the matrices Ψ and Ψ̃, respectively [13]. Note

that the number of encoder and decoder filter channels are

determined by r - the rank of the Hankel matrix.

Now, we choose Φ = Φ̃ = I for simplicity so that the image

resolution does not change during the filter process. Then, by

defining an inversion operator T := M−1 with respect to the

forward operator M in (8) and substituting δµ = T g in (14),

the encoder-decoder structure neural network can be re-written

as

C = (T g)⊛ α(Ψ), δµ = (C)⊛ β(Ψ̃) (16)

where the coefficient C = [c1 · · · cr] at the decoder can be

replaced by Ĉ = [ĉ1 · · · ĉr] after removing noises using the

multi-input multi-output convolution:

ĉi =

r
∑

j=1

cj ⊛ h
j
i , i = 1, · · · , r (17)

where h
j
i ∈ R

d denotes the length d- filter that convolves

the j-th channel input to compute its contribution to the i-th
output channel.

The corresponding four-layer network structure is illustrated

in Fig. 1. Here, the network consists of a single fully con-

nected layer that approximates T , two paired 3D-convolutional

layers with filters α(Ψ) and β(Ψ̃), and the intermediate 3D-

convolutional filter H = [h1 · · ·hr] for additional filtering.

Then, the goal of our neural network is to learn the unknown

fully connected layer mapping T and convolutional filters,

α(Ψ), β(Ψ̃), and H , from the training data.

Here, it is important to note that this parameter estimation

may not provide the unique solution since there are scale

ambiguity in the estimation of these parameters. Thus, our

fully connected layer T may be only a scaled and approximate

version of the inverse operator M−1. Moreover, although the

convolutional framelet theory can give a global perspective of

network architecture, the optimal hyper-parameters such as the

number of the filter channel r, filter tap size d, nonlinearity and

the number of intermediate filter steps should be found by trial

and error. In particular, our subsequent work in [14] shows that

the nonlinearities makes the aforementioned decomposition

structure automatically adapted to different inputs, making the

neural network generalizable.

Despite of these limitations, the proposed deep network

has many advantages. First, the inversion of the Lippman-

Schwinger equation is fully data-driven such that we do not

need any explicit modeling of the acquisition system and

boundary conditions. Second, the manifold dimensionality of

the optical parameter distribution is directly controlled by the

number of convolutional layers, r, which is also related to

the redundancies of the δµ. In particular, specific manifold

structure is learned from the training data in the form of the

convolution filters, which makes the algorithm less affected

by the measurement data deviation from the analytic diffusion

model.

Fig. 1. Our neural network for inversion of the Lippman-Schwinger equation.

III. METHODS

Fig. 2(a) shows the schematics of our frequency domain

DOT system. The DOT system has been developed at the
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Korea Electrotechnology Research Institute (KERI) to improve

the diagnostic accuracy of the digital breast tomosynthesis

(DBT) system for joint breast cancer diagnosis [18], [19].

The multi-channel DOT system (Fig. 2(b)) consists of four

parts: light source, optical detector, optical probe, and data

acquisition and controller. The light source has three fiber

pigtailed laser diode modules of 785 nm, 808 nm, and 850

nm. 70 MHz RF signal is simultaneously applied to these light

sources using bias-T, RF splitter, and RF AMP. Two optical

switches are used to deliver light to 64 specific positions in

the source probe. During the optical switching time, one-tone

modulation light photons reach 40 detection fiber ends after

passing an optical phantom and are detected simultaneously

by 40 avalanche photodiodes (APD) installed in the home-

made signal processing card. The DOT system uses an In-

phase(I) and Quadrature(Q) demodulator to get amplitude and

phase of the signal in the signal processing card. The 40 IQ

signal pairs are simultaneously acquired using data acquisition

boards. The data acquisition time for all measurements took

about 30 seconds. For the purpose of preclinical tests, a single-

channel system (Fig. 2(c)) has been installed at Asan Medical

Center (AMC) [20], [21]. The overall configuration of the

single-channel DOT system is same as the multi-channel DOT

system except for the number of light sources and optical

detectors used. Here, it has only one source fiber and one

optical detector. These fibers are installed in a motorized probe

stage which is driven by highly precise stepping motors and

control modules. Fig. 2(c) shows the probe stage. An operator

can freely set up the scanning position and sequence according

to the region of interest. The system includes only one optical

switch for the selection of three wavelengths.

A. DOT Hardware System

B. Phantoms and in vivo data

To analyze the performance of the proposed approach in

controlled real experiments, biomimetic and breast-mimetic

phantoms with known inhomogeneity locations was manufac-

tured (see Fig. 5). The phantom is made of polypropylene

Fig. 2. Single- and multi-channel DOT systems used in our experiments [18],
[19]. (a) Schematic illustration of the DOT system configuration. The light
source has three fiber pigtailed laser diode modules with 785 nm, 808nm,
and 850 nm. 70 MHz RF signal is simultaneously applied to these light
sources using bias-T, RF splitter, and RF AMP. Two optical switches are used
to deliver light to 64 specific positions in the source probe. During optical
switching time, one-tone modulation light photons reach 40 detection fiber
ends after passing an optical phantom and are detected simultaneously by 40
avalanche photodiodes (APD) installed in the home-made signal processing
card. Real snapshots of our (b) multi-channel DOT, and (c) single-channel
DOT systems.

containing a vertically oriented cylindrical cavity that has 20

mm diameter and 15 mm height. The cavity is filled with the

acetyl inclusion with different optical properties.

For the breast-mimetic phantom, we used a custom-made

open-top acrylic chamber (175 mm × 120 mm × 40 mm)

and three different sized knots (approximately 20 mm, 10

mm, and 5 mm diameter) for the mimicry of a tumor-like

vascular structure. The knots were made using thin polymer

tubes (I.D 0.40 mm, O.D 0.8 mm diameter) and were filled

with the rodent blood that was originated from the abdominal

aorta of Sprague-Dawley rat that was under 1 to 2% isoflu-

rane inhalation anesthesia. The chamber was filled with the

completely melted pig lard and the medium was coagulated at

room temperature for the imaging scan.

For in vivo experiment, the mouse colon cancer cell line

MC38 was obtained from Scripps Korea Antibody Insti-

tute (Chuncheon, Korea) and the cell line was cultivated

in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO,

NY, US) supplemented with 10% Fetal bovine serum (FBS,

GIBCO) and 1x Antibiotic-Antimycotic (GIBCO). For the

tumor-bearing mice, 5x106 cells were injected subcutaneously

into the right flank region of C57BL/6 mice aging 7-9 weeks

(Orient Bio, Seongnam, Korea). Animal hairs were removed

through trimming and waxing. Anesthesia was applied during

the imaging scanning with an intramuscular injection of Zoletil

and Rumpun (4:1 ratio) in normal saline solution. Mice were

placed inside of the custom-made 80 mm × 80 mm × 30 mm

open-top acrylic chamber that had a semicircle hole-structure

on the one side of the chamber for the relaxed breathing. A

gap between the semicircle structure and the head was sealed

with the clay. The chamber was filled with the water/milk

mixture as 1000:50 ratios. All experiments associated with

this study were approved by Institutional Animal Care and

Use Committees of Asan Medical Center (IACUC no. 2017-

12-198).

C. Data preprocessing

To determine the maximally usable source-detector dis-

tance, we measured signal magnitude according to the source-

detector distances. We observed that the signals were above the

noise floor when the separation distance (ρ) between the source

and the detector was less than 51 mm (ρ < 51 mm). Therefore,

instead of using measurements at all source-detector pairs, we

only used the pairs having source and detector less than 51

mm apart. This step not only enhanced the signal-to-noise

ratio (SNR) of the data but also largely reduced the number

of parameters to be learned in the fully connected layer. For

example, in the source-detector configuration of the numerical

phantom, the number of input measurement pairs (#MEAS)

reduced from 2560 to 466 (Table I). This decreased the

number of parameters to train from 137,625,600 to 25,105,920,

which is an order difference. To match the scale and bias

of the signal amplitude between the simulation and the real

data, we multiplied appropriate calibration factor to the real

measurement to match the signal envelope from the simulation

data. For more detailed information on the measurement data

calibration, see Supplementary Material.
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TABLE I
NETWORK ARCHITECTURE SPECIFICATIONS. HERE, #MEAS IS THE NUMBER OF FILTERED MEASUREMENT PAIRS (BIOMIMETIC: #MEAS = 538,

NUMERICAL & BREAST-MIMETIC: #MEAS = 466, MOUSE (NORMAL): #MEAS = 470, MOUSE (WITH TUMOR): #MEAS = 1533).

Type
Biomimetic Numerical & Breast-mimetic Animal

patch size

/stride

output

size
depth

patch size

/stride

output

size
depth

patch size

/stride

output

size
depth

Network input - 1× #MEAS - - 1× #MEAS - - 1× #MEAS -

Fully connected - 32× 64× 20× 1 - - 48× 70× 16× 1 - - 32× 32× 12× 2 -

3D convolution 3× 3× 3/1 32× 64× 20× 16 16 3× 3× 3/1 48× 70× 16× 64 64 3× 3× 3/1 32× 32× 12× 128 128

3D convolution 3× 3× 3/1 32× 64× 20× 16 16 3× 3× 3/1 48× 70× 16× 64 64 3× 3× 3/1 32× 32× 12× 128 128

3D convolution 3× 3× 3/1 32× 64× 20× 1 1 3× 3× 3/1 48× 70× 16× 1 1 3× 3× 3/1 32× 32× 12× 1 1

TABLE II
SPECIFICATION OF FEM MESH FOR TEST DATA GENERATION.

# of sources # of detectors
FEM mesh

Optical parameters

Background (mm−1)
# of voxels per xyz dimensions

(resolution= 2.5 mm)
nodes elements µ (absorption) ζ (scattering)

Biomimetic phantom 4× 16 5× 8 20,609 86,284 0.003 0.5 32× 64× 20
Numerical & Breast-mimetic phantom 4× 16 5× 8 53,760 291,870 0.002 1 48× 70× 16

Mouse(normal) 7× 4 7× 4 12,288 63,426 0.0041 0.4503 32× 32× 12
Mouse (with tumor) 7× 7 7× 7 12,288 63,426 0.0045 0.3452 32× 32× 12

D. Neural network training

To normalize the input data for neural network training, we

centered the input data cloud on the origin with the maximum

width of one by subtracting the mean across every individual

data and dividing it by its maximum value. To deal with the

unbalanced distribution of nonzero values in the 3D label

image, we weighted the non-zero values by multiplying a

constant scaling factor according to the ratio of the total voxel

numbers over the non-zero voxels. At the inference stage,

the multiplied scaling factor is divided to obtain the true

reconstruction value.

In order to test the robustness of the deep network in real ex-

periments and to obtain a large database in an efficient manner,

the training data were generated by solving diffusion equation

using finite element method (FEM) based solver NIRFAST

(see, e.g., [22], [23]). The finite element meshes were con-

structed according to the specifications of the phantom used in

each experiment (see Table II). We generated 1500 numbers of

data by randomly adding up to three spherical heterogeneities

of different sizes (having radii between 2 mm to 13 mm) and

optical properties in the homogeneous background. The optical

parameters of the heterogeneities were constrained to lie in

a biologically relevant range, i.e., two to five times bigger

than the background values. For example, in Fig. 3, we show

two representative reconstructed images among 1500 data that

have two inclusions with randomly chosen locations, sizes,

and optical parameters. The source-detector configuration of

the data is set to match that of real experimental data displayed

in Table II. To make the label in a matrix form, FEM mesh

is converted to the matrix of voxels by using triangulation-

based nearest neighbor interpolation with an in-built MATLAB

griddata function. The number of voxels per each dimension

used for each experiment can be found in Table II. To train

the network for different sizes of phantoms and source-detector

configurations, we generated different sets of training data and

changed the input and output sizes of the network accordingly.

The specifications of the network architecture are provided

in Table I. Note that we intentionally maintained the overall

structure of the network same except the specific parameters

for consistency and simplicity.

The input of the neural network is the multi-static data ma-

trix of pre-processed measurements. To perform convolution

and to match its dimension with the final output of a 3D image,

the output of the fully connected layer is set to the size of the

discretized dimension for each phantom. All the convolutional

layers were preceded by appropriate zero padding to preserve

the size. As for nonlinearities of our neural network, we

used the hyperbolic tangent function (tanh) as an activation

function for the fully connected layer and two convolutional

layers (C1 and C2), whereas the last convolutional layer (C3)

was combined with rectified linear unit (ReLU) to ensure

the positive value for the optical property distribution. In the

network structure for the biomimetic phantom, for example,

the first two convolutional layers have 16 filters of 3× 3× 3
with stride 1 followed by tanh. The last convolutional layer

again convolves the filter of 3× 3× 3 with stride 1 followed

by ReLU (Table I).

We used the mean squared error (MSE) as a loss function

and the network was implemented using Keras library [24].

Weights for all the convolutional layers were initialized using

Xavier initialization. We divided the generated data into 1000

training and 500 validation data sets. For training, we used

the batch size of 64 and Adam optimizer [25] with the

default parameters as mentioned in the original paper, i.e.,

we used learning rate= 0.0001, β1 = 0.9, and β2 = 0.999.

Training runs for up to 120 epochs with early stopping if the

validation loss has not improved in the last 10 epochs. To

prevent overfitting, we added a zero-centered Gaussian noise

with standard deviation σ = 0.2 and applied dropout on the

fully connected layer with probability p = 0.7. We used a

GTX 1080 graphic processor and i7-6700 CPU (3.40 GHz).

The network took about 380 seconds for training. Since our

network only used the generated simulation data for training,

there are potential that the network could be suffered from

the noise not observed from the synthetic data. However, by

careful measurement data calibration and the parameter tuning

for the dropout probability and the standard deviation σ of

the Gaussian noise, we could achieve the current network

architecture which performs well in various experimental

situations. We have not imposed any other augmentation such

as shifting and tilting since our input data are not in the image

domain but in the measurement domain which is unreasonable
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to apply such techniques. Every 3D visualization of the results

is done by using ParaView [26].

The simulation data and code will be available on authors’

homepage (http://bispl.weebly.com) upon publication.

E. Baseline algorithm for comparison

As the baseline methods, we employed two widely used

algorithms that are implemented in the state of the art public

software packages of DOT field (time-resolved optical ab-

sorption and scattering tomography (TOAST) [27] and Near

Infrared Fluorescence and Spectral Tomography (NIRFAST)

[22]). One is a distorted Rytov iterative method. This algorithm

employs the modified Levenberg Marquardt (LM) algorithm.

The other is based on a penalized least squares recovery

method with various sparsity inducing penalty that employs the

homotopy-like cooling approach with a help of majorization

minimization (MM) framework [28]. In these algorithm, at

each iterative step we re-calculate Green’s function along with

update of unknown parameter values. We set the convergence

criterion if the reconstructed optical parameter at the current

iteration has not improved in the last two iterations. Unless

an initial guess is bad, the algorithms generally converged

in six to ten iterations and each iteration took approximately

40 seconds, which makes total reconstruction time about 7

minutes.

The regularization parameter of the LM method and the

penalized least squares algorithm is chosen as λ = constant×
max(diag(JTJ)) where J is the system matrix or Jacobian

matrix and diag refers to the vector composed of diagonal

elements. The value of the constant used for reconstruction

are found by trial and error. For the penalized least squares

algorithms, we compared the performance with two ℓp norm

penalties of p = 1, 2, where p = 1 corresponds to the sparsity

inducing penalty.

Fig. 3. The reconstruction results from numerical phantom. Here, we used
the network trained using the numerical phantom geometry (see Table I). The
ground truth images are visualized with binary values to show the location of
virtual anomalies clearly. For ease of comparison, the location of the ground
truth are denoted by overlapped circles on the reconstructed three dimensional
(3D) visualization.

IV. RESULTS

To validate the algorithms in a quantitative manner, we eval-

uated four metrics such as the root mean square error (RMSE),

Pearson correlation, structural similarity index (SSIM) and

contrast-to-noise ratio (CNR) on the reconstructed results

of randomly chosen 38 data configurations with different

anomaly sizes and locations, with distinct z-locations. For

more details on CNR formula, please refer to our Supple-

mentary Material.

First, we conducted simulation study using numerical phan-

toms shown in the leftmost column of Fig. 3. In Fig. 4, we

also report the quantitative performance comparison results

using box plot to show the overall statistics. On each box,

the central mark is the median, the edges of the box are the

25th and 75th percentiles, the whiskers extend to the most

extreme data points not considered outliers, and outliers are

plotted individually. As shown in Fig. 4(a), we could not find

a significant difference in the performance of the conventional

methods over varying hyper-parameters within the specific

range. Based on the quantitative results, in this paper, we

mainly used λ = 10 for both LM method and the sparse

recovery algorithm with ℓ1 norm throughout the paper.

Next, to analyze the robustness of the proposed approach,

we evaluated the method on the mismatching boundary condi-

tion scenario (Fig. 4(b)). More specifically, the training data of

our network is generated based on the condition considering

the refractive index mismatch at the boundary while the test

data is generated using the boundary condition that are not

matched to the training data so that the initial assumption

breaks down at the test time. To avoid the inverse crime, we

used more dense FEM and reconstruction mesh for generating

forward data than the reconstruction mesh. As shown in

Fig. 4(b), the performance of the proposed method is better

than the conventional method. More specifically, in the RMSE

plot, the result of the proposed method did not vary a lot

while the RMSE of the conventional method increased when

the boundary condition differs from the initial assumption.

In particular, in Pearson correlation and SSIM values, the

proposed method significantly outperformed the conventional

methods. Some representative reconstruction results by various

methods are shown in Fig. 3, which clearly confirm the

effectiveness of the proposed method.

To analyze the performance of the proposed approach under

more realistic and controlled environments, biomimetic and

breast-mimetic phantoms with known inhomogeneity locations

were examined (see Fig. 5). We obtained the measurement data

using our multi-channel system. The reconstructed 3D images

from the conventional methods (LM and sparse recovery with

l1 penalty) and our proposed network are compared.

The biomimetic phantom provides a simple tumor model

with a vertically oriented cylindrical inclusion that has dif-

ferent optical properties to the background. Here, both the

conventional LM method (λ = 10) and our network recon-

structed the location of optical anomalies, among which the

proposed method has more accurate reconstruction (Fig. 5).

The sparse recovery based algorithm (λ = 10) were able to

find the center location but it suffered from underestimation of

the support due to the sparsity constraint. Because the phantom

has high contrast between the inclusion and its background,

the contrast can be clearly seen in the DBT image as well.

Next, we examine a more complicated tumor model using

the breast-mimetic phantom, which is more realistic than

http://bispl.weebly.com
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Fig. 4. (a) Quantitative comparisons of the various baseline algorithms different hyperparameters. (b) Comparison of the baseline algorithm and the proposed
method under boundary condition mismatch. Root mean square error (RMSE), Pearson’s correlation, structural similarity index (SSIM) and contrast-to-noise
ratio (CNR) are evaluated on randomly chosen 38 images from the test reconstruction of the numerical phantoms.

Fig. 5. The reconstructed images of the biomimetic and breast-mimetic phantoms. The contrast can be seen by the DBT images. For the biomimetic phantom
experiments, to provide more clear results of the conventional methods, images are thresholded to remove the small intensities. Every image is the result of
summed projection of the intensity values along the viewpoint. The ground truth location of the single inclusion model and the expected ground truth location
of the breast-mimetic model are denoted by white boundaries within the reconstructed images.

the biomimetic phantom. Specifically, because the phantom

includes inhomogeneous backgrounds (coagulated pig lards)

and the inclusions are made of thin polymer tubes filled with

the rodent blood, it provides additional technical challenges

beyond the commonly used assumptions such as a homoge-

neous background and known boundary conditions. Moreover,

due to its ingredients, the contrasts cannot be clearly seen by

the DBT image (Fig. 5).

Because of these complicated optical characteristics, for the

breast-mimetic phantom experiment, the conventional methods

suffer from the strong background noises that appear near

the sensor plane at the bottom. Even after applying post-

processing to threshold out the small intensity values, the

conventional methods show artifacts in the recovered image,

which is more prominent in the sparse recovery reconstruc-

tion. Unlike the conventional methods, our proposed method

recovers the locations of inclusions accurately. Here, just for

a fair comparison, we applied the thresholding with the same

range on the recovered image using our method, although our

method could recover the inclusions only, even without the

post-processing. Moreover, our method can accurately recover

their relative sizes of the inclusions. Although this can be only

shown in qualitative way due to the lack of the ground truth,

the results show the favorable characteristics of our methods

clearly.

Finally, we performed in-vivo animal experiments using

a mouse (Fig. 6 and Fig. 7). In order to get the scattered

photon density measurements, we recorded the data with and

without the mouse placed in the chamber, which is filled with

the water/milk mixture of 1000 : 50 ratio. Optical scattering

data from animal experiments were collected using the single-

channel system. Fig. 6 and Fig. 7 show the reconstructed

images of the mouse with and without tumor. The conventional

algorithms and the proposed methods recovered high δµ values

at the chest area of the mouse. However, the LM and the

sparse recovery reconstruction finds a big chunk of high δµ
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Fig. 6. The reconstructed images of in vivo animal experiments. Mouse without any tumor before water/milk mixture was filled is shown. In order to get the
scattered photon density measurements, we recorded the data with and without the mouse placed in the tank, which is filled with the water/milk mixture of
1000 : 50 ratio. Both the conventional and the proposed methods recovered high δµ values at the chest area of the mouse. However, the LM method finds a
big chunk of high δµ values around the left thigh of the mouse, and the sparse recovery method finds those in both thighs with an additional spurious artifact
outside of the mouse body, which is unlikely with the normal mouse. In contrast, our proposed network shows a high δµ along the spine of the mouse where
the artery and organs are located.

Fig. 7. The reconstructed images of in vivo animal experiments. Mouse with tumor on the right thigh before water/milk mixture was filled is shown.
Comparison between the mouse with and without tumor 3D visualizations are displayed. In addition, we showed a slice in x and z directions for a clear
visualization. When compared with a normal mouse experiment (Fig. 6), our network finds a high δµ values around the right thigh, where the tumor is located.

values around the thighs of the mouse, which is unlikely with

the normal mouse (Fig. 6). In contrast, our proposed network

shows a high δµ along the spine of the mouse where the artery

and organs are located [29]. Furthermore, in the mouse with

tumor case, our network finds a high δµ values around the right

thigh, where the tumor is located (Fig. 7) [30]. On the other

hand, the sparse recovery method outputs highest intensity

values around its feet and bladder. The lateral view of our

reconstructed images also matches with the actual position of

the mouse, whose head and body are held a little above the

bottom plane due to the experiment setup.

V. DISCUSSION

Compared to the results of the conventional LM method and

the sparse recovery algorithm, our network showed robust per-

formance over the various examples. While the conventional

reconstruction algorithms often imposed high intensities on

spurious locations (Fig. 5 bottom row) and Fig. 6 top and

middle row), our network found accurate positions with high

values only at the locations where inclusions are likely to exist.

This is because unlike the conventional method that requires

a parameter tuning for every individual case, our network can

infer from the measured data without additional pre- and post-

processing techniques.

Note that our network had not seen any real data during the

training nor the validation process. However, it successfully

finds the inversion by learning only from the simulation data.

Furthermore, even though we trained the network with exam-

ples having sparse supports, our network successfully finds

both sparse (phantom, Fig. 5) and extended targets (mouse,

Fig. 6 and Fig. 7) without any help of regularizers. These

results evidence that our network can learn a general inverse

function instead of learning a trivial mapping (memorization).

Both of these results are very surprising in the perspective of
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learning a function using a parametric model with large size,

such as the neural networks, which are usually known to easily

overfit (memorize) to the training data.

We argue that this surprising generalizability comes from

1) the regularization techniques we employed for training and

2) the specific design of our network. Recall that we added

the stochastic noise to the data when we train the network. In

addition, “dropout” adds another randomness to the network,

which randomly drops the nodes of the network while training.

Both of Gaussian noise addition and dropout layers make the

network to generalize better on the unseen data or conditions,

which adds another practical advantage of our method. This

is one of the reasons that enabled our proposed network to

perform well on the real data even though it had not seen any

real data during the training phase.

Secondly, our network is designed to directly learn from the

measurement data, and does not start from the reconstructed

images using the conventional methods that inevitably requires

a prior conditions that might bias the search space. Therefore,

it can generalize better on the unseen conditions, such as the

boundary condition mismatch (Fig. 4).

To further show that the main performance of our method

does not come from heuristically fine-tuned hyperparameters

(number of the layers, channels, etc.) but from its sequential

architecture of the fully connected layer followed by the

convolutional encoder-decoder layers, we performed ablation

studies by changing or removing the components of the

proposed architecture. Since our output f is a 3D distribution,

the network needs to find a set of 3D filters α(Ψ) and

β(Ψ̃). We observed that the network with 3D-convolution

showed better z−axis resolution compared to the one using 2D

convolution (Fig. 8), which is consistent with our theoretical

prediction. One may suspect that the performance of the

network has originated solely from the first layer since over

98% of the trainable parameters are from the fully connected

layer. To address this concern, we tested the network with and

without convolutional layers after the fully connected layer.

We observed that the performance of our network deterio-

rated severely and it failed to train without the consecutive

convolution layers (the results not shown). At least a single

convolution layer with a single filter was needed to recover

the accurate location of the optical anomalies (Fig. 8). Indeed,

the inverted output of the fully connected layer shows a very

noisy reconstruction, which is then refined by the encoding

and decoding procedure of consecutive convolutional layers

(see Supplementary Material). However, the paired encoder-

decoder filters in the proposed network are better than just

using a single convolution layer.

Note that a similar fully connected layer T in (16) at the

first stage was investigated in [31]. However, for the case

of magnetic resonance imaging (MRI) or X-ray computed

tomography (CT) problems, there exists well-defined inversion

layers using Fourier transform or filtered backprojection, so

analytic reconstruction is recommended rather than using the

fully connected layers [2]–[4], [32], since the number of

unknown parameters for the fully connected layers are too

big. On the other hand, for inverse scattering problems such

as DOT, the analytic reconstruction is not well-defined, so the

Fig. 8. Network ablation study results. The reconstructed images of the
breast-mimetic phantom (Fig. 5 bottom row) using the networks with 2D-
and 3D-convolution are compared (the 2nd and 3rd columns). To show
the necessity of the convolutional layers, the image reconstructed using the
network with a single 3D-convolution layer of a single filter is shown (last
column). Meanwhile, the network with only a fully connected layer failed to
train (results not shown). Every image is the result of summed projection of
the intensity values along the viewpoint.

fully connected inversion layer can be also estimated from

the data as demonstrated in this paper. Of course, for the

case of well-defined numerical simulation, one could have a

good initial reconstruction from the LM type reconstruction,

so standard convolutional neural network architecture could

be trained as a denoiser for the LM reconstruction. However,

for the DOT problem from real data, the initial guess using

LM method is seriously dependent on the boundary conditions

and regularization parameters due to the mismatch between

the real and numerical Greens kernel. Thus, learning from

such unstable initial guess is not robust. This is why we

are interested in learning the inverse as well using a fully

connected layer.

There are several limitations in the current study. Although

the theory provides a useful global perspective to design

the network architecture, it does not still answer the DOT

specific questions, such as specific type of nonlinearities,

filter sizes, and etc. Still, providing the global perspective

to network architecture is also important since it reduces the

search space of the neural network to specific details that can

be readily obtained by trial and error. In terms of hardware

design, the present hardware system also has some limitations.

First, the detection relies on few fibers. CCD based-detection

allows better sampling (spatial resolution) and is non-contact,

but fiber measurements also suffer from coupling problems.

Second, measurements are performed filling the imaging tank

with liquid. Adding liquid has several side effects such as

increases of the scattering as well as the reduction of detected

photon, resulting in signal-to-noise ration loss. Accordingly,

the fiber-based measurement have intrinsic limitations, so the

proposed reconstruction algorithm, even though it is better

than the other reconstruction method, may also suffer from

such hardware limitation. Fortunately, the proposed method

is quite general, so it can be easily modified for different

hardware systems.

Note that the main challenges that limit wide uses of DOT

are: 1) to recover large absorption changes, 2) to be robust

to light propagation model deviations, and 3) to dispose of

background measurements (absolute vs relative reconstruc-

tion). Recent work for optical diffraction tomography [12] pro-

vided convincing results that deep neural network can address

multiple scattering from large perturbation. In addition, the

direct inversion based on the Lippman-Schwinger formulation

is shown to address multiple scattering and provide super-
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resolution thanks to the internal resonance mode enhancing

[33]. Thus, the proposed approach can potentially solve the

first two issues. Unfortunately, our method does not still

address the third problem, since our the Lippman-Schwinger

integral formulation requires the flux measurement from ho-

mogeneous background. In many clinical applications such

as breast cancer imaging, such additional measurement from

homogeneous background is difficult to obtain. Thefore, the

extension of the proposed learning approach for such practical

environment would be an interesting research direction, but is

beyond the scope of current work.

VI. CONCLUSION

In this paper, we proposed a deep learning approach to solve

the inverse scattering problem of diffuse optical tomography

(DOT). Unlike the conventional deep learning approach, which

tries to denoise or remove the artifacts from image to image us-

ing a black-box approach for the neural network, our network

was designed based on Lippman-Schwinger equation to learn

the complicated non-linear physics of the inverse scattering

problem. Even though our network was only trained using the

numerical data, we showed that the learned network provides

improved reconstruction results over the existing approaches

in both simulation and real data experiments and accurately

reconstructs the anomalies without iterative procedure or linear

approximation. By using our deep learning framework, the

non-linear inverse problem of DOT can be solved in end-to-

end fashion and new data can be efficiently processed in a few

hundreds of milliseconds, so it would be useful for dynamic

imaging applications.
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Fig. 9. Plot of the signal amplitude of all possible source-detector combina-
tions versus the corresponding source-detector distances measured in different
experiments. (a) Polypropylene phantom with one inclusion. (b) Polypropy-
lene phantom with three inclusions. (c) Animal (normal). (d) Animal (tumor).

APPENDIX A

MEASUREMENT DATA CALIBRATION

To determine the maximally usable source-detector distance

and investigate the variation of the real measurement data,

we measured every phantom and calibrated signal magnitude

versus source-detector distances. The resulting plot can be

seen in Figure 9. From this figure, for every measurement,

we observe that the separations of less than ∼ 51 mm result

in detectable signals above the noise floor, whereas noise

dominates in animal experiment measurements with source-

detector distances of more the 51 mm. For animal (tumor)

experiment, even for source-detector distances < 51mm, the

signal level does not seem to decrease as source-detector

distance increases. Still, if zoomed, the signal level decreases

and goes up (V-shaped) in the range of source-detector dis-

tances < 51 mm. Since our goal is to use the same trained

neural network for various experiments, for consistency we

performed the same preprocessing of the animal data as we

did for the other experiments.

The image reconstruction process starts from estimating the

bulk optical properties of the medium. If the bulk optical

properties are incorrectly estimated, this inaccurate starting

point may lead to slow convergence or converge to incor-

rect readings. The bulk optical properties are calculated by

assuming the heterogeneous medium as uniform bulk medium.

The uniform bulk optical properties are found by fitting the

experimental data to the model based data (diffusion equation

in this case) using iterative Newton Raphson scheme as

suggested in [34].

To match the scale and bias of the signal amplitude between

simulation and real data, we divided and added an appropriate

constant value to the simulation data to match the maximum

peaks. Examples of the matched measurement and numerical

data after the calibration are illustrated in Figure 10. Note

that the measurement still contain lots of noisy, so the neural

network should be robustly trained using additive noise and

dropouts.

Fig. 10. An example of before (left panel) and after (right panel) pre-
processing for matching the training data profile to the real signal envelop.
x-axis denotes the detector indices with respect to a fixed source location and
y-axis denotes the absolute µa value (mm−1).

APPENDIX B

HYPER-PARAMETER SELECTION

Since it is difficult to perform an exhaustive architecture

search to the optimal network structure for each experimental

condition, for consistency and simplicity we intentionally

maintained the overall structure of the network same for all the

data set except the specific parameters. Specifically, we used

the same architecture (fixed number of layers) because we

wanted to show the unified architecture that generally works

over the different data (poly phantom, biomimetic phantom,

and animal real data) by just changing the number of channels.

In the following, we illustrate experimental results for

hyper-parameter selection that was performed for the numer-

ical phantom dataset (Fig. 3).

A. Number of intermediate convolutional layers for denoising

As it can be seen in Table III, an additional denoising layer

H of 64 channels (Model 1) to the original numerical model

(baseline) did not provide any significant improvement in the

model performance (RSME, Pearson’s Correlation, SSIM and

CNR) while it adds another 110,592 parameters to the model

risking the overfitting. (Please refer to subsection B-C for

detailed calculation procedure of CNR). A lighter architecture

without denoising layer (Model 2) can also work fine for this

simple problem. Therefore, we chose a single denoising layer

as a compromise for general problems, since this was the

maximum number of layers we could mount the model on

a single GPU.

Note that the proposed neural network is memory intensive

due to the fully connected layer. For example, among the

total 25,219,968 number of parameters of the network for

the numerical phantom experiment, the fully connected layer

occupies 25,105,920 (99.55%) number of the parameters. This

limited the maximum number of convolution layers due to the

physical limits of the GPU memory size.

B. Choice of the number of filter channel r

The rank r of the Hankel matrix corresponds to the number

of the convolution channels of the network. In order to see

the dependency on r, we additionally trained the network

with varying number of channels. By reducing or increasing

the number of the channels, the variations of the network
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TABLE III
THE VARIATIONS OF THE MODEL PERFORMANCE OVER DIFFERENT

NUMBER OF DENOISING LAYERS (MEAN ± STANDARD DEVIATION).
MODEL 1 AND MODEL 2 ARE CONSTRUCTED BY ADDING AND

SUBTRACTING ONE CONVOLUTIONAL LAYER WITH 64 CHANNELS FROM

THE BASELINE, RESPECTIVELY.

Baseline Model 1 Model 2

# denoising layers 1 2 0

RMSE 0.0702 ± 0.0291 0.0709 ± 0.0296 0.0700 ± 0.0289

Pearson’s Corr. 0.5368 ± 0.1910 0.5359 ± 0.1676 0.5471 ± 0.1910

SSIM 0.9425 ± 0.0263 0.9421 ± 0.0266 0.9419 ± 0.0269

CNR 0.1842 ± 0.0859 0.1804 ± 0.0793 0.1899 ± 0.0892

performance were marginal or negligible (Table IV). This

relatively insensitiveness to the rank r is originated from

simplicity of abnormality used in this experiment. Because

all the inclusions are numerically generated, smooth and

spherical-shaped objects, they can be easily fitted by using

low rank filters.

C. MATLAB code for CNR calculation

For clarity, we provide a matlab code for calculating

contrast-to-noise ratio (CNR).

MATLAB code for CNR calculation

% clabel is binary matrix of the ground truth

% cestimate is the estimated matrix of the ground truth

ind roi = find(clabel(:)∼=0);

ind back = find(clabel(:)==0);

a roi = size(ind roi,1)/size(clabel,1);

a back = size(ind back,1)/size(clabel,1);

mean roi = mean(cestimate (ind roi));

var roi = var(cestimate (ind roi));

mean back = mean(cestimate (ind back));

var back = var(cestimate(ind back));

CNR = (mean roi-mean back) /

(sqrt(a roi*var roi+a back*var back));

D. Dependency on SNR

To show that our model is robust over different signal-to-

noise ratio (SNR), we prepared the noisy measurement data by

adding the white Gaussian noise with varying SNR in decibel

(dB) scale (Table V). The noisy measurements were used at the

test stage, even though our neural network was only trained

on the clean measurement without noise. The variations of

the model performance were marginal across different SNR

values, which clearly confirms the robustness of the algorithm.

E. Role of the fully connected layer

To show that the fully connected layer is working as a

scaled version of appriximate inverse of the forward operator,

we visualized the output after the fully connected layer. The

results in Fig. 11(a) in comparison with the final results in

Fig. 11(b) reveal that the fully connected layer is indeed

inverting the forward operator making a rough solution with

a lot of noise. To generate clean final output, this results

should be refined by the following convolution layers. As

we have noted in the ablation study (Fig. 8), the consecutive

convolution layers after the fully connected layer is very

important and we need at least one single convolution layer

with a single filter to recover the accurate location of the

optical anomalies.

(a)

(b)

Fig. 11. Slice-by-slice visualization of the feature map (a) after the fully
connected layer, and (b) at the last layer. The experiment was performed for
the case of the numerical phantom in Fig. 3.
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TABLE IV
THE VARIATIONS OF THE MODEL PERFORMANCE OVER DIFFERENT NUMBER OF CHANNELS (MEAN ± STANDARD DEVIATION). BEST PERFORMANCE IS

MARKED BY BOLD-FACE.

Baseline Model 1 Model 2 Model 3 Model 4

# filters (r) 64 80 32 16 1
RMSE 0.0702 ± 0.0291 0.0703 ± 0.0293 0.0703 ± 0.0294 0.0703 ± 0.0292 0.0708 ± 0.0296

Pearson’s Corr. 0.5368 ± 0.1910 0.5645 ± 0.1673 0.5267 ± 0.2113 0.5647 ± 0.1499 0.5431 ± 0.1676

SSIM 0.9425 ± 0.0263 0.9423 ± 0.0267 0.9427 ± 0.0264 0.9427 ± 0.0263 0.9418 ± 0.0271

CNR 0.1842 ± 0.0859 0.1985 ± 0.0951 0.1842 ± 0.1028 0.1942 ± 0.0800 0.1847 ± 0.0820

TABLE V
THE DEPENDENCY ON SNR OF THE MODEL PERFORMANCE (MEAN ± STANDARD DEVIATION). BEST PERFORMANCE IS MARKED BY BOLD-FACE.

w/o noise SNR 0 dB SNR 1 dB SNR 5 dB SNR 10 dB SNR 20 dB

RSME 0.0702 ± 0.0291 0.0707 ± 0.0296 0.0710 ± 0.0298 0.0703 ± 0.0293 0.0704 ± 0.0293 0.0703 ± 0.0293

Pearson’s Corr. 0.5368 ± 0.1910 0.5101 ± 0.2163 0.5309 ± 0.1735 0.5239 ± 0.2122 0.5227 ± 0.2138 0.5244 ± 0.2127

SSIM 0.9425 ± 0.0263 0.9422 ± 0.0265 0.9422 ± 0.0267 0.9423 ± 0.0267 0.9422 ± 0.0267 0.9422 ± 0.0267

CNR 0.1842 ± 0.0859 0.1746 ± 0.0947 0.1792 ± 0.0811 0.1807 ± 0.0939 0.1803 ± 0.0944 0.1810 ± 0.0940
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