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The aorta is the largest blood vessel in the body, and enlargement or aneurysm of 

the aorta can predispose to dissection, an important cause of sudden death. 

While rare syndromes have been identified that predispose to aortic aneurysm, 

the common genetic basis for the size of the aorta remains largely unknown. By 

leveraging a deep learning architecture that was originally developed to 

recognize natural images, we trained a model to evaluate the dimensions of the 

ascending and descending thoracic aorta in cardiac magnetic resonance 

imaging. After manual annotation of just 116 samples, we applied this model to 

3,840,140 images from the UK Biobank. We then conducted a genome-wide 

association study in 33,420 individuals, revealing 68 loci associated with 

ascending and 35 with descending thoracic aortic diameter, of which 10 loci 

overlapped. Integration of common variation with transcriptome-wide analyses, 

rare-variant burden tests, and single nucleus RNA sequencing prioritized SVIL, a 

gene highly expressed in vascular smooth muscle, that was significantly 

associated with the diameter of the ascending and descending aorta. A polygenic 

score for ascending aortic diameter was associated with a diagnosis of thoracic 

aortic aneurysm in the remaining 391,251 UK Biobank participants who did not 

undergo imaging (HR = 1.44 per standard deviation; P = 3.7·10-12). Defining the 

genetic basis of the diameter of the aorta may enable the identification of 

asymptomatic individuals at risk for aneurysm or dissection and facilitate the 

prioritization of potential therapeutic targets for the prevention or treatment of 

aortic aneurysm. Finally, our results illustrate the potential for rapidly defining 
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novel quantitative traits derived from a deep learning model, an approach that 

can be more broadly applied to biomedical imaging data.  

 

Aortic aneurysm, a pathologic enlargement of the aorta, is common, having a 

prevalence of approximately ~1% of people in industrialized nations1. Over time, the 

enlarged aorta progressively expands; this process can lead to aortic dissection and 

rupture, which are the most catastrophic complications of aortic aneurysm and 

important causes of sudden cardiac death. Currently, the most effective preventive 

therapy is surgical repair of the aorta, a morbid operation that is only performed when 

aneurysms are detected prior to aortic dissection. However, timely detection is 

uncommon because thoracic aortic aneurysm is typically asymptomatic until the time of 

dissection or rupture. Unlike abdominal aortic aneurysm which has clinical screening 

guidelines, population screening for thoracic aortic aneurysm is not routinely 

performed2,3.  

 

Consequently, the epidemiological and genetic contributions to aortic aneurysm have 

long been of interest to investigators. Clinical studies have suggested the close 

association of aneurysms of the descending thoracic aorta with atherosclerosis and 

lifestyle associated risk factors, while those of the ascending aorta occur in younger 

patients, sometimes associated with pathogenic genetic predisposition4–6. Mutations in 

several genes have been associated with ascending aortic aneurysms, but the small 

number of implicated genes is mostly limited to highly penetrant Mendelian loci 

identified in family studies7–9. Thus, there is an urgent need to identify the genetic basis 
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for variation in aortic size in order to enable the development of new therapeutic targets 

for medical intervention and to identify at-risk individuals with aortic aneurysms. 

 

We hypothesized that the size of the thoracic aorta is a complex trait, with contributions 

from common genetic variants. However, as the ascending and descending thoracic 

aorta have not only separate biological origins10,11, but also separate clinical risk 

factors12, we chose to quantify these aortic regions independently. Therefore, we used 

deep learning to localize and measure the ascending and descending thoracic aorta in 

37,910 UK Biobank participants who have undergone cardiac magnetic resonance 

imaging (MRI) (Table 1). By retraining pre-existing models developed for a different 

purpose (recognition of objects in common images), we were able to extract data from 

all 3,840,140 images in the dataset after manually annotating only 116 images13,14. 

Specifically, we performed semantic segmentation—the task of identifying and labeling 

all pixels that comprise an object in an image—on the cross-sectional images of the 

ascending and descending thoracic aorta. To achieve this, we used a deep 

convolutional neural network that was designed with a U-Net architecture13,14. Such an 

architecture is designed to permit a model to recognize both the semantic content of an 

input (such as the presence of the aorta), and the fine-grained localization of that 

semantic label within the input image. This model used an encoder that had been pre-

trained on ImageNet, which is a natural-image classification dataset; therefore, instead 

of starting with random weights, the model was initialized with weights that are helpful 

for processing images, reducing the amount of manual annotation and model training 

necessary to achieve good results. To recognize the aorta, this pre-trained model was 
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retrained using only 92 manually annotated cardiac MRI still-frame images, achieving 

97.4% pixel categorization accuracy in a held-out validation set of 24 additional 

manually annotated images. The deep learning model was then applied to all 3,840,140 

available images (Figure 1). Quality control was performed to remove images in which 

the aorta was deemed to be incorrectly recognized according to one or more heuristics 

(see Online Methods and the sample flow diagram in Supplementary Figure 1). 

 

Having identified which pixels represent the aorta, we were able to determine the length 

of the minor axis (i.e., the diameter) of the ascending and descending thoracic aorta at 

their maximum size during the cardiac cycle (with descriptive statistics available in 

Supplementary Table 1 and Supplementary Figure 2) and treated these as our 

primary phenotypes for subsequent analyses. We characterized the relationship 

between the aortic diameter and other anthropometric measurements and diseases in 

the UK Biobank (Supplementary Note; Supplementary Tables 2-3; Supplementary 

Figure 3). 

 

We next sought to understand the common genetic basis for variation in the size of the 

ascending and descending thoracic aorta. We confirmed that both traits were highly 

heritable: the single nucleotide polymorphism (SNP) heritability of the size of the 

ascending aorta was 61% (95% CI 58%-65%), while that of the descending aorta was 

49% (95% CI 46%-53%). We then conducted a genome-wide association study 

(GWAS), testing 16,563,893 imputed variants with minor allele frequency (MAF) > 0.001 

for association with these phenotypes in 33,420 participants from the UK Biobank.  
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We identified 68 independent loci associated with the diameter of the ascending aorta at 

a commonly used genome-wide significance threshold (P < 5·10-8)(Table 2, Figure 2A 

and 2B). Of these, 64 loci were novel, and one was found on the X chromosome. In the 

descending aorta, we identified 35 genome-wide significant loci of which 32 were novel 

and one was located on the X chromosome. In total, we identified 93 loci, of which 10 

were associated at genome-wide significance with both traits (Figure 2C). Inflation was 

well controlled (Supplementary Table 4), and no autosomal lead SNP deviated from 

Hardy-Weinberg Equilibrium (HWE) with P < 1·10-6. 

 

Previous analyses of thoracic aortic phenotypes including aortic root diameter, 

ascending aortic dissection, or thoracic aortic aneurysm have identified only 15 

genome-wide significant loci to date; of these, seven achieved genome-wide 

significance in our study, including all three loci that have been associated with thoracic 

aortic dissection (near FBN1, ULK4, and the STAT6/LRP1 locus; Supplementary 

Table 5)15–19.  

 

We sought to replicate our GWAS findings in 3,287 participants from the Framingham 

Heart Study (FHS) who had genotyping data and cross-sectional imaging of the 

ascending and descending thoracic aorta by computed tomography20,21. Since the FHS 

sample size was an order of magnitude smaller than our discovery population in the UK 

Biobank, we focused on directional agreement. Of the 67 autosomal lead SNPs in the 

ascending aorta, 54 were identified in the FHS dataset. 44 of these 54 SNPs were 
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directionally consistent in both datasets (two-tailed binomial P = 3.4·10-6; 

Supplementary Figure 4A). 30 of the 34 autosomal lead SNPs from the descending 

aorta were identified in FHS, and 27/30 were directionally consistent (binomial P = 

8.4·10-6; Supplementary Figure 4B, Supplementary Table 6). Thus, despite 

comprising a significantly smaller sample, as well as using a different imaging modality 

and measurement technique, the FHS results were aligned with our findings from the 

UK Biobank. 

 

We used genetic correlation to gain insight into the relationship between aortic diameter 

and other cardiovascular and anthropometric phenotypes. In the UK Biobank, the 

ascending and descending aortic phenotypes had a genetic correlation with one another 

of 0.47 (95% CI 0.43-0.51) as estimated by BOLT-REML22,23. We used linkage 

disequilibrium (LD) score regression to assess genetic correlation between the aortic 

traits and 272 quantitative phenotypes from the UK Biobank that were precomputed by 

the Neale Lab24,25, linking aortic size to measures of height, weight, and blood pressure, 

among other traits. As expected, we observed positive genetic correlations between 

aortic size and anthropometric measures such as height and weight, as well as related 

phenotypes such as blood pressure (Supplementary Table 7; Supplementary 

Figures 5-6). 

 

To gain more insight into the GWAS loci themselves, we then took three approaches to 

prioritize genes at each locus and to link those genes to relevant cell types. First, we 

conducted a transcriptome wide association study (TWAS), linking predicted gene 
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expression in aorta (based on GTEx v7) with aortic size (Figure 3A)26,27. We identified a 

total of 51 genes that were significantly associated with the dimensions of the ascending 

or descending aorta at P < 5·10-8. The strongest TWAS associations in the ascending 

aorta included ULK4, a gene previously linked with aortic dissection, and THSD4, 

whose protein product binds to fibrillin (FBN1) and modulates microfibril assembly28. In 

addition to THSD4 and FBN1, several other GWAS loci harbored genes involved in the 

process of elastogenesis including LOXL1 and the gene encoding elastin itself, ELN. 

The strongest TWAS association in the descending aorta was with the gene SVIL, in 

which increased transcription was associated with increased aortic diameter (Figure 

3A). 

 

Second, we conducted a rare variant association test in over 12,000 UK Biobank 

participants with both aortic imaging and exome sequencing data (Figure 3B). We 

found that rare, loss-of-function variation in one gene, SVIL, was significantly associated 

with a reduced diameter of the descending aorta (14 carriers; loss-of-function effect size 

-0.16cm, 95% CI -0.08 to -0.24 cm, P=1.03·10-4). 

 

Third, we undertook direct analysis of tissue and cell-specific expression patterns to 

localize and identify relevant cell types. We used tissue-specific LD score regression to 

test for enrichment of the aortic diameter GWAS results in 53 GTEx v6 tissue types27,29. 

As expected, for the ascending aortic loci, enrichment was confirmed in aortic and 

coronary artery tissues (P=1.5·10-4 and P=4.7·10-4, respectively); for the descending 

aorta, enrichment was confirmed in aortic tissue only (P=6.4·10-4; Supplementary 
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Tables 10-11). These data are consistent with the expectation that the aorta itself is the 

most relevant tissue linked with our findings. Therefore, we incorporated an analysis of 

single-nucleus RNA sequencing (snRNA-seq) of rat aorta to identify potentially relevant 

cell types for the genes at aortic GWAS loci. We sequenced the transcriptomes of 

18,707 single nuclei and identified 10 primary cell clusters in the rat aorta (Figure 4A). 

Through comparison of unique transcriptional profiles in each cluster to canonical cell 

markers, we identified populations comprising vascular smooth muscle cells, fibroblasts, 

three distinct types of endothelial cells and two types of adipocytes (Figure 4B). We 

then examined the cell type-specific expression of the genes prioritized by the TWAS 

(Figure 4C and 4D).  

 

Remarkably, a SNP near the SVIL locus was the strongest GWAS signal for the 

descending aorta, and SVIL was the gene most strongly associated in the TWAS 

(increased expression is linked to a larger descending aorta diameter; Figure 3A, 

Supplementary Tables 12-13), as well as the strongest association signal in the rare 

variant association test in which loss of function is linked to a smaller descending aorta 

(Figure 3B, Supplementary Table 14). snRNA-seq revealed that SVIL is most strongly 

expressed in vascular smooth muscle cells within the aorta(Figure 4C and 4D), 

consistent with a role in aortic size determination. SVIL encodes the protein supervillin, 

an F-actin and myosin II binding protein that localizes to and coordinates the action of 

cell surface extensions called ‘invadosomes’. These promote matrix degradation 

through the localized release of extracellular matrix-lytic enzymes such as disintegrin-

and-metalloprotease domain-containing proteins and matrix metalloproteinases30,31. 
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Our genetic and single-nucleus transcriptomic analyses also highlight WWP2, which is 

linked to the size of both ascending and descending aorta. The lead SNP (rs62053262) 

is an expression quantitative trait locus (eQTL) in the aorta for WWP227; the rs62053262 

G allele corresponds to reduced expression of WWP2 in aorta and smaller aortic size. 

WWP2 acts as an E3 ubiquitin ligase for PTEN32 and has previously been shown to 

regulate cardiac fibrosis through modulation of SMAD signaling33. Examining rat single-

nucleus expression data, we show that WWP2 expression is enriched in aortic vascular 

smooth muscle cells (Supplementary Figure 7). 

 

In other cardiovascular phenotypes, GWAS loci have been enriched for Mendelian 

genes34,35, so we asked whether the loci identified in our study were in closer proximity 

to more genes implicated in Mendelian aortopathies than expected by chance. We did 

not find an enrichment of previously described Mendelian thoracic aortic aneurysm and 

dissection genes36 (23 genes; 2 overlapping with ascending loci, P=0.09; 1 overlapping 

with descending loci, P=0.27 by one-tailed permutation tests). However, our analysis 

has independently identified loci containing relevant genes such as FBN1, well 

described as the causal gene in Marfan syndrome37, and loci near genes such as PI15, 

known to cause arterial dysfunction in rats38, and ABCC9, a rare recessive cause of 

aortic aneurysm in humans39. Other loci suggest the involvement of novel genes within 

networks previously implicated in aortic disease; for instance, the protein product of 

ASB2 is part of the E3 ligase that targets both filamin B (encoded by FLNB, the nearest 

gene to a lead SNP on chromosome 3) and the known aortic disease protein filamin A 
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(FLNA) for degradation40. Moreover, TGF-β signaling, heavily implicated in clinical aortic 

disease, is also represented in our GWAS gene set as indicated by MAGMA analysis 

(Supplementary Figure 8; Supplementary Tables 8-9)41. 

 

Finally, we probed the clinical relevance of the GWAS loci by asking whether a 

polygenic score for ascending aortic size produced from these loci was associated with 

aortic disease risk. We analyzed the remaining UK Biobank participants who had not 

undergone MRI and who did not have a diagnosis of aortic disease at enrollment. A 

polygenic score from the 83 autosomal, independently significant SNPs from the 

ascending aorta GWAS was strongly associated with the 381 incident cases of aortic 

aneurysm or dissection (HR = 1.44 per standard deviation; CI 1.30-1.59; P = 3.7·10-12). 

Participants in the top 10% of the polygenic score had a 2.2-fold hazard ratio compared 

to the remaining 90% of the cohort (CI 1.7-2.9; P = 5.2·10-10; Figure 5). 

 

Our study is subject to several limitations. The study population largely consisted of 

European-ancestry UK Biobank participants, limiting generalizability to other 

populations. The aortic measurements were derived from a deep learning model that 

was trained on cardiologist-annotated segmentation data, but the vast majority of 

images were not manually reviewed; nevertheless, genetic results derived from 

manually annotated FHS imaging data were generally concordant with our findings. 

Whereas genetic conservation between the rat and human is high, single-nucleus RNA 

expression data from the rat, as for other model organisms, are imperfect 

representations of the human aorta. Finally, because thoracic aortic aneurysm is not 
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routinely assessed in screening tests, the effect estimate of the ascending aortic 

polygenic score is likely to be biased due to ascertainment in UK Biobank participants; 

future analyses in external datasets will be required to confirm the observation linking 

the polygenic score to incident aortic aneurysm or dissection. 

 

In summary, we used deep learning to assess the size of the ascending and 

descending thoracic aorta using magnetic resonance imaging data in a large 

population-based biobank. We identified 63 novel loci in the ascending aorta and 32 in 

the descending aorta, explored their relationships to other traits, and assessed their 

association with aortic aneurysm or dissection. These findings permit several 

conclusions. First, these results demonstrate that deep learning is a powerful tool for 

deriving quantitative phenotypes from raw signal data at a population level. In particular, 

by using transfer learning from a deep learning model trained on a large but unrelated 

set of images compiled for a different task, we were able to develop a useful model 

while manually annotating only a small number of images. Second, these results 

highlight the value of studying quantitative traits, such as aortic size, in order to gain 

greater understanding of disease processes underlying aneurysm and dissection. Third, 

the modest genetic correlation and limited locus overlap of the ascending and 

descending thoracic aorta highlight their distinct biology. Fourth, we prioritize several 

potential gene targets based on integration of GWAS, TWAS, and rare variant analyses, 

and identify their likely cell type of relevance with snRNA-seq. Fifth, a polygenic score 

for ascending aortic size is an independent risk factor for aneurysmal enlargement of 

aorta. In the future, it will be interesting to determine if a model incorporating a 
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polygenic score and clinical risk factors might identify high-risk, asymptomatic 

individuals who would benefit from thoracic imaging to screen for ascending aortic 

aneurysm.  
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Online Methods 

Study design 

The UK Biobank is a richly phenotyped, prospective, population-based cohort that 

recruited 500,000 individuals aged 40-69 in the UK via mailer from 2006-201042. In total, 

we analyzed 487,283 participants with genetic data who had not withdrawn consent as 

of October 2018. Access was provided under application #7089. Analysis was approved 

by the Partners HealthCare institutional review board (protocol 2013P001840). GWAS 

replication was performed in an imaging substudy of the community-based Framingham 

Heart Study (FHS) Offspring and Third-Generation cohorts; participants were 

ascertained based on sex-specific age cutoffs (≥ 35 years for men and ≥ 40 years for 

women), and weight < 350 pounds as described previously and approved by the 

institutional review boards of the Boston University Medical Center and the 

Massachusetts General Hospital
20. 

 

A deep learning model for aorta pixel recognition in cardiac MRI was developed and 

applied to imaging data from UK Biobank participants. Genetic discovery of loci related 

to ascending and descending thoracic aortic size was performed in this cohort. A 
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replication GWAS was performed in FHS. A transcriptome-wide association study 

(TWAS) and rare-variant association tests were performed to prioritize genes at each 

genomic locus, and we analyzed single-nucleus gene expression in rat aortas in order 

to identify relevant cell types for these genes. A polygenic score produced from the 

GWAS SNPs was used to predict incident aortic disease diagnosis in the remaining UK 

Biobank participants who had not undergone cardiac MRI.  

Cardiac magnetic resonance imaging 

The UK Biobank is conducting an imaging substudy on 100,000 participants which is 

currently underway43,44. Cardiac magnetic resonance imaging was performed with 1.5 

Tesla scanners (MAGNETOM Aera, Siemens Healthcare), using electrocardiographic 

gating for cardiac synchronization44. A balanced steady-state free precession cine, 

consisting of a series of exactly 100 images throughout the cardiac cycle, was acquired 

for each participant at the level of the right pulmonary artery44. In total, 3,840,140 

images from 37,910 UK Biobank participants were analyzed. Of these, 458 participants 

had one or more repeat sets of images, and four had incomplete studies with fewer than 

100 images. 

Deep learning for segmentation of the aorta 

Segmentation maps were traced for the ascending and descending thoracic aorta 

manually by a cardiologist (JPP). To produce the final model used in this manuscript, 

116 samples were chosen at random, manually segmented, and were used to train a 

deep learning model with fastai v1.0.5945. The model consisted of a U-Net-derived 

architecture, where the encoder was a resnet34 model pre-trained on ImageNet14,45–48. 
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80% of the samples were used to train the model, and 20% were used for validation. 

Development versions prior to this final model are detailed in the subsequent section. 

 

During training, all images were resized to be 120 pixels in width by 98 pixels in height 

for the first half of training, and then 240 pixels in width by 196 pixels in height for the 

second half, detailed below. The Adam optimizer was used, and the model was trained 

with a minibatch size of 8 (when training with half-dimension images) 4 (when training 

with full-dimension images)49. Rather than using extensive hyperparameter tuning, the 

model was instead trained using a cyclic learning rate training policy, which alternately 

decreases and increases the learning rate during training50. For the first half of training 

using half-dimension images, the maximum learning rate (the step size during gradient 

descent) was set at 0.001, with 40% of the iterations permitted to have an increasing 

learning rate during each epoch across 20 epochs. This was performed while keeping 

all ImageNet-pretrained layers fixed, so that only the final layer was fine-tuned. Then all 

layers were unfrozen and the model was trained for an additional 15 epochs with the 

same maximum learning rate. For the second half of training using full-dimension 

images, the maximum learning rate was set to 0.0002, with 30% of the iterations 

permitted to have an increasing learning rate. Then, all layers were unfrozen and the 

model was trained for an additional 15 epochs with a maximum learning rate of 

0.00002.  

 

Throughout training, augmentations (random perturbations of the images) were applied 

as a regularization technique. These augmentations included affine rotation, zooming, 
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and modification of the brightness and contrast. Because medical imaging data is not 

symmetric across the midline of the human body, we did not permit mirroring 

transformations. 92 images were used to train the model, and 24 were held out for 

validation; the model achieved 97.4% pixel categorization accuracy in the held-out 

validation set. 

 

This model was then used to infer segmentation of the ascending and descending aorta 

on all 3,840,140 images in the dataset. During inference, adaptive pooling was used to 

permit arbitrary image sizes51, which allowed us to produce output that matched the 

input size and thereby preserve the number of millimeters per pixel as reported in the 

DICOM metadata. 

Development versions of the deep learning model 

The first batch of manual segmentation mapping of aorta was performed by one 

cardiologist (JPP) on 58 images, a sample size that was chosen to balance the time 

required for annotation (approximately 5 minutes per sample) against the need for 

diverse data to train the ImageNet-based segmentation model. A deep learning model 

(with the same training parameters as described above) trained with this data (using 47 

images for training and 11 for validation) achieved 95.1% pixel accuracy.  

 

When the output of this model was visualized, the notable recurring error was the 

miscategorization of breast implants as aorta. To produce the final training set, the 

sample size was doubled from 58 images to 116, of which 15 had breast implants. No 

other significant hyperparameter tuning was performed. 
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Segmentation quality control 

As the cine videos consisted of 100 still frame images, single-image quality control was 

performed first. Images which lacked any pixels labeled as aorta were excluded. Next, 

the connected components labeled as ascending or descending aorta were counted 

using the Rosenfeld-Pfaltz algorithm52. Images having a number of aortic components 

more than 5 standard deviations above the mean were excluded. Any participant with at 

least one image that failed this quality control procedure was excluded from further 

analysis. 

 

Then, we performed a quality control step that took advantage of the dynamics of the 

cardiac cycle. We computed the largest frame-to-frame change in the cross-sectional 

area of the ascending and descending aorta. Outliers beyond 10 standard deviations 

above the mean were excluded. Then, samples were excluded if the variance in the 

number of components of the ascending or descending aorta across all frames 

throughout the cardiac cycle was above 10 standard deviations beyond the mean 

amount of variance in the full cohort. At the completion of quality control, 34,764 

individuals remained for further analysis. 

Extraction of aortic traits 

Having identified which pixels represented aorta, we were able to determine the aorta’s 

cross-sectional dimensions. The aorta was treated as an ellipse: major and minor axes 

were computed using classical image moment algorithms53. For both the ascending and 

the descending thoracic aorta, the length of the minor elliptical axis (in centimeters) was 
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ascertained at the point in the cardiac cycle when the aorta was at its maximum size 

(closely corresponding with end-systole). The minor axis was chosen for analysis 

because imperfection in the orientation of the plane of image acquisition may falsely 

elongate the apparent major axis of the ascending and descending aorta; in contrast, 

the dimension of the minor axis is not affected by such perturbations. The length of the 

minor axis (i.e., the diameter) of the ascending and descending aorta were treated as 

our primary phenotypes for subsequent analyses. 

Aortic disease codes 

International Classification of Diseases version 10 (ICD-10) codes and Office of 

Population Censuses and Surveys Classification of Interventions and Procedures 

version 4 (OPCS-4) codes used to define aortic procedures and thoracic aortic 

aneurysm, dissection, or rupture are detailed in Supplementary Table 15. These 

definitions were, respectively, used for GWAS participant exclusion and polygenic score 

assessment. 

Correlation between phenotypes and aortic measurements 

Statistical analyses were conducted with R version 3.6 (R Foundation for Statistical 

Computing, Vienna, Austria). We conducted phenome-wide association studies 

(PheWAS) to assess the relationship between the observed aortic traits and (a) other 

continuous traits measured in the UK Biobank, and (b) other disease phenotypes based 

on ICD-10 and OPCS-4 codes. 
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All 34,764 participants with aortic measurements were used in the continuous trait 

PheWAS. The number of participants modeled for each trait varied based on availability 

in the UK Biobank. 674 traits were analyzed using a linear model accounting for the MRI 

serial number, sex, PC1-5, age at enrollment, the cubic natural spline of age at the time 

of MRI, and the genotyping array. 

 

The same covariates were used in a logistic regression model testing the relationship 

between the aortic traits and 1,446 PheCode-defined diseases derived from hospital 

billing codes. (Because most cardiac MRIs in the UK Biobank were performed near the 

end of currently available follow-up time, assessment of incident disease after 

ascertainment of aortic size was not feasible.) 

Genotyping, imputation, and genetic quality control 

As detailed previously, UK Biobank samples were genotyped on either the UK BiLEVE 

or UK Biobank Axiom arrays, then centrally imputed into the Haplotype Reference 

Consortium panel and the UK10K+1000 Genomes panel54. Variant positions were 

identified using the GRCh37 human genome reference. Genotyped variants with 

genotyping call rate < 0.95 and imputed variants with INFO score < 0.3 or minor allele 

frequency <= 0.001 in the analyzed samples were excluded. After variant-level quality 

control, 16,001,524 imputed autosomal variants and 562,369 imputed variants on the X 

chromosome remained for analysis.  

 

Participants without imputed genetic data, or with a genotyping call rate < 0.98, 

mismatch between self-reported sex and sex chromosome count, sex chromosome 
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aneuploidy, excessive third-degree relatives, or outliers for heterozygosity as defined 

centrally by the UK Biobank were excluded54. In addition, we excluded participants with 

a prior history of aortic repair or other aortic procedures. 

Heritability and genetic correlation of aortic traits 

BOLT-REML v2.3.4 was used to assess the SNP heritability of the minor axis length of 

the ascending and descending thoracic aorta and their genetic correlation with one 

another using the directly genotyped variants in the UK Biobank22. 

Genome-wide association study of aortic traits 

We analyzed the minor axis length of the ascending and descending thoracic aorta at 

the frame within the cardiac cycle when they were at their largest. These traits were first 

residualized on age at enrollment, the natural spline of age at the time of MRI with 3 

knots, the first five principal components of ancestry, sex, the genotyping array, and the 

MRI scanner’s unique identifier. The residuals were found to be non-normally distributed 

(with non-zero skewness and kurtosis). Therefore, these residuals were inverse-normal 

transformed prior to genetic analysis55. 

 

Genome-wide association studies for the minor axis length of the ascending and 

descending thoracic aorta were conducted using BOLT-LMM version 2.3.4 to account 

for cryptic population structure and sample relatedness22,23. We used the full autosomal 

panel of 713,628 directly genotyped SNPs that passed quality control to construct the 

genetic relationship matrix (GRM). GWAS covariates included age at enrollment, age 

and age2 at the time of MRI, the first five principal components of ancestry, sex, the 
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genotyping array, and the MRI scanner’s unique identifier. Associations on the X 

chromosome were also analyzed, using all autosomal SNPs and X chromosomal SNPs 

to construct the GRM (N=731,238 SNPs), with the same covariate adjustments and 

significance threshold as in the autosomal analysis. In this analysis mode, BOLT treats 

individuals with one X chromosome as having an allelic dosage of 0/2 and those with 

two X chromosomes as having an allelic dosage of 0/1/2. Variants with association P < 

5·10-8 were considered to be genome-wide significant. 

 

In order to identify independently significantly associated variants, linkage disequilibrium 

(LD) clumping was performed with plink-1.956 in the same participants used to conduct 

the GWAS. We used a wide 5-megabase window (--clump-kb 5000) and a stringent LD 

threshold (--r2 0.01) in order to identify independently significant SNPs despite long LD 

blocks (particularly on chromosome 16 near WWP2). Using the independently 

significant SNPs, distinct genomic loci were defined by starting with the SNP with the 

strongest P value, excluding other SNPs within 500kb, and iterating until no SNPs 

remained. The independently significant SNPs that defined each genomic locus are 

termed the lead SNPs. Lead SNPs were tested for deviation from Hardy-Weinberg 

equilibrium at a threshold of P < 1·10-656. 

GWAS Replication 

The genetic profiles of FHS participants were measured by the Affymetrix GeneChip 

500k Array Set & 50K Human Gene Focused Panel, and genotyping was called using 

BRLMM as previously described57,58. Variants with call rate < 0.97, HWE P < 10-6, N > 

100 Mendelian errors, or MAF < 0.01 were excluded. The remaining variants were then 
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imputed to the TOPMed imputation panel using Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html)59. A multi-detector computed 

tomography (CT) scanner (General Electric Lightspeed + 8 detector scanner) was used 

to assess the aorta in FHS participants20,21. All measurements have been deposited into 

dbGaP (Accession: phs000007.v30.p11). The association between each genetic variant 

and CT traits was tested with linear mixed effects models using the kinship package in 

R, and adjusted for sex, age, age square, cohort, and first five principal components of 

ancestry. 

 

We then identified lead SNPs from the main GWAS which were also available in the 

FHS GWAS and ensured that their effect directions were aligned based on effect allele 

and non-effect allele. We performed a two-tailed binomial test for directional consistency 

of effect direction, using the null hypothesis that, for each of these independent SNPs, 

directional agreement would be expected by chance 50% of the time. We then 

performed linear regression, predicting the FHS Z scores with the UK Biobank Z scores. 

To assess whether more extreme Z scores corresponded with better agreement 

between the primary study and the replication study, we modified the SNPs in the linear 

model by adjusting the UK Biobank SNP P value inclusion threshold from P < 5·10-6 to 

P < 5·10-14, and assessed the coefficient of determination of the model at several 

incremental thresholds within that range. This analysis was performed for both 

ascending and descending aorta. 
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LD score regression for inflation 

Linkage disequilibrium (LD) score regression analysis was performed with ldsc version 

1.0.060. For each GWAS, the genomic control factor (lambda GC) was partitioned into 

polygenic and inflation components using the software’s defaults. 

Genetic correlation with other quantitative traits 

Genetic correlation across traits was assessed using ldsc25 in 272 continuous traits from 

the UK Biobank whose ldsc-formatted summary statistics were made available by the 

Neale Lab24. 

 

We then applied aberrant, a software package in R61, to cluster the 272 traits based on 

their genetic correlation Z scores. Using lambda (the ratio of standard deviations of 

outliers vs inliers) set to 40, we identified a large inlier cluster and two outlier clusters 

based on differential genetic correlation with ascending or descending aorta. 

Tissue-specific LD score regression 

To address which tissues were most tightly linked to the ascending and descending 

aorta GWAS results, we applied tissue specific LD score regression against 53 GTEx v6 

tissue types that were preprocessed by the ldsc authors27,29. The ldsc authors identified 

genes that were specifically expressed in each tissue, retaining the top 10% of genes 

most specifically expressed from each of the 53 tissues. We then conducted stratified 

LD score regression with these specifically enriched gene sets (ldsc-SEG) to determine 

the contribution of the tissue-specific expression to the heritability of the size of the 
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aorta. The returned P value represents the probability of seeing such a large coefficient 

if the null hypothesis (that the tissue is not enriched) were true; i.e., it tests whether the 

tissue-specific contribution is distinguishable from zero. Significance was determined 

using a false discovery rate (FDR) of 5%. 

Mendelian aortopathy gene set enrichment 

We considered the 23 thoracic aortic aneurysm and dissection-related genes from 

Category A, B, or C from Renard, et al, to be Mendelian aortopathy genes36. SNPsnap 

was used to generate 10,000 sets of SNPs that match the lead SNPs from the GWAS 

based on minor allele frequency, number of SNPs in linkage disequilibrium, distance to 

the nearest gene, and gene density at the locus 62. A lead SNP was considered to be 

near a Mendelian locus if it was within 500 kilobases upstream or downstream of any 

gene on the panel. Significance was assessed by permutation testing across the 10,000 

SNP sets to determine the neutral expectation for the number of overlapping genes in 

loci with characteristics similar to ours, yielding a one-tailed permutation P value. 

Transcriptome-wide association study 

For both ascending and descending thoracic aorta, we performed a TWAS to identify 

genes whose imputed cis-regulated gene expression corrrelates with aortic size26,63–65. 

We used FUSION with eQTL data from GTEx v7. Precomputed transcript expression 

reference weights for the aorta (N=6,462 genes) were obtained from the FUSION 

authors’ website (http://gusevlab.org/projects/fusion/)26,27. FUSION was then run with its 

default settings. 
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MAGMA gene set analysis 

We tested 10,992 gene sets from MSigDB for enrichment in the ascending and 

descending aortic GWAS results using MAGMA 1.07b41,66. We used gene locations for 

GRCh37 and European reference data that were preprocessed by MAGMA’s authors 

(https://ctg.cncr.nl/software/magma). We used the composite 

“GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA” gene sets from 

MSigDB provided by the MAGENTA authors67,68. 

Exome sequencing in UK Biobank 

Samples from the UK Biobank were chosen for exome sequencing based on 

enrichment for MRI data and linked health records69. Exome sequencing was performed 

by Regeneron and reprocessed centrally by the UK Biobank following the Functional 

Equivalent pipeline70. Exomes were captured with the IDT xGen Exome Research Panel 

v1.0, and sequencing was performed with 75-base paired-end reads on the Illumina 

NovaSeq 6000 platform using S2 flowcells. Alignment to GRCh38 was performed 

centrally with BWA-mem. Variant calling was performed centrally with GATK 3.071. 

Variants were hard-filtered if the inbreeding coefficient was < -0.03, or if none of the 

following were true: read depth was greater than or equal to 10; genotype quality was 

greater than or equal to 20; or allele balance was greater than or equal to 0.2. In total, 

49,997 exomes were available. Variants were annotated with the Ensembl Variant 

Effect Predictor version 95 using the --pick-allele flag72. LOFTEE was used to identify 

high-confidence loss of function variants: stop-gain, splice-site disrupting, and frameshift 

variants73. 
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Rare variant association test 

We conducted a collapsing burden test to assess the impact of loss-of-function variants 

in 12,168 participants who had both aortic measurements and exome sequencing data 

available. For quantitative traits (minor axis length of the ascending and descending 

thoracic aorta), with heritability of approximately 0.6, we estimated that 13 loss-of-

function variant carriers would be sufficient to achieve a power of 0.8 at an alpha of 

0.05. Variants with MAF >= 0.001 were excluded. Using the LOFTEE “high-confidence” 

loss-of-function variants, for each of the 3,254 protein-encoding genes with at least 13 

carriers of one or more loss-of-function variants in the UK Biobank, we tested whether 

loss-of-function carrier status was associated with aortic minor axis length. The model 

was adjusted for weight (kg), height (cm), the MRI serial number, age at enrollment, the 

cubic natural spline of age at the time of MRI, sex, genotyping array, and PC1-5. We 

performed an additional analysis that subset the gene list to those within a 500kb radius 

of one of the independently associated SNPs from the GWAS. These criteria yielded 91 

genes (ascending aorta) and 161 genes (descending aorta) for the secondary analysis. 

Association of the ascending aortic polygenic score with incident disease 

Within a strictly defined European subset of the UK Biobank, we computed a polygenic 

score from the 83 autosomal, independently significant SNPs from the ascending aorta 

GWAS (Supplementary Table 16), excluding participants used for the GWAS 

(Supplementary Table 17). We analyzed the relationship between this score and 

incident thoracic aortic aneurysm or dissection in 391,251 individuals (381 cases) using 

a Cox proportional hazards model. There is limited data regarding clinical risk factors for 
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thoracic aortic aneurysm outside of associated syndromes and family history, so we 

chose putatively relevant covariates based in part on inference from evidence in the 

abdominal aortic aneurysm literature74. We adjusted for putative aortic aneurysm risk 

factors including sex, prevalent diagnoses of type 2 diabetes or hypertension, tobacco 

smoking history (the number of pack years of tobacco smoking), body mass (the cubic 

natural spline of BMI), and age (the cubic natural spline of age at enrollment). We also 

adjusted for other covariates including the cubic natural spline of height, the number of 

standard alcoholic drinks consumed per week, the genotyping array, and the first five 

principal components of ancestry. 

Rat aortic nuclei isolation and library generation 

Animal experiments were approved by the institutional IACUC at Broad Institute. Wistar 

rats (Charles River, MA) were acclimated for 2 weeks, with ad libitum access to water 

and chow diet. 17-week-old animals were euthanized between 10am and 12pm using 

CO2, followed by perfusion with PBS to remove excess blood. Whole aortas - from 

aortic root to iliac bifurcation - were surgically collected, immediately frozen in LN2 and 

stored at -80°C until use. For nuclei isolation, aortas were mounted frozen on OCT and 

sectioned at 60um at -20°C  with a cryotome (Leica CM 1950). Nuclei were liberated in 

ice cold nuclei isolation buffer (NIB: Hepes, Sucrose, MgCl2, KCl, Igepal-630, BSA, pH 

7.2) by dounce homogenization. Homogenates were centrifuged at 40g x 4’, at 4°C. 

Supernatant was filtered through sequential 40um and 10um meshes (Pluriselect, 

Germany), and filtrate was centrifuged at 600g x 5’, at 4°C. Supernatant was discarded 

and pellet resuspended and washed once (600g x 5’, 4°C) with nuclei wash buffer (NIB 

without detergent). Final pellet was resuspended in 150uL nuclei storage buffer (NWB 
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with 1:80 murine RNAse inhibitor, NEB). All procedures were performed on ice. Nuclei, 

stained with Trypan blue, were manually counted using a hemocytometer (inCyto.com). 

7,000 nuclei (5,000 recovery) per aorta were used for droplet generation and library 

construction according to manufacturer’s protocol (10x Genomics, V2). 

Rat single nucleus RNA sequencing data analysis 

Most data analysis was performed using the Terra cloud platform (terra.bio). BCL files 

for all 9 datasets were processed using cellranger mkfastq (CellRanger 3.0.2, 10x 

Genomics) to generate FASTQ files. These FASTQ files were trimmed using cutadapt75 

to remove the template switch oligo adapter sequence and its reverse complement 

[AAGCAGTGGTATCAACGCAGAGTACATGGG, 

CCCATGTACTCTGCGTTGATACCACTGCTT] (max_error_rate=0.07, min_overlap=10) 

and all four homopolymer repeats [A30, C30, G30, T30] (max_error_rate=0.1, 

min_overlap=20). The trimmed FASTQ files were used as input to cellranger count 

(CellRanger 3.0.2) in order to obtain count matrices. 

Rat transcriptome 

The rat transcriptome from Ensembl (Rattus norvegicus, Rnor_6.0.96)76 lacks full-length 

Ttn as well as large stretches of other important cardiac-related transcripts including 

Ryr2. Many other transcripts are annotated with extents shorter than the read alignment 

would suggest, resulting in low read-mapping to the Ensembl transcriptome. We 

therefore created an augmented reference transcriptome for the rat which was used for 

this study. 
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First, bulk RNA sequencing was generated by strand specific, long insert whole 

transcriptome sequencing as offered by the Genomics Platform of the Broad Institute 

(genomics.broadinstitute.org). Briefly, poly-adenylated RNA was isolated from the aorta, 

AV node, and all four cardiac chambers of two male Wistar rats and converted to 

sequencing-ready Illumina TruSeq libraries according to manufacturer's protocols. 

Libraries were subjected to paired end 50bp sequencing to a mean depth of 

~47,000,000 dually mapping reads per library. A de novo reference transcriptome was 

created from the bulk RNA-seq data using StringTie unguided77. Only transcripts with at 

least 5 TPM read evidence were kept. Given that we performed nuclear 3’ scRNA-seq, 

all transcripts were collapsed to the level of a gene body as we expected to find retained 

introns in our reads. 

 

Our augmented reference transcriptome was created by starting with Ensembl 

Rnor_6.0.96, adding Ttn and several other genes from the RGD rat60 reference 

transcriptome, downloaded from 

ftp://ftp.rgd.mcw.edu/pub/data_release/GFF3/Gene/Rat/rat60/78, and expanding each of 

the annotations in the Ensembl reference based on two rules: (1) if there is an 

overlapping gene on the same strand with the same name in RGD, and it does not 

cause a conflict with another protein-coding Ensembl gene on the same strand, expand 

the gene definition to match RGD; and (2) if there is an overlapping transcript in the 

unguided StringTie reference, and it does not cause a conflict with any other Ensembl 

gene on the same strand, expand the gene definition, in whichever direction(s) possible. 
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Compared to the Ensembl Rnor_6.0.96 transcriptome, typically 5-10% more reads from 

cardiac samples mapped to this amended transcriptome. 

Rat sample-level quality control 

Quality control at the level of entire samples was performed by examining QC metrics 

produced by cellranger count, as well as tSNE plots and plots of log(UMI count) versus 

log(droplet ID) ranked by decreasing UMI count. 3 samples were identified as such 

strong outliers that they were deemed to be QC failures and subsequently removed. 

Rat snRNA noise removal 

Count matrices from the remaining 6 datasets were processed using cellbender 

remove-background79 to call cells (and eliminate empty droplets) and to remove 

background noise caused by ambient RNA and barcode swapping (CellBender 0.1, 

default settings with expected-cells=5000, total-droplets-included=25000, z-dim=200, z-

layers=1000, epochs=300). 

Rat nuclei QC 

The number of reads per nucleus mapping to introns, exons, and junctions was 

tabulated using scR-Invex (https://github.com/broadinstitute/scrinvex). Quality control at 

the level of individual nuclei was performed separately for each sample. QC metrics 

calculated per nucleus included log(fraction of reads from mitochondrial genes), fraction 

of reads mapping to exons, and entropy of gene expression. Outlier nuclei were 

detected using a 3-dimensional Gaussian outlier detection algorithm using the above 

three QC metrics, fitted on those nuclei with fraction of reads from mitochondrial genes 
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<= 0.05, entropy of gene expression > 6 and < 9, and fraction of reads mapping to 

exons < 0.35. Outlier detection was performed using the scikit-learn80 function 

EllipticEnvelope (contamination=0.02). A distributional cutoff at the 98th percentile of 

entropy * log (gene count) was used as a surrogate for removing doublets. Between 

1500 and 5000 nuclei remained for each sample. 

Rat aorta aggregated map 

Count matrices for passing nuclei from each sample were aggregated into one large 

count matrix. Highly variable genes were computed using Seurat 381 (method=vst, 

n_genes=2000). Batch effect correction was performed using scVI82 

(latent_dimension=50, max_epochs=150, early_stopping=True, only using highly 

variable genes). Latent embeddings of each nucleus from scVI were used to create a 

two-dimensional map using the uniform manifold approximation and projection for 

dimension reduction (UMAP) algorithm83. Nuclei in the aggregated map were clustered 

using the Louvain algorithm in scanpy84, computing nearest-neighbor distances using 

Euclidean distance in the space of the scVI latent representation. Louvain clustering 

was run at various resolutions, and the final resolution of 0.8 was chosen manually due 

to its parsimonious covering of the dataset. 

Differential expression between cell types in rat aorta 

Differential expression testing was performed for each gene by comparing expression in 

a given cluster to all other clusters in R limma85. Testing was carried out as per the 

recommendation by Lun and Marioni86, after (1) summing count data per sample per 

cluster, (2) normalizing using DESeq287, and (3) correcting for the mean-variance trend 
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using voom. Contrasts of one cell cluster versus all others were fit using the model (~ 0 

+ cluster) to extract an estimate of a log fold-change between the given cluster and all 

others. Only genes where at least two summed sample-clusters showed nonzero 

expression were tested. Multiple-testing correction was performed using the Benjamini-

Hochberg method with a false discovery rate of 0.01. Tens to hundreds of genes were 

found to be significantly differentially-expressed in each cluster. Cell types were named 

by examination of the top up-regulated genes in a cluster and manual searching of the 

literature. 

Data availability 

UK Biobank data is made available to researchers from universities and other research 

institutions with genuine research inquiries, following IRB and UK Biobank approval. Full 

GWAS summary statistics for ascending and descending thoracic aortic measurements 

will be available upon publication at the Broad Institute Cardiovascular Disease 

Knowledge Portal at http://www.broadcvdi.org. Single nucleus RNA sequencing data will 

be available upon publication at the Single Cell Portal: 

https://singlecell.broadinstitute.org/single_cell. The dbGAP accession number for aortic 

phenotypes used in FHS replication is phs000007.v30.p11. All other data are contained 

within the article and its supplementary information, or are available upon reasonable 

request to the corresponding author. 
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Code availability 

The code used to identify connected components is available as a Go library at 

https://github.com/carbocation/genomisc/tree/master/overlay 
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Table 1. Baseline characteristics of participants 
 

 Women Men 

N 17516 15904 

Age at time of MRI 63.5 (7.40) 64.7 (7.6) 

BMI (kg/m^2) 25.8 (4.3) 27.0 (3.6) 

Height (cm) 163 (6.2) 177 (6.6) 

Weight (kg) 68.9 (12.1) 84.1 (12.6) 

Systolic blood pressure (mmHg) 131 (18) 139 (16) 

Diastolic blood pressure (mmHg) 79 (10) 84 (10) 

American standard drinks per week 4.9 (5.5) 6.1 (7.0) 

Smoking status   

  Current 877 (5 %) 1163 (7 %) 

  Never 11243 (64 %) 9071 (57 %) 

  Prefer not to answer 32 (0 %) 31 (0 %) 

  Previous 5360 (31 %) 5636 (35 %) 

  Unknown 4 (0 %) 3 (0 %) 

Pack years of smoking 3.6 (9.0) 5.7 (12.7) 

History of aortic procedures 0 (0 %) 0 (0 %) 

Ascending aorta, minor axis length (cm) 2.72 (0.30) 3.00 (0.33) 

Descending aorta, minor axis length (cm) 1.93 (0.17) 2.19 (0.19) 

 
Demographic information is shown for UK Biobank participants with genetic and cardiac MRI data that 
passed quality control as detailed in the sample flow diagram in Supplementary Figure 1. For count 
data, values shown are N (%). For quantitative data, values shown are mean (SD). 
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Table 2. GWAS Loci 
 
A: Ascending thoracic aorta 
SNP CHR BP Effect Allele Other Allele EAF INFO BETA P Value Nearest Gene Prior 

rs2871651 1 9434969 C T 0.58 0.99 -0.047 1.30E-09 SPSB1  

rs61776719 1 38461319 C A 0.45 1.00 0.043 1.40E-09 SF3A3  

rs3768274 1 41951383 C T 0.50 0.98 -0.040 1.70E-08 EDN2  

rs41519044 1 185694813 T A 0.73 0.99 -0.050 8.90E-09 HMCN1  

rs10174214 2 19723613 A C 0.32 1.00 0.090 6.00E-34 OSR1  

rs2381688 2 145838542 A G 0.35 0.97 -0.041 1.40E-08 ZEB2  

rs10186643 2 148803587 G T 0.68 0.99 -0.050 4.10E-10 MBD5  

rs35930173 2 164924332 G A 0.76 0.98 -0.049 5.80E-10 FIGN  

rs12052878 2 238227594 G A 0.69 1.00 -0.051 4.30E-10 COL6A3  

rs11712199 3 14858226 G A 0.91 0.99 0.081 6.80E-12 FGD5  

rs370408735 3 41870038 C T 0.87 0.90 -0.100 2.10E-18 ULK4 Guo et al 2016 

rs545996255 3 58100423 G GT 0.70 0.97 0.061 8.30E-15 FLNB  

rs2306272 3 66434643 T C 0.71 1.00 -0.046 2.60E-08 LRIG1  

rs55914222 3 128202943 G C 0.97 0.99 0.190 1.40E-16 GATA2  

rs13128814 4 146801002 G A 0.48 0.99 -0.041 3.70E-08 ZNF827  

rs67846163 4 174656889 A G 0.77 0.99 -0.082 1.30E-20 HAND2  

rs2897603 5 81723109 C T 0.79 1.00 0.064 8.20E-12 ATP6AP1L  

rs4077816 5 95582494 A G 0.63 0.99 0.108 2.50E-46 PCSK1  

rs7702622 5 122548721 C T 0.78 0.99 0.067 6.40E-15 PRDM6 
Vasan et al 
2009 

rs496236 6 11641601 A G 0.46 1.00 0.038 1.40E-08 ADTRP  

rs1630736 6 12295987 C T 0.54 0.99 -0.054 1.70E-12 EDN1  

rs146170154 6 36646768 C CTA 0.80 0.98 -0.056 3.00E-10 CDKN1A  

rs1570350 6 143592386 A G 0.55 0.99 -0.063 2.80E-17 AIG1  

rs13203975 6 152333104 G A 0.89 0.99 0.079 5.30E-12 ESR1  

rs79215950 7 35277067 G A 0.62 1.00 0.062 6.60E-17 TBX20  

rs6943980 7 73424373 A C 0.55 1.00 -0.121 3.90E-64 ELN  

rs1583081 7 85034227 G T 0.58 1.00 -0.079 7.00E-28 SEMA3D  

rs2921059 8 8317887 G T 0.56 0.98 -0.041 3.20E-08 SGK223  

rs10097870 8 11444516 G A 0.54 0.99 -0.049 4.70E-12 GATA4  

rs11785562 8 23391493 G A 0.80 0.97 -0.050 9.60E-09 SLC25A37  

rs9721183 8 75781818 C T 0.63 0.95 0.059 8.30E-14 PI15  

rs16876090 8 108363596 G A 0.91 0.99 -0.080 1.10E-10 ANGPT1  

rs562291939 8 120709336 T C 1.00 0.80 0.798 2.40E-23 ENPP2  

 8 122634926 CA C 0.67 0.93 0.057 3.10E-12 HAS2  

rs34557926 8 124607159 C T 0.63 0.99 -0.071 1.10E-21 FBXO32  

rs4978966 9 113662374 C T 0.79 1.00 0.052 4.60E-09 LPAR1  

rs16916931 10 63813744 A T 0.69 0.98 0.047 4.60E-09 ARID5B  

rs10761716 10 64882300 C G 0.56 0.99 0.049 2.00E-11 NRBF2  

rs71482305 10 96119130 C T 0.84 1.00 0.089 4.20E-20 NOC3L  

rs1340837 10 97542035 A G 0.59 1.00 0.039 1.10E-08 ENTPD1  

rs10885378 10 114491924 T C 0.70 0.99 -0.048 1.30E-09 VTI1A  

rs77889556 11 17498057 G A 0.83 0.91 -0.070 1.20E-12 ABCC8  

rs3741025 11 30851976 C T 0.43 0.99 0.042 2.80E-08 DCDC1  

rs111412755 11 69819139 C T 0.91 0.98 -0.096 6.60E-16 ANO1 Wild et al 2017 

rs4936098 11 130280667 A G 0.37 0.98 -0.053 7.40E-13 ADAMTS8  

rs2307024 12 22005003 T G 0.59 0.99 0.059 1.30E-14 ABCC9  

 12 62817410 TC T 0.90 0.99 -0.081 1.90E-11 USP15  

rs58899389 12 94199513 T C 0.65 0.99 0.041 4.80E-08 CRADD  

rs7994761 13 22871446 A G 0.78 0.99 0.120 1.80E-41 FGF9  

rs733166 14 94464432 A G 0.47 1.00 0.059 1.60E-15 ASB2  

rs16970633 15 40642877 G T 0.83 1.00 -0.052 3.70E-08 PHGR1  

rs1848050 15 48862043 G A 0.90 0.99 -0.078 4.40E-10 FBN1 

LeMaire et al 
2011, Guo et al 
2016, van 't Hof 
et al 2016 

rs6494904 15 71609522 G A 0.28 1.00 -0.064 8.10E-15 THSD4  

 16 56221642 AAAT A 0.56 0.98 -0.047 1.20E-11 GNAO1  

rs757590420 16 66896747 T C 1.00 0.64 0.587 1.70E-10 NAE1  

rs181062531 16 69319941 C T 1.00 0.31 0.667 2.70E-08 SNTB2  
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SNP CHR BP Effect Allele Other Allele EAF INFO BETA P Value Nearest Gene Prior 

rs62053262 16 69969299 C G 0.95 0.99 0.207 7.40E-36 WWP2  

rs7500448 16 83045790 A G 0.75 0.98 -0.050 2.60E-09 CDH13  

rs16965180 16 88989862 A G 0.65 0.99 0.071 1.20E-19 CBFA2T3  

 17 2088848 CCAGA C 0.68 1.00 -0.071 1.70E-20 SMG6 
Vasan et al 
2009, Wild et al 
2017 

rs4569330 17 12180624 G A 0.27 0.97 0.087 5.70E-25 MAP2K4  

 17 16155380 CTTT C 0.55 1.00 0.041 4.60E-08 PIGL  

rs6505216 17 29206421 G T 0.77 0.92 0.062 8.70E-12 ATAD5  

rs8091434 18 46312960 C G 0.87 1.00 0.061 1.50E-08 CTIF  

rs3063286 20 10488552 T TTA 0.47 0.94 0.050 5.60E-12 SLX4IP  

rs17812022 20 19007099 C T 0.91 1.00 -0.072 7.20E-09 SLC24A3  

rs4402860 22 40554445 A T 0.80 1.00 0.065 1.40E-13 TNRC6B  

rs755131301 X 10401828 G A 0.99 0.88 0.160 3.00E-08 MID1  

 

B: Descending thoracic aorta 
SNP CHR BP Effect Allele Other Allele EAF INFO BETA P Value Nearest Gene Prior 

rs527725 1 201752429 A C 0.60 0.97 0.049 5.20E-11 NAV1  

rs7255 2 20878820 T C 0.45 1.00 0.055 1.50E-13 GDF7  

rs181737440 2 75328928 A G 1.00 0.61 -0.547 1.70E-08 TACR1  

rs7580831 2 238219499 C A 0.68 1.00 -0.048 2.30E-09 COL6A3  

rs6780370 3 58074846 G A 0.69 0.98 0.048 5.40E-09 FLNB  

rs698099 3 186987941 G A 0.17 1.00 0.077 1.40E-13 MASP1  

rs60991988 4 54801228 T G 0.89 0.99 -0.066 2.70E-08 FIP1L1  

rs6532500 4 95580645 A G 0.44 0.98 -0.045 1.40E-09 PDLIM5  

rs9285863 5 108071655 T C 0.66 0.99 -0.045 5.40E-09 FER  

rs9263708 6 31095270 T C 0.74 1.00 -0.054 5.90E-11 PSORS1C1  

rs77393224 6 34381136 G A 0.94 1.00 -0.091 2.50E-08 RPS10-NUDT3  

rs733590 6 36645203 T C 0.65 1.00 -0.050 2.00E-10 CDKN1A  

rs9362083 6 85396119 T A 0.42 1.00 0.046 7.80E-10 TBX18  

rs4707174 6 85987918 A C 0.70 0.98 -0.045 3.30E-08 NT5E  

rs2107595 7 19049388 G A 0.85 0.99 0.100 2.90E-23 TWIST1  

rs17774023 8 10626333 T C 0.69 1.00 0.048 4.50E-09 PINX1  

rs532252660 8 120587297 C T 1.00 0.79 0.480 2.60E-08 ENPP2  

rs10740811 10 30167754 G A 0.41 1.00 0.083 1.10E-27 SVIL  

rs2797983 10 95899646 G C 0.45 1.00 -0.072 2.10E-20 PLCE1  

rs112712475 11 117065772 C A 0.94 0.99 -0.102 4.10E-11 SIDT2  

rs4759275 12 57525756 G A 0.58 1.00 0.049 2.10E-11 STAT6 Guo et al 2016 

rs10744777 12 112233018 T C 0.66 1.00 -0.048 1.60E-09 ALDH2  

rs12885183 14 21545230 A G 0.77 0.99 0.054 7.70E-10 ARHGEF40  

rs7143356 14 23881083 T C 0.62 1.00 0.045 1.80E-08 MYH6  

rs12890024 14 94469801 A G 0.62 0.98 0.054 1.90E-12 OTUB2  

rs71472433 15 40649609 A C 0.83 0.99 -0.063 1.30E-09 DISP2  

rs17352842 15 48694211 C T 0.81 1.00 -0.060 2.10E-10 FBN1 

LeMaire et al 
2011, Guo et al 
2016, van 't Hof 
et al 2016 

rs1048661 15 74219546 G T 0.66 0.99 -0.050 1.70E-10 LOXL1 
Vasan et al 
2009 

rs8182076 15 79072988 C T 0.58 0.99 -0.043 1.20E-08 ADAMTS7  

rs62053262 16 69969299 C G 0.95 0.99 0.119 3.30E-12 WWP2  

rs56014161 17 77910740 C T 0.69 0.99 -0.044 2.70E-08 TBC1D16  

rs12607403 18 46343221 C T 0.12 0.99 -0.078 3.40E-12 CTIF  

rs8102624 19 2161443 G A 0.92 1.00 0.101 3.30E-13 DOT1L  

rs2303040 19 39138608 T C 0.51 0.99 -0.049 2.20E-10 ACTN4  

 X 114835773 TA T 0.43 0.92 -0.036 8.60E-09 PLS3  

 

The lead SNPs from the GWAS for the diameter of the ascending (Table 2A) and 
descending (Table 2B) thoracic aorta. SNP = the rsID of the variant, where available. 
BP = genomic position, keyed to GRCh37. EAF = Effect allele frequency. INFO = 
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imputation INFO score. BETA = effect size per effect allele on the inverse normal 
transformed trait. Prior = known from prior publications addressing common genetic 
variation linked to aortic size, aortic aneurysm, or aortic dissection15–19. 
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Figure 1: Study overview 
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Figure 2: Genome-wide association study results 

 

 

Panels A & B: Loci with P < 5·10-8 are shown in red (if not previously reported) or blue 

(if previously reported in common variant association studies for aortic size or disease 

status [aneurysm or dissection]). The X chromosome is represented as ‘23’. Panel C: 
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Venn diagram showing the number of loci uniquely associated at P < 5·10-8 with either 

the ascending or descending thoracic aorta. Those in orange are associated with both 

and are enumerated in the table to the right. Loci whose lead SNP’s nearest gene 

differs between ascending and descending are demarcated as 

“Ascending/Descending”. 
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Figure 3: Gene-level association tests 

A) Transcriptome-wide association study 

B) Collapsing rare variant association test 

 

Panel A: Protein-coding genes associated with the size of the ascending (left panel) 

and descending (right panel) thoracic aorta based on an integrated gene expression 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.091934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.091934


 Pirruccello, et al — Genetics of the human aorta 

 Page 54 of 57 

prediction are shown. The x axis represents the magnitude of the TWAS Z score, while 

the y axis represents the -log10 of the TWAS P value. Traits achieving Bonferroni 

significance are colored red (positive correlation) or blue (negative correlation). The top 

4 positively and negatively correlated traits are labeled. Panel B: Rare variant 

collapsing burden test results are depicted. Loss of function carrier status in each gene 

was tested for association with the size of the ascending (left panel) and descending 

(right panel) thoracic aorta. The x axis represents the effect size of LoF in each gene 

on aortic size, while the y axis represents the -log10 of the association P value in a 

logistic model. The one gene achieving Bonferroni significance (SVIL) is colored blue for 

its negative correlation with the size of the descending thoracic aorta. The top 3 genes 

are labeled. 
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Figure 4: Single nucleus RNA sequencing analyses in rat aorta 
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Single nucleus RNA-seq was performed on aorta tissue from 6 Wistar rats. Panel A: 

Uniform manifold approximation and projection (UMAP) revealed 10 main clusters. 

Each dot represents an individual nucleus, colored and labeled by putative cell type as 

identified from Louvain clustering. Panel B: The top five most selectively expressed 

genes for each cluster were identified as those with the largest fold-change difference in 

expression comparing the given cluster with all other clusters, only considering genes 

expressed in at least 10% of nuclei and with a Benjamini-Hochberg corrected p < 0.01. 

The shade of the dot represents the average log2 expression for a gene across all 

nuclei in a given cluster and the size of the dot represents the percentage of nuclei in 

the cluster with non-zero expression. The cell type labels were created by comparing 

selectively expressed genes in each cluster of nuclei with the literature. Panels C and 

D: Cell-type specificity of genes with expression data supported by the TWAS in the 

ascending (Panel C) and descending (Panel D) aorta. The size of each square 

represents the average log2(Expr) for a gene across all nuclei in a given cluster. The 

color represents the log fold-change comparing the expression of the given gene in 

each cluster to all other clusters based on a formal differential expression model. A dot 

represents significant up- or down-regulation in the given cluster based on a Benjamini-

Hochberg correction for multiple testing at FDR < 0.01. Expr = Normalized nucleus-level 

expression calculated as the number of counts of a gene divided by the total number of 

counts in the nucleus and multiplied by 10,000; FC = Fold-change. 
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Figure 5: Cumulative incidence of thoracic aortic aneurysm or dissection stratified by 

polygenic score 

The cumulative incidence (1 minus the Kaplan-Meier survival estimate) of a diagnosis of 

aortic aneurysm or dissection (Y axis) is plotted against the number of years since UK 

Biobank enrollment (X axis). Individuals in the top tenth percentile of the polygenic 

score for ascending aorta size are shown in red; the remaining 90% are shown in gray. 

The 95% confidence intervals (from the cumulative hazard standard error) are 

represented with lighter colors. 
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