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Abstract: Deep learning has become the dominant 
approach in artificial intelligence to solve complex data-
driven problems. Originally applied almost exclusively in 
computer-science areas such as image analysis and nature 
language processing, deep learning has rapidly entered a 
wide variety of scientific fields including physics, chem-
istry and material science. Very recently, deep neural 
networks have been introduced in the field of nanopho-
tonics as a powerful way of obtaining the nonlinear map-
ping between the topology and composition of arbitrary 
nanophotonic structures and their associated functional 
properties. In this paper, we have discussed the recent 
progress in the application of deep learning to the inverse 
design of nanophotonic devices, mainly focusing on the 
three existing learning paradigms of supervised-, unsu-
pervised-, and reinforcement learning. Deep learning for-
ward modelling i.e. how artificial intelligence learns how 
to solve Maxwell’s equations, is also discussed, along with 
an outlook of this rapidly evolving research area.

Keywords: artificial intelligence; nanophotonics; 
machine learning; inverse design; forward modelling; 
metamaterials.

1  �Introduction
Nanophotonics is devoted to the study of light-matter 
interaction at the subwavelength scale [1]. During the last 
few decades, important fundamental advances combined 
with the spectacular progress of nanoscale fabrication 
methods [2–4] have led to a broad range of innovations 
in nanophotonics [5, 6], largely based on tailoring peri-
odically structured materials to create 2D and 3D metasur-
faces [7, 8] or metamaterials [9] that exhibit extraordinary 
properties that cannot be found in nature. This includes 
advances in the fields of plasmonics [10, 11], hologra-
phy [12, 13], artificial chirality [14, 15] and topological 
photonics [16, 17].

Remarkably, most of these breakthroughs are mainly 
based on human intuition. By way of illustration, let us 
consider a fundamental photonic problem: the scattering 
of light with a simple dielectric object. It is well-known that 
for obtaining a polarization insensitive optical response, 
we should use a symmetric design such as a circular rod 
[18, 19]. Then, if we want to add a different response for 
each polarization state, we can elongate the rod in one 
direction to create an oval shape, as we know from pre-
vious experience and reasonable physical arguments that 
the increased amount of material along the elongated 
dimension will create a different optical response for each 
incident polarization [20, 21]. However, there is no reason 
to believe that our intuition has led us to an optimal design 
with the highest possible performance. The limiting char-
acter of human-based intuition for the design of improved 
nanoscale devices shown in this simple example is appar-
ent from a more general standpoint when considering 
the tremendous control over topology and composition 
of nanophotonic structures allowed by state-of-the-art 
nanofabrication techniques.

Inverse design has received increasing attention as a 
powerful approach to go beyond human-intuition based 
devices [22, 23]. The conventional design process usually 
starts from the known library of designs that have been 
proven to work for the given task. Then, computational 
optimization techniques [24–30] are used to find the 
optimal design. Although these techniques do indeed 
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represent a key tool in current nanophotonic research, the 
process is extremely time and computationally intensive, 
leading to a singular “best” design for each optimization 
goal and parameter space under study (a modification of 
that optimization goal requires a new inverse optimiza-
tion process to be run again from scratch). In addition, 
when fabricating the obtained design, there could be 
additional practical constraints preventing certain design 
parameters to be met exactly. When that occurs the corre-
sponding optimization process has to be often carried out 
again. As nanophotonic designs become more intricate 
and fabrication techniques allow for more complex three 
dimensional designs [31–33], this process becomes even 
more resource intensive.

In parallel, the unprecedented development of arti-
ficial intelligence (AI) that has taken place during the 
last few years has remarkably accelerated the pace of 
technological disruptive advances in multitude con-
texts. Deep learning (DL) in particular, a branch of AI 
originally inspired by the biological neural networks of 
animal brains, has largely benefited from the availability 
of large datasets and recent advances in architectures, 
algorithms, and computational hardware. This, in turn, 
has led to impressive new applications that we could 
not have been imagined a few years ago, from improved 
computer vision [34] paving the way for driverless cars 
[35], enhanced speech recognition [36] that allows us to 
interact verbally with devices, to new stock management 
systems that provide us with next day delivery services all 
over the world [37].

The combination of the above two areas (i.e. inverse 
design in nanophotonics and DL) is nowadays emerging as 
a fundamentally new approach that offers the promise of 
solving some of the key challenges faced in nanophotonic 
inverse design. Conventional optimization algorithms 
[26, 38] are usually programmed within a specific set of 
boundaries, with a figure of merit used to optimize the 
output. A DL model on the other hand, is trained through 
non-linear activation functions and back propagation [39] 
to intelligently learn the nonlinear relationships between 
the input and output values over a large dataset. In this 
way, a model is able to effectively “learn” Maxwell’s equa-
tions and how to solve them, without explicitly knowing 
them. This, in turn, allows for the possibility of the discov-
ery of solutions outside of the boundaries of the training 
data, and also the ability to transfer knowledge between 
problems, a method known as “transfer learning” [40]. 
This approach represents a complete change of paradigm 
of how nanophotonics research have been understood 
until now, and it is expected to lead to an equally disrup-
tive series of novel findings in nanophotonics.

While DL has revolutionized many fields over recent 
years, it is still very much so in its infancy in the field of 
nanophotonics. The inherent weaknesses of DL in all fields 
are, of course, also present in nanophotonics. In particu-
lar, the large datasets that allow for facial recognition and 
image classification are made up from millions of users on 
platforms around the world, whereas for a single problem 
in nanophotonics, the dataset generally needs to be made 
specifically for the task. While a single run of other inverse 
designs may take a few hundred simulations to reach a 
desired optimization, DL has a much higher up-front com-
putational cost (the number of data that a single DL model 
should learn easily exceeds the number of simulations 
required for other inverse design techniques). In addi-
tion, the large amount of data required for a DL approach 
could not be easily accessible and is usually created using 
simulation methods such as RCWA, FEM and FDTD, which 
are time and computationally expensive. The results of DL 
are also sensitive to the dataset, so care needs to be taken 
to ensure that we are allowing the network to learn from 
good data. This includes normalizing, standardizing and 
cleaning the dataset to increase its practicality. Finally, 
the hyperparameters for the network and the DL algo-
rithm also need to be optimized, which requires an exten-
sive study to find the optimal network for the task at hand. 
In this article we have presented a review of the recent 
activity in the rapidly evolving area of DL assisted inverse 
design of nanophotonic devices. This review is organized 
as follows. We start by introducing the recent progress of 
DL in nanophotonics regarding forward modelling. DL 
has been extremely successful in this area, with various 
examples of models that can instantaneously and suc-
cessfully predict the optical properties of nanophotonic 
design. DL-based forward modelling also represents a key 
concept to understand subsequent advances on inverse 
design. After that, we have presented a throughout discus-
sion of DL enabled inverse design in nanophotonics, con-
sidering the current three paradigms of machine learning, 
namely, supervised learning, unsupervised learning and 
reinforcement learning (RL). Finally, we end up with a 
set of conclusions of this work and outlook on the bright 
future of DL in nanophotonics.

2  �Deep learning for forward 
nanophotonic modelling

In essence, forward modelling in nanophotonics consists 
in predicting the optical properties of photonic structures 
featuring subwavelength-scale complex features. To do 
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that, conventional approaches solve, either analytically 
[41] or numerically [42], the corresponding Maxwell’s 
equations governing light propagation in such complex 
photonic environments. For instance, the transfer matrix 
method analytically describes the light propagation in a 
stratified medium by obtaining closed expressions for the 
complex amplitude of reflection and transmission [43, 
44]. Similarly, the rigorous coupled wave analysis (RCWA) 
method offers a semi-analytic approach [45, 46] that can 
be used to obtain the optical responses of periodic struc-
tures in the Fourier domain. Despite the obvious value of 
these methods, as the complexity of the photonic envi-
ronment increases, it becomes more and more difficult to 
obtain analytic or semi-analytic solutions that can accu-
rately capture all the physical ingredients featured by the 
considered problems (this is particularly the case when 
going from 1 and 2 dimensions to a 3 dimensional system). 
For arbitrarily complex nanophotonic structures, fully 
numerical simulations (such as the finite-element method 
or the finite difference time domain method [47, 48]) are 
employed to obtain the associated optical responses. 
These highly sophisticated approaches are essentially 
based on discretizing the studied system and solving Max-
well’s equations at each spatial location. This is precisely 

what, on one hand, gives these techniques their general 
character, but on the other hand, makes them computa-
tionally expensive, especially as the complexity of the 
design grows and an increasingly finer spatial discretiza-
tion is required [42]. Plasmonic systems [11], in which the 
deep-subwalength scale of plasmonic resonances is often 
combined with much larger length scales, are perhaps the 
canonical case that illustrates this aspect.

Recently, data driven approaches of DL have been 
introduced as a new, powerful, versatile approach for 
forward modelling in nanophotonics [49–56]. The under-
lying idea is based on predicting the optical response 
of a given photonic system by approximating Maxwell’s 
equations, therefore allowing the response to be obtained 
without explicitly solving them. That, in turn, removes the 
need of computationally intensive numerical simulations 
from the picture. In the pioneering work, Peurifoy et  al. 
predicted the scattering cross section of a silicon dioxide 
(SiO2)/titanium dioxide (TiO2) multi-layered, core-shell 
nanoparticle using a deep neural network (DNN) [49]. 
Specifically, they used a fully connected DNN featuring 
several hidden layers to approximate the scattering cross 
section of the core-shell nanoparticle for the given inputs 
of thickness for each layer (Figure 1A). The network was 

Figure 1: Forward modelling enabled by DL.
(A) A schematic of DNN to predict scattering cross section of the core-shell nanoparticle. (B) Comparison of the approximated spectrum 
by NN to the simulation results, and closest data. (C) A schematic of transfer learning. Knowledge is transferred from the source data to 
target data. (D), (E) Results of the transferred learning between (D) similar and (E) different physical systems. (A) and (B) are adapted with 
permission from Ref. [49] (CC BY 4.0). (C–E) are reprinted with permission from Ref. [50], Copyright 2019 American Chemical Society.
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trained with a set of previously obtained 50,000 scattering 
cross section spectra, as calculated for different instances 
of the system generated varying randomly the thickness of 
each layer within a given experimentally-accessible inter-
val of values (note that the transfer method was used to 
efficiently generate this large amount training spectra). 
After training, a test multilayer core-shell particle, which 
had never been seen in the previous training steps, 
was used to validate the network. The predicted optical 
responses of the scattering cross section as a function of 
wavelength agreed well with the target responses of the 
given structural parameters (Figure 1B). Moreover, a com-
parison between the predicted result and the closest train-
ing data showed that the network had uncovered some 
underlying pattern between the input and output data, 
rather than simply interpolating or averaging the closest 
data points (Figure 1B).

Another remarkable demonstration of how DL algo-
rithms can indeed learn complex optical behavior from 
structural parameters is found in Ref. [50]. In that work, 
Qu et al. demonstrated the possibility of predicting optical 
properties in a given physical scenario with the help of the 
knowledge obtained from a different, but related, physical 
problem. They used the “transfer learning” [39, 40], which 
essentially consists in reusing a previously trained model 
for a different, but related task (Figure 1C). In particular, 
in Ref. [50] a DNN was first trained with transmission data 
corresponding to 8-layer multilayer system, and then was 
reused to predict the transmission response of 10-layer 
system (Figure 1D). The underlying physics extracted from 
the 8-layer system was therefore transferred to the case of 
the 10-layer system, for which efficient learning took place 
even with an insufficient amount of training data. They also 
showed that this approach can be extended to two differ-
ent tasks, namely, the scattering spectrum of a multilayer 
nanoparticle system and the transmission of multilayer 
films (Figure 1E). With the help of the transferred knowl-
edge, the error of the network was significantly reduced. 
The underlying idea of why this approach actually working 
well is that, although two different physical structures are 
being considered, both structures share common physical 
rules, and, in that way, DL indeed discovers the underly-
ing physics from data, rather than simply interpolating 
or regularizing it. Importantly, this method provides a 
particularly efficient learning method when the dataset is 
too small or hard to acquire (i.e. a method for avoiding the 
overfitting problem on a small dataset). In this context, we 
also point out that recent research also has shown that DL 
can be employed to discover knowledge about the physics 
of light-matter interactions by finding the range of feasible 
responses in the latent space [53].

The above examples demonstrate how DL can be used 
to predict optical properties from given structural para-
meters, where the inputs are limited to a few geometric 
parameters. Recently, attempts have been made to predict 
optical properties from any given arbitrary shapes [54, 55]. 
Inampudi and Mosallaei firstly developed a metagrating 
antenna with arbitrary shapes of a sixteen-sided polygon 
[55]. The shapes of antenna are defined by the radius 
coordinates of sixteen vertices (Figure 2A), which can rep-
resent any arbitrary shapes. The DNN takes sixteen coor-
dinates as inputs and predicts the diffraction efficiency of 
13 diffraction orders. The results showed that the network 
can predict diffraction efficiency given the vertices coor-
dinate information (Figure 2B). Thus, this research work 
extended for the first time the use of DL for the prediction 
of optical properties from any structures using coordinate 
information. Later, in Ref. [54] Sajedian et al. generalized 
that approach by using a 2D image as the input. Specifi-
cally, 2D cross-sectional images of plasmonic structures 
were used as inputs, and the neural network predicted 
the corresponding absorption spectra. Input images were 
composed of arbitrary structures, where black and white 
images represent the existence (or not) of a silver structure 
at certain locations. For the DL process, they used a con-
volutional neural network (CNN) [57], which has proved to 
be an efficient implementation for extracting key features 
from images [35]. In addition, a recurrent neural network 
(RNN) [58] was used to find the correlation within the 
data (Figure 2C). Interestingly, the results showed that the 
network was able to predict the absorption spectra from 
the given input structural images (Figure 2D). Thus, this 
research work extended for the first time the use of DL 
for the prediction of optical properties from any structure 
using images.

As discussed above, recent work on forward model-
ling enabled by DL has shown the ability of AI algorithms 
to learn the complex relations between nanophotonic 
structures and their associated optical responses. A 
natural extension of this concept consists in assum-
ing that DL can also solve complex inverse design prob-
lems, i.e. the inverse process of forward modelling [49]. 
However, unlike forward modelling (where there is a 
one-to-one mapping between one physical system and its 
corresponding response), inverse design has to tackle the 
possible problem of non-uniqueness (i.e. several different 
designs can produce the same optical response, which 
makes the whole problem significantly more challeng-
ing) [59]. One of the most common approaches to over-
come these issues relies on adding a forward modelling 
network into the inverse design DNN architecture [59–61], 
so that an additional tandem network can be trained 
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simultaneously to find optimal designs. This point is dis-
cussed in more detail in the following sections.

3  �Deep learning nanophotonic 
inverse design

3.1  �Supervised learning in inverse design

Supervised learning can be defined as the task of finding 
the complex (in general non-linear) relationships between 
two sets of pre-labelled data [62]. Because in this case the 

network learns mappings with explicit instances of input-
output pairs, the supervised learning method features 
an excellent performance with dealing with well-defined 
problems. In nanophotonic inverse design, this learning 
method has been applied to design structural parameters 
of the pre-defined structural shapes [49, 59, 61, 63–65]. The 
data are prepared with explicit pairs of design parameters 
and their associated optical properties, and the network is 
trained iteratively to provide appropriate structural para-
meters for given input optical properties.

In the work of Peurifoy et al. [49] (already discussed 
in Section 2), the authors used their forward DL model 
in reverse to design a multi-layered core-shell nanopar-
ticle. Specifically, after training their forward modelling 

Figure 2: Image-based forward modelling via DL.
(A) A schematic of a metagrating antenna with arbitrary shape. A sixteen-sided polygon is defined by 16 radius coordinates of the 
corresponding vertices. (B) Examples of the prediction results. In each panel, the background grey images display the shapes of 
metagrating, whereas the double square boxes correspond to target (left) and predicted (right) diffraction efficiency at each diffraction 
angle. (C) A network structure combined with CNN and RNN. A CNN is used to extract important features from the 2D images, and an RNN 
is used to find the correlations in the data. (D) Examples of the results. 2D images (lefts) are fed as inputs, and the network provides 
absorption spectra (rights) as outputs. (A) and (B) are adapted with permission from Ref. [55] and (C) and (D) are reprinted with permission 
from Ref. [54] (CC BY 4.0).

S. So et al.: Deep learning enabled inverse design in nanophotonics 1045



network, they used it in reverse to infer the best design 
parameters for a “random” spectrum. In this first example 
of inverse design, the team froze the weights of the DNN 
and fixed the output to a specific spectrum. Rather than 
retraining the network, they iterated through possible 
input values for the network to find the combination that 
gave the closest result. Notably, while conventional opti-
mization methods typically get stuck in a local minimum, 
the proposed DNN avoided that fate and lead to the most 
optimized result.

An improved method for using DL in inverse design 
was demonstrated by Liu et  al. [59], by employing a 
tandem DNN that combined the inverse network with a 
pretrained forward model (Figure 3A). In that work, the 
authors designed an SiO2 and Si3N4 multilayer structure 
(Figure 3B), where the thickness of each layer made up the 
design parameters. After training the forward model that 
links the design parameters to the transmission spectra, 
they fixed the weights and added the inverse design 
network to the front. Their training dataset was made 
up of 500,000 labelled pairs of data, with 50,000  more 
for testing. The desired spectrum was used as the input, 
and the network minimized the loss between the desired 
spectrum and the recovered spectrum, while the design 
parameters were extracted from the intermediate layer. 
As mentioned at the end of the previous section, this 

particular architecture has the important advantage of 
overcoming the issues of non-uniqueness, as the solution 
does not require the design to be specific for a set of design 
parameters (it instead requires that the loss between the 
desired and predicted output spectra is small). In addi-
tion, in that work the authors demonstrated that the 
same method can be used to design 2D structures able 
to modulate transmission phase delay at three specific 
wavelengths.

Despite the success in the inverse design using 
DL, the above described methods have been applied to 
design a few structural parameters, while the different 
types of the component materials are fixed. In Ref. [61] 
So et al. took a step forward and investigated the design 
of a core-shell nanoparticle by combining into the same 
implementation both regression and classification for the 
design parameters and the material of each layer, respec-
tively (Figure 3C). In this context, let us recall in passing 
that, depending on the characteristics of the output data, 
machine learning problems can be generally divided into 
two main categories: regression and classification. Regres-
sion requires the prediction of continuous quantities, such 
as a time series, whereas classification focuses on allocat-
ing the data into discrete classes. To solve the combined 
regression and classification problems, in Ref. [61] the loss 
function has to incorporate both the regression, for the 

Figure 3: Inverse design in nanophotonics via DL.
(A) Schematics of forward model and inverse model. (B) A schematic of the SiO2 and Si3N4 multilayer structure and two designs that have the 
same transmission response. (C) A schematic of Core-shell nanoparticle and (D) corresponding DL model to simultaneously design materials 
and thicknesses of the particle. (E) Examples of practical inverse design of Core-shell nanoparticle for spectral tuning ED resonances. (A), (B) 
are reprinted with permission from Ref. [59], Copyright 2018 American Chemical Society. (C–E) are adapted with permission from Ref. [61], 
Copyright 2019 American Chemical Society from [59].
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continuous values of core-shell layer thickness, and clas-
sification, to choose the most appropriate material of each 
layer (Figure 3D). In that work a dataset of 18,000 labelled 
data was used, with 80% used for training and 10% each 
for validation and testing. The obtained network was able 
to determine the structural parameters and materials to 
give the required electric dipole (ED) and magnetic dipole 
(MD) extinction spectra. After being trained, the model 
was tested by using hand drawn Lorentzian functions with 
peaks at specific locations (Figure 3E). The model was suc-
cessful in determining a design that gave a response that 
is extremely similar to the input. Remarkably, this allows 
for the design of core-shell nanoparticles that have ED 
and MD resonances at specific, user determined locations, 
within fractions of a second.

Recent research works were on utilizing DL for 
the inverse design for more practical applications. For 
example, DL has been applied in the field of topologi-
cal photonics [66] by Pilozzi et  al. [67]. They created a 

photonic topological insulator with an array of layers, 
modelled by the transfer matrix technique (Figure 4A). 
In the proposed inverse design process, the model was 
required to find a target edge-state with a specific fre-
quency, which was then used as the input. In this applica-
tion, discontinuities in the features space led the authors 
to use multiple independent DNNs for each specific vari-
able (Figure 4B). To ensure that the solutions provided 
by the inverse network were indeed viable and physical 
solutions, Pilozzi et al. also validated the obtained solu-
tions by using them as inputs to their forward modelling 
network. This allowed them to check that any multivalued 
degeneracy was effectively removed.

Meanwhile, Baxter et  al. [52] applied DL to the 
field of plasmonic color. Using both experimental and 
simulated data, they predicted laser parameters and 
the geometry of nanoparticles to create desired colors 
(Figure 4C). Their unique inverse design method trained 
n DNNs for each design, where n is the number of 

Figure 4: Practical applications of DL for inverse design in nanophotonic structures.
(A) A schematic of the topological insulator and its edge state obtained from transfer matrix. (B) Direct and inverse networks used to find 
the specific edge state frequency. (C) Laser machined silver surface and its color representation. (D) Iterative DNN inverse design. (E) A 
schematic of the two-layer split-ring resonator. (F) The DNN design, including the forward modelling and inverse design. (G) An example of 
the predicted spectra for a given CD response with two resonance points. (A) and (B) are reprinted with permission from Ref. [67] (CC BY 4.0). 
(C–D) are adapted with permission from Ref. [52] (CC BY 4.0). (E–G) are reprinted with permission from Ref. [68], Copyright 2018 American 
Chemical Society.
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outputs, i.e. design parameters (Figure 4D). Each DNN 
takes the input color and all but one design parameter 
as inputs, to produce one output value. The next DNN 
is then trained with the updated design parameter, and 
this process is repeated until a solution is found. In that 
work, the authors chose to initialize the starting design 
parameters as the mean values from their dataset. This 
process generally took 10–20 iterations to converge to 
a final solution, but did not guarantee that the optimal 
solution was found, as it depended on the initial values. 
To overcome this issue, Baxter et  al. put forward that 
multiple initialized inputs can be used to produce mul-
tiple designs, and the one with the least error can be 
selected.

On a different note, Ma et al. implemented two bidi-
rectional DNNs for the on-demand inverse design of chiral 
metamaterials [68]. Since one resonant feature of a chiral 
response can be approximated by a Lorentzian function, 
the authors hand-drew a desired spectrum with two reso-
nance peaks and predicted the five design parameters for 
a two-layered split ring resonator that displayed that spec-
trum (Figure 4E). With a dataset of 30,000  samples, Ma 
et al. were able to simultaneously solve the forward mod-
elling and inverse design problems (Figure 4F). From the 
obtained results, they were able to discover designs that 
leading high circular dichroism responses in structures 
that were almost symmetric. Importantly, this finding 
goes against human intuition, which highlights the non-
linear relationship between geometric chirality and chi-
roptical response (Figure 4G).

3.2  �Unsupervised learning in inverse design

In contrast to supervised learning, unsupervised learn-
ing handles data without explicit instructive labels; that 
is, the network infers important patterns from the data 
without a desired or correct answer [69, 70]. This may 
cause the DNN to define problems less clearly and there-
fore be more difficult to solve. However, since unsuper-
vised systems learn by themselves without a specific goal, 
they are superior to supervised learning systems at discov-
ering new patterns in completely new data. In nanopho-
tonics, the strength of unsupervised learning methods has 
been used to solve inverse design problems for arbitrary 
shapes [60, 71–74]. In this class of problems, the network 
is trained with certain types of geometric images and their 
optical properties, then infers the nonlinear mapping to 
design arbitrary shapes. In this context, 2D cross sectional 
images were used to represent arbitrary geometries of the 
structures.

In Ref. [60], Liu et al. demonstrated for the first time the 
possibility of performing inverse design of nanophotonic 
structures using an unsupervised learning system. More 
specifically, they used a generative adversarial network 
(GAN) [75] to design arbitrary geometries of metasurfaces. 
GANs are rather a recently developed machine learning 
algorithm, but have become one of the most interesting 
unsupervised learning methods [75]. Due to their rele-
vance, let us briefly account for how a GAN works. A GAN 
consists of two networks, a generator and a discriminator. 
The two networks compete in a zero-sum game and simul-
taneously learn. The generator takes random noise and 
generates structural images that should have the desired 
optical properties, while the discriminator judges whether 
the generated images are from the structural geometric 
data of interest. The objective of the generator network is 
to deceive the discriminator network by generating realis-
tic structural images. Therefore, after training, the genera-
tor network is able to create designs that resemble images 
in the actual geometric data, i.e. the generator network 
infers important patterns from the data through the feed-
back from the discriminator network. In addition to the 
GAN model, in Ref. [60], the authors also added a simula-
tor network to approximate the optical properties from the 
generated design images (Figure 5A). A total of 6,500 sets 
of data were prepared for the DL algorithm, each entry 
consisting of a binary pixel image of the antenna meta-
surface and a complete set of transmission spectra for 
each polarization. After training, the network was capable 
of providing structural images for given transmission 
spectra. Both test data and random user-drawn spectra 
were used to evaluate the trained network, and the results 
showed that the network can provide structures that have 
desired optical properties (Figure 5B). The network gener-
ates arbitrary structural patterns, which allows an insight 
into new structures that are beyond human intuition built 
on experience and knowledge. However, as GANs solve 
the unstable Nash equilibrium problem, they provide 
unstable solutions. Recent research has introduced deep 
convolutional GANs [76] into nanophotonic inverse design 
problems to solve the zero-sum problem in a more stable 
manner [71].

Recently, Ma et al. [77] have introduced a semi-super-
vised learning strategy, where both labelled- and unla-
belled-data are used for training to improve the model 
performance [72]. They used a probabilistic model of a 
variational auto-encoder (VAE) [78] for inverse design. 
VAEs are another class of powerful generative models 
[79], which reconstruct the input after being compressed 
into a few latent variables. Unlike other inverse design 
approaches, the network takes input geometry, and 
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encodes the structural design and optical responses 
into the latent variables with a predefined distribution 
(Figure  5C). In the case of Ref. [77], the important infor-
mation of 64 × 64  structural designs and their optical 
properties were compactly encoded in 20 latent variables. 
Then, these latent variables were stochastically sampled 
from the latent space and decoded to reconstruct the 
original structural geometry. Accordingly, the decoding 
process can be used to solve the inverse design problem. 
In addition, the sampling process provides diversity in the 
outputs, allowing the production of many candidates for 
the inverse design (Figure 5D). This is closely connected 
with the physical insight of the non-uniqueness problem 
inherent in inverse design. Indeed, the network was able to 
provide very different meta-atom geometries with optical 
properties that are quite similar to the desired input spec-
trum (Figure 5D). Moreover, the latent space was explored 
for interpretability, and it could be observed that three 
different geometry groups (cross, split ring, and h-shaped 
antennas) emerged from the analysis (Figure  5E). This 
clearly showed that the network automatically learns to 

distinguish the different geometry groups without any 
specific labels or instructions. Finally, Ma et  al. dem-
onstrated that the slight change in the sampling latent 
variables caused the network to generate patterns with 
different geometries, which could provide a more compre-
hensive generation mechanism from the network.

The combination of unsupervised learning methods 
of DL, in particular GANs, with a physics-informed 
inverse design method has been also recently proposed 
as an approach to find optimal nanophotonic designs. 
In particular, Jiang et  al. combined the idea of a GAN 
with a topology optimization method to create a novel 
inverse design method [73]. This method exploits the 
generating property of GANs and uses it to generate  
sufficient quantities of training data of the metasurfaces 
(Figure 6A). The goal was to design the optimal topology 
of a metasurface for high diffraction efficiency at a target 
wavelength and incident angle. The DL network captures 
the important features of the metasurfaces with high effi-
ciency and generates possible candidates that contain 
those features. After that, the topology optimization is 

Figure 5: Inverse design using unsupervised learning methods.
(A) A GAN model to inverse design structural images. (B) Examples of the results of the inverse design. Full sets of transmission spectra 
(left) of the inputs (right) obtained from the designed structures. Insets are the associated structural images. (C) A schematic of inverse 
design using VAE. (D) Examples of the results. The top spectra are target spectra, and the middles and bottoms are two examples of the 
retrieved structural designs (insets) and their associated reflection spectra. (E) Visualization of the latent space. (A) and (B) are reprinted 
with permission from Ref. [60], Copyright 2018 American Chemical Society. (C–E) are adapted with permission from Ref. [72], Copyright 2019 
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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used to further improve the device efficiencies (Figure 6B) 
[73]. This method combines the advantages of both DL 
and topology optimization and allows for the inverse 
design of high-performance metasurfaces at a moderate 
computational cost. In addition, this strategy works well 
with relatively less training data, because the algorithms 
focus on only extracting the important features from the 
data, rather than predicting their associated optical prop-
erties. Accordingly, it substantially reduces the burden 
of creating huge training datasets. In this context, other 
recent work by Jiang and Fan [80] has shown that the 
direct incorporation of adjoint variable calculations into 
GANs enables finding the global optimal solution for high 
diffraction efficiency with relatively low computational 
cost. They introduced a physics-driven loss function, 
where adjoint variable calculations are incorporated. The 
gradient of the loss ultimately leads to find the maximum 
device efficiency. The proposed global optimization 
method was compared with a conventional adjoint-
based topology optimization method [26], and through 

a statistical analysis found that the proposed method is 
able to create designs with higher diffraction efficien-
cies. Therefore, we can conclude that the incorporation 
of physics information has indeed extended the practical 
utilization of DL as an inverse design method.

3.3  �Reinforcement learning in inverse design

The last three paradigms of machine learning is RL [81–
83]. DeepMind’s AlphaZero [84] and AlphaStar [85] are 
popular examples of this class of goal-oriented machine 
learning approaches. Those algorithms are able to play 
popular games such as chess, shogi and go, and have 
been even expanded to learn games just of them limited 
information, such in the case of AlphaStar [85]. Remarka-
bly, after a few hours of training by playing games against 
itself, the agents were able to achieve a human level of 
competency, while only being told about the rules of the 
game [86].

Figure 6: DL-assisted inverse design method combined with topology optimization.
(A) A schematic of the inverse design where a GAN generates training data. The generated designs are further optimized using topology 
optimization. (B) Metagrating generation and their topology optimization results. Efficiency histogram of the randomly generated pattern 
(left) and the refined pattern (middle), and the diffraction efficiency changes with the iterations (right). (A) and (B) are reprinted with 
permission from Ref. [73], Copyright 2019 American Chemical Society.
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The main idea of RL is based on training an agent 
to learn about the parameter space of an environment 
through its own experience, by means of combining 
exploration and exploitation with the maximization a 
given cumulative reward. This can be understood as, 
for instance, analogous to humans eating quality food, 
for a short-term reward we can enjoy the taste, and for 
a long-term reward we stay healthy. Short-term rewards 
can also be negative to discourage certain choices, akin 
to the bad taste of low-quality food. Interestingly, in con-
trast to some of the algorithms discussed in the previous 
sections, RL does not require the creation of an exten-
sive dataset to train on, as the policy is learned through 
the experience of the rewards received by doing certain 
actions in certain states. The decisions are made sequen-
tially using Markov decision processes [87]. Markovian 
approaches are ubiquitous in physics and can be sum-
marized by this simple statement “Future is independ-
ent of the past given the present’, i.e. the current state 
includes all the information that has been learned from 
the past states.

The key components of how RL works are summa-
rized in Figure 7. We have provided a brief description of 
each of these components of other important concepts 
underlying RL and their connection to nanophotonic 
design problems:

–– Agent: An agent is a component that take actions on 
the environment.

–– Actions: Actions (A) are a set of possible ways that the 
agent can interact with the environment. In the inverse 
design in nanophotonics, they often correspond to 
changes in a physical parameter of the system (such 
as a geometrical parameter of material forming some 

part of the system). The actions are defined within the 
environment and can be limited in states where physi-
cal limits could be exceeded.

–– Environment: The environment is the parameter space 
that the agent explores and learns about. This could 
be a set of physical dimensions, materials or incident 
angles, to name just a few examples.

–– State: The state (S) is the situation in which the agent 
exists at a specific moment in time. In nanopho-
tonics, this can be understood as the current set of 
parameters that describe a given design (such as the 
material, height and radius of a nanorod in a metas-
urface for example).

–– Reward: The reward (R) is the feedback that the agent 
receives for taking a specific action in a specific state. 
These rewards are a way of evaluating the action taken 
by the agent in the given state. A good example of a 
reward would be the optical properties of the specific 
design, such as reflection, transmission or absorption.

–– Policy: The policy (π) is the strategy that the agent 
learns about the environment. The agent uses it to 
determine what its next action will be.

–– Discount factor: The discount factor (usually denoted 
as γ) is a real number between 0 and 1, which is mul-
tiplied by future rewards make those future rewards 
less fulfilling than immediate one. A discount fac-
tor of 1 would give future rewards the same worth as 
immediate ones, whereas a discount factor or 0 would 
only consider the immediate rewards. This is a hyper-
parameter of the algorithm that should be tuned for 
each application.

–– Value: The value (V) is the expected long-term reward 
(including the discount factor) for the current state 

Figure 7: A schematic of the main features of reinforcement learning for nanostructure inverse design.
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while using the policy π (it is usually denoted by 
Vπ(s)).

–– Q-value: Similar to V, the Q-value takes a chosen 
action (a) an extra parameter into account. Specifi-
cally, the Q-value (Qπ(s, a)) takes the current state 
(s) and the chosen action (a) under the policy π and 
maps the state-action pairs to rewards.

The Q-learning algorithm is able to handle problems fea-
turing stochastic transitions and rewards, and was proven 
to converge to the optimum action-values [88]. In deep 
Q-learning (DQN), the Q values are approximated by a 
nonlinear function, such as the one of DNNs. However, 
this choice caused the learning stage to be unstable and 
even divergent in some cases. This issue mainly arose 
due to the associations between previous states and the 
sequences they had visited, for which a small update of the 
Q value could significantly change the policy and the links 
between the Q values and targets [89–91]. To overcome 
this important drawback, DeepMind introduced a tech-
nique known as “experience replay” [92]. In this a method 
a random sample of previous actions and states is used to 
proceed, instead of using the most recent ones, thereby 
removing correlations in the sequence of observations. To 
further reduce the correlations, the target values are not 
constantly updated, but periodically. A problem of deep 
Q-learning is that the chosen action is evaluated using 
the same policy as the Q-value estimation. This yields 
an overestimation of the action values, which hinders 

learning. To avoid this, double deep Q-learning (DDQN) 
was introduced in Ref. [93], and, due to its superior perfor-
mance, became the basis of the RL applications in nano-
photonics. In DDQN, two different models are used, one 
which evaluates the expected Q-value and another that 
chooses the next action. This increases the stability as a 
recent change in the policy will not affect the next chosen 
action. If the agent was to choose actions all the time, it 
would never be able to explore the parameter space and 
learn anything new, so to add a stochastic element to 
the choice of action, an epsilon greedy policy is usually 
used. A random number is generated and compared with 
the value of epsilon at that step. If the number is greater 
than the epsilon value at that step, then the agent uses 
the network to choose an action, otherwise an action is 
chosen at random [94].

In the first application of DDQN to nanophotonics put 
forward by Sajedian et al. [94], a previously reported color 
filter was further optimized to produce red, green, and 
blue (RGB) primary colors closer to the pure RGB colors 
than those previously reported in Ref. [95] (Figure 8). From 
a possible ~36.5 million states, the agent devised by Saje-
dian et al. was able to produce results superior to those in 
Ref. [95] within 9,000 steps. In particular, in their imple-
mentation the agent had a choice of 9 actions, related to 
changing one of the design parameters of the nanorod or 
the antireflective layer. The used reward system is shown 
in Figure 8C. As the goal was finding the closest repre-
sentations of RGB, a simulation of the reflectance was 

Figure 8: Reinforcement learning used to optimise the parameters of a dielectric color filter.
(A) A schematic of the nanostructure and DNN design. (B) The data points as the agent traverses the parameter space and reaches the 
goal of finding the bluest possible color. (C) The reward system based on the Lab color space color difference. Figures are adapted with 
permission from Ref. [95], The Optical Society (OSA).
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undertaken for each state and action pair, and the color 
was calculated from the resulting spectrum. After con-
verting the XYZ color values to the Lab color space, the 
reward was obtained from the color difference between 
the resulting color and the target. Notably, the applied 
approach produced colors with comparable or smaller 
color differences than those human researchers were able 
to achieve [96].

In the next example of RL performed by the same 
group, the authors used the same DDQN algorithm to 
design a highly efficient, transmission-type, polarisation-
independent hologram [97]. In this case, the agent had 16 
actions within the parameter space, which despite having 
over 5 billion possible states, was able to converge to a sig-
nificant result within 2169 steps. Here, changing the mate-
rial of the design was available in the parameters for the 
agent. This was done by including actions that can cycle 
through materials. The initial design included options for 
a thin film and a grating structure, but the agent deter-
mined that a structure with no grating and no film was 
deemed to be the most suitable, by choosing a design that 
set those parameters to 0. The reward system was struc-
tured in a way that prioritized rewards for generating the 
required phase properties, while giving smaller rewards 
for high efficiency, as a highly efficient device that does 

not cover the whole range of required phases cannot be 
used for a hologram. A terminal state was defined for a 
structure that produced a particular value of the reward of 
700. This resulted in a hologram with 32% efficiency and a 
high-quality output, shown in Figure 9.

In the final example of the DDQN algorithm being 
used in nanophotonics, Badloe et  al. [98] optimized the 
parameters of a moth-eye structure, a perfect absorber 
for a variety of materials (Figure 10A). Much in the same 
way a similar algorithm can be used to complete different 
Atari games, here each different materials of the structure 
are the counterparts of different games in the Atari games 
example. A common problem in RL is reward hacking by 
the agent [99]. In essence, this issue arises when the agent 
finds a way to exploit the reward system, usually by taking 
advantage of an unseen loophole to gain a definite cumu-
lative reward much larger than that obtained by exploring 
more the parameter space. To stop this kind of behavior, 
the researchers introduced a reward system shaped in a 
way that the agent would get higher rewards for being 
closer to the target, as shown in Figure 10B. The target was 
finding a structure with an absorption of 90% as quickly 
as possible. To encourage this, at each time step the agent 
was given a negative reward of −10, with smaller nega-
tive rewards for structures with absorption between 85% 

Figure 9: An example of reinforcement learning applied to optimizing a metahologram.
(A) A schematic of the initial and optimised structures. (B) The simulated results of the high efficiency metahologram. Figures are reprinted 
from [97] with permission (CC BY 4.0).
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and 90%, and positive rewards for absorption over 90%. 
After being trained in an initial environment with a chro-
mium (Cr) moth-eye structure, the same agent was used 
to optimize the other materials. This was done by setting 
the epsilon greedy policy to have a constant value of 0.1, 
which means that the agent would use the DNN to choose 
the action 90% of the time. From a parameter space of 
over 1 billion possible states, using this implementa-
tion, the agent was able to find structures with absorp-
tion over 90% for 6 different transition metals within just 
100–200 steps.

4  �Conclusions and outlook
In this review, we have summarized the recent progress 
of DL-assisted inverse design in nanophotonics. First, 
we discussed DL-based forward modelling, which shows 
how artificial intelligence can learn to solve Maxwell’s 
equations without explicitly being informed about them. 
Then, we discussed state-of-the-art inverse design prob-
lems being solved by DL, categorizing them by the three 
different classes of learning methods: supervised, unsu-
pervised, and RL. As discussed in this work, DL provides 
a new platform not only for approximating Maxwell’s 
equations, but also for the inverse design of various nan-
ophotonic devices that can by far exceed human capabil-
ity. Although it has only recently been introduced into 
the field of nanophotonics, the fundamental change of 
paradigm introduced by DL, along with the tremendous 
potential it offers for the discovery of new nanopho-
tonic devices and functionalities, is drawing increasing 

attention from a growing community of researchers 
worldwide.

There are, however, several important issues that 
must still be faced in this emerging area. Firstly, the solu-
tion given by a DL model for an inverse design problem 
is not guaranteed to be the most optimized, or the global 
solution (note that this fact could, on the other hand, 
be seen as a strength of DL-based inverse design, as it 
allows the rapid generation of number of solution candi-
dates for the same problem). Secondly, DL inverse design 
methods feature some degree of dependence on human 
intuition, mainly because the basic considered shapes 
and problem settings are made based on previous known 
designs and physics. Thirdly, the design of “on-demand” 
structures is not always possible, especially if the design 
space of the training data is limited. Finally, a challenge 
that is actually general in the application of DL to scien-
tific problems, is the fact that the learning mechanisms 
of DL are in most cases operating as black boxes, which 
in turn makes it difficult to exploit the trained network 
for further analysis. There is an emerging trend in artifi-
cial intelligence research trying to overcome this funda-
mental issue, but there is still a great deal of work to be 
done in this regard.

Overall, we envision that further advances in the 
above-mentioned directions could unleash the true poten-
tial of DL to nanophotonics, allowing for this approach to 
eventually become the main driver of the next-generation 
of significant discoveries in this field. We expect these 
novel findings will be beyond human intuition and imagi-
nation, and they will perhaps open a whole new perspec-
tive in our understanding of how nanophotonic research 
is carried out.

Figure 10: Reinforcement learning applied to designing ultra-broadband absorbers for a variety of transition metals.
(A) A schematic of the moth-eye perfect absorber design and the policy network for the DDQN. (B) A visual representation of the shaped 
reward system. Figures are reprinted from Ref. [98] with permission (CC BY 4.0).
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