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ABSTRACT

The exclusivity of a vast majority of cancer mutations remains poorly understood, despite the availability

of large amounts of whole genome and exome sequencing data. In clinical settings, this markedly

hinders the identification of the previously uncharacterized deleterious mutations due to the unavailability

of matched normal samples. We employed state of the art deep learning algorithms for cross-exome

learning of mutational embeddings and demonstrated their utility in sequence based detection of cancer-

specific Single Nucleotide Variants (SNVs).

The widespread adoption of high-throughput DNA sequencing technologies has allowed the sequencing

of the genomes/exomes of several thousands of individuals1. However, the sheer size of the human genome

has ever bottle-necked the quest for a universal and comprehensive understanding of variations, cropping

up from the sequence data deluge. We propose the Aminoacid Switch Sequence Model (ASSM) to represent

all possible coding SNVs (Fig. 1A). ASSM encodes an SNV as a switch of aminoacids. For all 640
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where codon length, c = 3, and number of nucleotides, n = 4
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such switches, we

learned continuous representation by scanning ∼ 60,000 exomes, archived by the Exome Aggregation

Consortium (ExAC)1. Due to significant computational overhead for the current study, we initially focused

on the sex chromosomes in the present study. We note that ∼ 70 protein-coding genes harbored by

Chromosome Y offer inadequate levels of genetic diversity, thereby trivializing deep learning-based
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interventions. For Chromosome X, we obtained about 107,000 high-quality variants from the ExAC

browser. We constructed Aminoacid Switch Sequence for all these alterations while accounting for the

splicing events. The switch sequences were subjected to Skipgram2, a single layer neural network, widely

used for learning word-embeddings from large text corpora. The semantic representation thus obtained

was captured in a 300 sized numeric vector representing the individual switches. As the vectors of similar

words correlate highly, switches that share similar nucleotide contexts orient themselves analogously in

the associated vector space. We restricted the scope of the Skipgram based representation learning to

the ExAC reported SNVs alone since they belong to populations that are largely healthy. In this way we

conjectured, variations linked to diverse diseases can be recognized easily.

Cancer related somatic mutations are of two broad types - drivers and passengers. Drivers confer a

fitness advantage to cancer cells, whereas passengers, aka. ”hitchhikers,” don’t3. Passenger mutations

comprise about 97% of somatic SNVs in cancer. Recent shreds of evidence highlight the indirect and

damaging roles of passenger mutations4. The analysis of cancer genomes has primarily focused on

three directions - 1. Driver gene identification based on mutational recurrence5; 2. Assessment of

functional consequences of non-synonymous mutations; and 3. Discovery of mutational signatures5–7.

Different from these, we asked if cancer related coding variants arise from different mutational processes

as compared to germline or other non-cancer somatic mutations. This question is of significant clinical

relevance since a key constraint in genomic testing in oncology is that matched normal tissue specimens

are usually not collected. As a result, a large number of uncharacterized or not-so-well-characterized

genomic alterations go unrecognized. The only visible effort in this direction is SGZ (somatic-germline-

zygosity), a computational method for predicting somatic vs. germline origin of genomic alterations8.

The authors of the study used ultra-deep (> 500x) targeted sequencing of 394 cancer-related genes for

making confident somatic variant calls. To boost the prediction accuracy further, the authors factored in

information about tumor content, ploidy, and copy number. We asked if ASSM based learning can discern

cancer-specific SNVs based on sequence information alone. As indicated above, we restricted our analysis

to the Chromosome X. We posed the problem of detecting cancer mutations as a supervised classification

task. For Chromosome X, a total of 34,981/66,165 unique SNVs were obtained from ExAC/COSMIC

databases1, 9, respectively, to prepare the training data for the task of predicting germline/non-cancer
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somatic vs. somatic origin of genomic alterations. These numbers were inflated to 285,102/590,171 upon

considering the splice variants of the associated 332 protein-coding genes. Notably, the Chromosome

X feature about 800 protein-coding genes. Reduction in the number of genes was due to relatively low

alteration counts or extremity of their lengths (Fig. 1B-F). Since synonymous alterations are expected to

have the least effect on cellular fitness, we ignored them in our downstream analysis.

To construct the training and the validation sets, as a stricter mechanism, we split the alterations based

on genes of origin. In this way, SNVs sourced by 98 out of the 332 genes were held out for validation

(Fig. 1D). We constructed a neural network architecture for classifying Aminoacid Switch Sequences

(Fig. 2A), wherein 300 sized vectors (as discussed above) were used to represent the individual switches.

The network architecture consists of a non-trainable layer for pre-trained embeddings followed by two

bi-directional Long Short-Term Memory (bi-LSTM)10, 11 layers. These layers are then followed by a

time-distributed layer and batch normalization layer. Time-distributed layer weights are shared across

all the time-states along the switch sequences. Of note, the time states do not communicate with each

other. Further, we implanted an attention layer12, followed by a dense layer with sigmoid output to classify

the sequences. Binary cross-entropy loss was minimized to train the network 13. The proposed network

architecture uses a total of 3,877,201 parameters, of which 194,600 are non-trainable. We obtained an

Average Precision (AP ,i.e., the area under the precision-recall curve) of 0.75, indicating classifiability of

the mutational subtypes (Fig. 2B). For the control group, we constructed two fake classes of alterations

by randomly splitting the pool of SNVs obtained from the ExAC browser. As expected, we obtained an

AP of 0.5. With COSMIC alterations, our finding was similar (Fig. 2B). This tends to strongly support

the deduction that cancer specific SNVs fall into a very different distribution, and are not uniformly

distributed.

For an independent validation of the trained model, we obtained the neutral SNVs from the dbSNP

database after removing the entries which are tagged pathogenic14. For a matching cancer alteration

pool, we considered somatic SNVs (potential drivers) from a recently published pan-cancer study of

solid metastatic tumors15 (referred to as Met). Notably, this study sequenced and analyzed 2,520 tumor

samples representing the Dutch population. Following similar filtering criteria as discussed above, and

removing sequences that overlapped with the training set, we were left with 315,040 non-cancer and 1,220

3/6

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.022731doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.022731
http://creativecommons.org/licenses/by-nc/4.0/


cancer-related mutations on Chromosome X. We predicted the cancer origin of the SNVs using the model,

trained on ExAC and COSMIC data. As expected, cancer mutations were assigned relatively higher

prediction scores (Mann-Whitney U-test P-value ¡ 3.01×10−47), thereby underscoring the robustness and

cross-demographic reproducibility of our predictions (Fig. 2C).

Driver genes play a pivotal role in the diagnosis and clinical management of cancers. As such, we asked

if our model differentiates between driver gene-specific germline (largely) and somatic mutations. Com-

bining multiple driver gene databases (OncoKB16, intOGen17 and Cancer Genome Interpreter (CGI)18)

offered us 55 potential drivers that belong to Chromosome X. Only 10 of these (RBM10, IRS4, CCNB3,

ATP2B3, NRK, BTK, SMC1A, SMARCA1, GATA1, and TFE3) were not used at the time of training. We

subjected both categories of the mutations to the predictor. Except for GATA1, for all other genes, we

observed significant differences in the distribution of the prediction scores (Fig. 2D).

In this report, we put forth a mechanism to learn the embedding of coding variants by digesting a

large pool of exome sequencing data. We demonstrated its utility in detecting cancer-related somatic

mutations without the need for matched normal tissue samples. In other words, our findings suggest that

cancer-specific SNVs, including the passenger mutations, occur with differential nucleotide context as

compared to coding variants observed in healthy populations. One significant advantage of ASSM is that

it is not reliant on any clinical or pathological parameters. We predict that the proposed approach could

be adopted in attempting a broad range of questions concerning genotype-phenotype interlinking. Some

potential use-cases include causative gene inference in rare diseases, assessing the impact of mutations on

protein conformation, and exploring the role of splicing mutations in genetic disorders.
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Figure 1. (A) A toy example illustrating the process of constructing Aminoacid Switch Sequences.

Numerals in the switch sequence correspond to the index of switch in switch dictionary. (B) Distribution

of the switch sequence lengths corresponding to splice variants. Sequences containing fewer than 1500

switches were used for the classification tasks. (C) Distribution of SNV-featuring splice variants per gene.

Genes fewer than 200 such sequences were filtered out. (D) Barplots depict the counts of Chromosome X

specific genes that contain the SNVs. These numbers are 328 and 332 for ExAC and COSMIC,

respectively. (E) Barplots depict the splice variant counts for these genes. For ExAC and COSMIC these

numbers are 1286 and 1153, respectively. (F) Barplots depicting the counts of Aminoacid Switch

Sequences after considering the SNVs (38,754 and 105,170 for ExAC and COSMIC respectively). Note:

70/30 rule was applied on genes to construct the training and validation sets.
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Figure 2. (A) The deep learning architecture used for training Aminoacid Switch Sequences constructed

using alterations obtained from ExAC and COSMIC. (B) Precision-Recall (PR) curve obtained after 200

epochs. Red and green curves show performance on the training set and the validation set, respectively.

Training and validation performances measured on fake alteration classes, constructed by randomly

splitting cancer/non-cancer alterations into two equal size groups. All four PR curves thus obtained

collapsed on the 0.5 Precision line. (C) Boxplots depict the distribution of the prediction scores

(probability of being a cancer alteration) assigned to the ExAC and COSMIC alterations in the validation

set. Similar trend can be observed for non-pathogenic dbSNP alterations and putative driver mutations

reported by Priestley and colleagues15. (D) Boxplots show the distribution of the prediction scores

assigned to ExAC and COSMIC alterations for the known driver genes from the validation set.
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