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Abstract 17 

Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular 18 

compositions and study the molecular states in the complex cellular environment as the lifetime readings 19 

are not biased by the fluorophore concentration or the excitation power. However, the current methods to 20 

generate FLIM images are either computationally intensive or unreliable when the number of photons 21 

acquired at each pixel is low. Here we introduce a new deep learning-based method termed flimGANE 22 

(fluorescence lifetime imaging based on Generative Adversarial Network Estimation) that can rapidly 23 

generate accurate and high-quality FLIM images even in the photon-starved conditions. We demonstrated 24 

our model is not only 258 times faster than the most popular time-domain least-square estimation (TD_LSE) 25 

method but also provide more accurate analysis in barcode identification, cellular structure visualization, 26 

Förster resonance energy transfer characterization, and metabolic state analysis. With its advantages in 27 

speed and reliability, flimGANE is particularly useful in fundamental biological research and clinical 28 

applications, where ultrafast analysis is critical. 29 

 

Introduction 30 

Using fluorescence decay rate as the contrast mechanism, fluorescence lifetime imaging microscopy 31 

(FLIM) is a powerful quantitative tool for studying cell and tissue biology1, 2, 3, allowing us to monitor the 32 

pH4, viscosity5, temperature6, oxygen content7, metabolic state8 and functional property of a biomarker9 33 

inside live cells or tissues. Depending on the intrinsic property of fluorophore, FLIM images are not skewed 34 
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by fluorophore concentration and excitation power, eliminating the biases introduced by the traditional 35 

intensity-based images2. Combined with the fluorescence resonance energy transfer (FRET) sensors10, 36 

FLIM can probe Ca2+ concentration11, glucose concentration12 and protein-protein interactions13, without 37 

the need to measure acceptor’s fluorescence14. Whereas FLIM offers many unique advantages in 38 

quantifying molecular interactions15 and chemical environments16 in biological or chemical samples, 39 

fluorescence lifetime analysis is a slow process with results often impaired by fitting errors. Adopted from 40 

disparate disciplines, various fluorescence lifetime estimation methods such as curve fitting (least-squares 41 

fitting17, maximum likelihood estimation18, global analysis19 and Bayesian analysis20), phasor analysis21, 22 42 

and deconvolution analysis (stretched exponential analysis23, Laguerre deconvolution24) have been 43 

developed to infer the lifetime of interest. However, different methods are limited by poor accuracy 44 

particularly in low-light conditions, long computation times or susceptible to error from initial assumption 45 

of decay parameters. 46 

Here we demonstrate a new fluorescence lifetime imaging method based on Generative Adversarial 47 

Network Estimation (flimGANE) that can provide fast, fit-free, precise, and high-quality FLIM images even 48 

under the extreme low-light conditions. GAN is one of the frameworks for evaluating generative models 49 

via an adversarial process25, which have been adopted to improve astronomical images26, 27, transform 50 

images across different modalities26, 28, and design drugs that target specific signaling molecules29. While 51 

GAN-based algorithms have recently drawn much attention for inferring photo-realistic natural images30, 52 

they have not been used to generate high-quality FLIM images based on the fluorescence decays collected 53 

by a laser scanning confocal microscope. Our flimGANE method is adapted from the Wasserstein GAN 54 

algorithm31 (WGAN; see Methods), where the generator (G) is trained to produce an “artificial” high-55 

photon-count fluorescence decay histogram based on a low-photon-count input, while the discriminator (D) 56 

distinguishes the artificial decay histogram from the ground truth (which can be a simulated dataset or a 57 

decay histogram collected under strong excitation). As a minimax two-player game, the training procedure 58 

for G is to maximize the probability of D making a mistake25, eventually leading to the production of very 59 

realistic, artificial high-photon-count decay histograms that can be used to generate a high-quality FLIM 60 

image. Using a well-trained generator (G) and an estimator (E), we can reliably map a low-quality decay 61 

histogram to a high-quality counterpart, and eventually to the three lifetime parameters (1, 1, and 2) 62 

within 0.32 ms/pixel (see Methods). Without the need to do any curve fitting based on initial guesses, our 63 

flimGANE method is 258-fold faster than the time-domain least-squares estimation (TD_LSE32, 33) and 64 

2,800-fold faster than the time-domain maximum likelihood estimation (TD_MLE34, 35) in generating a 512 65 

 512 FLIM image. While almost all commercial FLIM analysis tools are based on TD_LSE, using the 66 

least-squares estimator to analyze Poisson-distributed data is known to lead to biases36, making TD_MLE 67 

the gold standard for FLIM analysis by many researchers18. Our flimGANE can provide similar FLIM image 68 

quality as TD_MLE, but much faster. 69 

Overcoming a number of hardware limitations in the classical analog frequency domain approach, the 70 
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digital frequency-domain (DFD) lifetime measurement method has substantially increased the FLIM 71 

analysis speed21, 22, 37. The acquired DFD data at each pixel, termed a cross-correlation phase histogram, can 72 

lead to a phasor plot with multiple harmonic frequencies. From such a phasor plot, modulation ratio and 73 

phase shift at each harmonic frequency can be obtained, which are then fitted with a least-squares estimator 74 

(LSE) to generate a lifetime at each pixel (termed the DFD_LSE method). Our flimGANE not only runs 75 

nearly 12-fold faster than DFD_LSE but also produces more accurate quantitative results and sharper 76 

structural images of Convallaria and live HeLa cells. Whereas the lowest number of photons needed for 77 

reliable estimation of a fluorescence lifetime by TD_MLE is about 100 photons38, flimGANE performs 78 

consistently well with a photon count as low as 50 per pixel in our simulations. Moreover, flimGANE 79 

improves the energy transfer efficiency estimate of a glucose FRET sensor, leading to a more accurate 80 

glucose concentration measurement in live HeLa cells. Providing both efficiency and reliability in 81 

analyzing low-photon-count decays, our flimGANE method represents an important step forward towards 82 

real-time FLIM. 83 

 

Results 84 

Training the generative adversarial network in flimGANE  85 

Based on the Wasserstein GAN framework (see Methods), flimGANE is designed to analyze one- or 86 

two-component fluorescence decays under photon-starved conditions (Fig. 1). There are two ways to 87 

generate a dataset of ground-truth lifetime histograms for training G and D – either by creating a decay 88 

dataset using Monte Carlo (MC) simulations or by acquiring an experimental dataset from standard organic 89 

fluorophores under high excitation power. The inputs of G are degraded data from the ground truths, which 90 

can be obtained by running simulations at a low-emission rate or by recollecting experimental data under 91 

low excitation power.  92 

We started our network training using an MC simulation dataset (Supplementary Fig. 1). A Python 93 

program was employed to simulate the photon collection process in the counting device with 256 time bins, 94 

following the probability mass function (pmf) numerically calculated by the convolution of an 95 

experimentally obtained instrument response function (IRF) and a theoretical two-component decay model 96 

(1, 1, 1-1 and 2) at a selected emission rate (rate)39. Depending on the fluorophores that users want to 97 

image, proper 1, 1, 2 and rate parameters that span the range of interest could be selected 98 

(Supplementary Table 1), generating about 600 normalized ground truths and 300k degraded decays for 99 

training G and D. The adversarial network training was completed in 6.1 hours (see Methods; Figs. 1a-b; 100 

Supplementary Fig. 2). The normalized degraded decay was transformed into the normalized “ground-101 

truth mimicking” histogram, termed Goutput (Supplementary Fig. 3), within 0.17 ms. Such a Goutput was 102 

indistinguishable from the ground truths by D. E, which was separately trained on the ground truths and 103 

completed in 0.1 hours, was then employed to extract the key lifetime parameters (1, 1, and 2) from the 104 
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Goutput within 0.15 ms (Fig. 1c). Then, the combining training of the G and E took extra 0.7 hours, in order 105 

to adapt the pre-trained E to the current Goutput (Supplementary Fig. 2).  106 

To demonstrate the reliability of our flimGANE method, we created a set of 14x47 “UTBME” FLIM 107 

images in silico (independently generated, not used in the training process) at three photon emission rates 108 

(50, 100 and 1,500 photons per pixel). At 1,500 photons per pixel, all four methods (TD_LSE, TD_MLE, 109 

DFD_LSE and flimGANE) generated high-fidelity FLIM images (based on the apparent lifetime,  = 11 110 

+ (1-1)2, see Methods), with mean-squared errors (MSE) less than 0.10 ns2. At 100 photons per pixel, 111 

flimGANE had similar performance as TD_MLE (MSE were both less than 0.20 ns2); however, flimGANE 112 

clearly outperformed TD_LSE, TD_MLE, and DFD_LSE at 50 photons per pixel (0.19 vs. 1.04, 0.49 and 113 

2.41 ns2, respectively; Fig. 1d-e, Supplementary Figs. 4-6, and Supplementary Tables 2-5). Speed 114 

analysis showed that flimGANE was 258 and 2,800 times faster than TD_LSE and TD_MLE, respectively 115 

(flimGANE – 0.32 ms per pixel, TD_LSE – 82.40 ms, TD_MLE – 906.37 ms; Supplementary Table 6). 116 

While DFD_LSE offered a relatively high speed in generating FLIM images (3.94 ms per pixel), its 117 

accuracy was worse than that of flimGANE (Figs. 2-5). In contrast, being a computationally intensive 118 

method, TD_MLE offered the accuracy, but not the speed. Only flimGANE could provide both speed and 119 

accuracy in generating FLIM images. In addition, the MLE method became unreliable in the extremely 120 

low-photon-count condition (50 photons per pixel), while flimGANE still provided a reasonable result. 121 

To obtain accurate FLIM images, the IRF of the imaging system, which is mainly decided by the width 122 

of laser pulse and the timing dispersion of detector, should be carefully considered during lifetime 123 

estimation. While the FWHM of IRF is stable in most of the commercial FLIM imaging systems (detector 124 

time jittering within 35-500 ps40), users often observe that the delay between the single-photon detector 125 

output and the TCSPC electronics input varies from day to day, possibly due to the instability of the TCSPC 126 

electronics caused by radio-frequency interference, laser lock instability, and temperature fluctuation. Such 127 

delay changes cause the onsets of the decays to drift, deteriorating the flimGANE analysis results. A 128 

preprocessing step, termed Center of Mass Evaluation (CoME), was thus introduced to adjust (or 129 

standardize) the temporal location of the onset of experimental decays (Supplementary Figs. 7-9). After 130 

preprocessing, the apparent lifetimes estimated by flimGANE were found free of onset-delay bias.  131 

To prove the reliability of flimGANE in estimating an apparent fluorescence lifetime from a mixture, 132 

two fluorophores, Cy5-NHS ester (1 = 0.60 ns) and Atto633 (2 = 3.30 ns), were mixed at different ratios, 133 

creating ten samples of distinct apparent fluorescence lifetimes () ranging from 0.60 to 3.30 ns. Here 1 134 

and 2 were measured from the pure dye solutions and estimated by TD_MLE, whereas the theoretical 135 

apparent lifetime T was predicted by the equation T = 11 + 2(1-1). 1, the pre-exponential factor41, 136 

was derived from the relative brightness of the two dyes and their molar ratio 37 (see Methods). When 137 

analyzing 256256-pixel images with emission rates fluctuating between 80-200 photons per pixel, 138 

flimGANE and TD_MLE produced the most accurate and precise  estimates among the 4 methods (Fig. 139 

1f, and Supplementary Table 7). TD_LSE and DFD_LSE performed poorly in this low-light, two-dye 140 
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mixture experiment.  141 

Discriminating fluorescence lifetime barcode beads 142 

   We then tested flimGANE in discriminating the fluorescence lifetime barcodes. To create fluorescence 143 

lifetime barcodes, biotinylated Cy5- and Atto633-labeled DNA probes were mixed at three different ratios, 144 

Cy5-DNA:Atto633-DNA = 1:0 (barcode_1, expecting lifetime 1.90 ns); 1:1 (barcode_2, 2.40 ns) and 0:1 145 

(barcode_3, 3.50 ns), and separately conjugated to streptavidin-coated polystyrene beads (3-4 m in size, 146 

see Methods). It was noted that the lifetime of Cy5-DNA (1.90 ns) is different from that Cy5-NHS ester 147 

(0.60 ns). Similarly, the lifetime of Atto633-DNA (3.50 ns) is different from that of Atto633 (3.30 ns). A 148 

cover slip coated with the three barcode beads (at equal molar concentration) was scanned by the ISS Alba 149 

v5 confocal microscopic system (equipped with a 20 MHz 635 nm diode laser for excitation and a 150 

FastFLIM module for DFD acquisition37) for 31 seconds, generating 512512-pixel DFD data with photon 151 

counts ranging from 50-300 per pixel on the beads (Fig. 2a). The acquired DFD data (i.e., cross-correlation 152 

phase histograms37) were converted into time decays for flimGANE, TD_LSE and TD_MLE analysis (Fig. 153 

2b). Each barcode bead was registered by ImageJ ROI manager and assigned an ID number 154 

(Supplementary Fig. 10). An apparent lifetime was assigned to each pixel on the bead (~292 pixels) and 155 

lifetimes of all pixels were plotted in a histogram. The mean lifetime for the bead was determined by the 156 

Gaussian fit of the histogram. After examining 97 beads, we chose the cutoff lifetimes to be 2.15 and 2.95 157 

ns for barcode identification (Fig. 2c) and assigned pseudocolors to the barcode beads (Fig. 2d). It was 158 

clear to see that flimGANE is the only method that can correctly identify the three barcodes and restore the 159 

1:1:1 barcode ratio, while other methods often misidentified the barcodes (Fig. 2e). Whereas it was a 160 

general trend that beads with more Atto633-DNA are dimmer, possibly due to stronger self-quenching, 161 

brightness alone could not classify the three barcodes (Fig. 2c, Supplementary Fig. 11, Supplementary 162 

Table 8). It was noted that the brightness of barcode_1 beads could vary by six-fold, but the coefficient of 163 

variance (CV) in barcode_1 lifetimes was only 0.06, making lifetime a better metric to differentiate 164 

barcodes. 165 

Visualizing cellular structures of Convallaria and HeLa cells 166 

The DFD fluorescence data of Convallaria (lily of the valley) and live HeLa cells, acquired under the 167 

low- and the medium-photon-count conditions (Fig. 3a), were analyzed by DFD_LSE and flimGANE (Fig. 168 

3b), where TD_MLE (in medium-photon-count condition, ~243 photons per pixel) served as the standard 169 

for comparison. The histogram clearly showed two characteristic lifetimes (0.90 ± 0.13 ns; 4.84 ± 1.20 ns) 170 

in the Convallaria sample (Fig. 3c). As TD_MLE with medium photon counts had all lifetime estimates 171 

within 0.0-6.0 ns range, we limited the upper bound of the lifetime estimates in to be 6.0 ns. Those 6.0 ns 172 

pixels were given the white pseudocolor and regarded as failed pixels in the FLIM images (Fig. 3d). A large 173 

number of failed pixels were seen in the DFD_LSE images (37% and 25% for the low- and medium-count 174 

images, respectively; Fig. 3b), deteriorating the visualization of structure details in the Convallaria sample. 175 
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In contrast, there were very few failed pixels in the flimGANE images under the low-light condition (~83 176 

photons per pixel), making them most resemble the TD_MLE images under medium-light condition and 177 

provide better visualization of the structure details (Figs. 3c-d). The structure similarity index (SSIM)42 178 

indicated that the flimGANE images were 73% more similar to the gold standard TD_MLE images than 179 

those generated by DFD_LSE (flimGANE – 0.88, DFD_LSE – 0.51; Supplementary Table 9), and visual 180 

information fidelity (VIF)43 showed that the flimGANE images were 1.44-fold higher than those 181 

reconstructed by DFD_LSE (flimGANE – 0.22, DFD_LSE – 0.09; Supplementary Table 9).   182 

In the live HeLa cell sample, nuclei and membranes were stained with Hoechst and CellMaskTM Red 183 

and excited by 405 nm and 635 nm diode lasers, respectively. The contours of nuclei and cell membranes 184 

could not be clearly defined by the intensity-based images even under medium-light condition (Figs. 3e-f). 185 

Although FLIM overlay images allowed us to better visualize structural details in HeLa cells, the lifetime 186 

estimates could be biased even when there were ~180 photons per pixel (medium-light condition; TD_LSE 187 

and DFD_LSE images in Fig. 3h). Using the medium-high-count TD_MLE images (~600 photons per pixel) 188 

as the standard for comparison, flimGANE clearly outperformed TD_LSE, TD_MLE, and DFD_LSE in 189 

producing images that resemble the standard under medium-light condition (Fig. 3h; Supplementary 190 

Table 10). Interestingly, when scrutinizing the assigned lifetime at each pixel, we found not only TD_LSE 191 

and DFD_LSE but also TD_MLE give inconsistent lifetime estimates at the two excitation powers (e.g., R2 192 

in blue channel were -6.46, -3.54 and -22.82 for TD_LSE, TD_MLE and DFD_LSE, respectively). In 193 

contrast, flimGANE provided much more consistent lifetime estimates regardless the excitation power (R2 194 

was 0.13 in blue channel; Fig. 3g). 195 

Quantifying Förster resonance energy transfer (FRET) efficiency in live MDA-MB-231 cells 196 

Combined with the glucose FRET sensor, FLIM has been employed to image the glucose concentration 197 

in live cells10, 44. However, depending on the lifetime analysis methods, the trend of FRET change can be 198 

skewed, especially when the donor lifetime change is very small (e.g., only 0.1-0.2 ns). Our glucose FRET 199 

sensor, termed CFP-g-YFP45, consisted of a glucose binding domain flanked by a cyan fluorescent protein 200 

(CFP) donor and a yellow fluorescent protein (YFP) acceptor (see Methods, Fig. 4a). The overlap between 201 

CFP emission and YFP absorption leads to efficient dipole-dipole interactions. The CFP-g-YFP sensor-202 

expressed MDA-MB-231 tumor cells were starved for 24 hrs before adding different amount of glucose to 203 

the cell culture (final concentrations: 0, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0 mM). The confocal scanning system 204 

collected DFD data from a 256256-pixel area before and after the addition of glucose, which were then 205 

analyzed by TD_LSE, TD_MLE, DFD_LSE, and flimGANE methods to generate FLIM images based on 206 

the CFP donor decays (Fig. 4b). By proper selection of regions of interest (ROI) in imaging analysis, single 207 

cells were separated from each other and from the background noise (Supplementary Fig. 12; 208 

Supplementary Table 11). Thousands of lifetime data points (apparent lifetimes, a) were plotted in a 209 

histogram and the mean was extracted by Gaussian fitting, giving one representative donor lifetime for each 210 
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glucose concentration (Fig. 4c). The energy transfer efficiency (E) was calculated based on the equation: E 211 

= 1- (τDA /τD), where τD and τDA were the representative CFP lifetimes before and after addition of glucose, 212 

respectively. Whereas only subtle lifetime changes were seen in the CFP donor lifetime (0.04-0.20 ns in 213 

Supplementary Table 12, which led to low FRET efficiencies around 0.02-0.07), flimGANE-derived FRET 214 

efficiencies were not only highly reproducible but also showing a general increasing trend at higher glucose 215 

concentrations. On the other hand, the lifetime of acceptor (YFP) did not change upon addition of glucose 216 

(Supplementary Fig. 13). Among the four methods, DFD_LSE failed to provide a FRET efficiency 217 

response curve due to its poor lifetime estimation in this experiment, thus being excluded from Fig. 4c.  218 

While the intensity-based method, E = 1- (FDA /FD), was used to estimate E, the resulting response 219 

curve clearly deviated from the reasonable trend, possibly due to the artifacts such as photobleaching. When 220 

comparing the CFP FLIM images at 2 mM glucose concentration, we could clearly see that the flimGANE 221 

image well resembled the TD_MLE image, but not the other two images, in which there were many failed 222 

pixels (Fig. 4b). Although the TD_MLE images were similar to the flimGANE images, TD_MLE-derived 223 

FRET efficiencies had higher variations and showed an unrealistic, decreasing trend at higher glucose 224 

concentrations. In this demonstration, flimGANE not only gave a correct sensor response curve but also 225 

provided an analysis speed 2,800-fold faster than TD_MLE in reconstructing a FLIM image.  226 

Quantifying metabolic states in live HeLa cells 227 

Autofluorescence of endogenous fluorophores, such as nicotinamide adenine dinucleotide (NADH), 228 

nicotinamide adenine dinucleotide phosphate (NADPH), and flavin adenine dinucleotide (FAD), are often 229 

used to characterize the metabolic states of individual cancer cells, through metrics such as optical redox 230 

ratio (ORR)46, optical metabolic imaging index (OMI index)47 and fluorescence lifetime redox ratio 231 

(FLIRR)48. Since the fluorescence signatures of NADH and NADPH overlap, they are often referred to as 232 

NAD(P)H in literature. NAD(P)H (electron donors) and FAD (an electron acceptor) are metabolic 233 

coenzymes in live cells, whose autofluorescence intensity ratio reflects the redox states of the cells and the 234 

shifts in the metabolic pathways. However, intensity-based metrics (e.g., ORR) often suffer from 235 

wavelength- and depth-dependent light scattering and absorption issues when they are used to characterize 236 

the metabolic states of tumor tissues48. In contrast, lifetime-based metrics (e.g., FLIRR) bypass these issues, 237 

revealing bias-free protein-binding activities of NAD(P)H and FAD. As ORR and fluorescence lifetimes of 238 

NAD(P)H and FAD provide complementary information, they have been combined into the OMI index that 239 

can distinguish drug-resistant cells from drug-responsive cells in tumor organoids49. 240 

Here we demonstrate that flimGANE provides rapid and accurate autofluorescence FLIM images of live 241 

HeLa cells. DFD data at two emission channels (NAD(P)H: 425-465 nm and FAD:511-551 nm) were 242 

collected by the ISS confocal scanning system (with 405 nm excitation) and the acquired data were analyzed 243 

by the four methods, generating both intensity and FLIM images (Fig. 5a-b). We adopted FLIRR 244 

(α2_NAD(p)H/α1_FAD) as a metric to assess the metabolic response of cancer cells to an intervention. It was 245 
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found that flimGANE-derived FLIRR was highly correlated with its counterpart derived by TD_MLE (Fig. 246 

5c-d; Supplementary Table 13). Since the NAD(P)H signals came from both the mitochondrial oxidative 247 

phosphorylation and cytosolic glycolysis and the FAD signals mainly originated from the mitochondria, 248 

image segmentation was often performed to deduce the relative contributions of oxidative phosphorylation 249 

and glycolysis to the cellular redox states and help quantify the heterogeneity of cell responses48. In our 250 

analysis, an intensity threshold was selected to isolate the mitochondrial regions from the rest of the cell 251 

area, where the nuclei were manually zeroed (see Methods, Fig. 5e). Again, flimGANE outperformed the 252 

other three methods, generating results most similar to those found in literature48, 50, 51, 52, where the peak of 253 

FLIRR of cancer cells is usually located at 0.2-0.4 (Fig. 5f). TD_LSE and DFD_LSE provided an incorrect 254 

representation, where the former was largely skewed by the low FLIRR values and the latter showed two 255 

unrealistic peaks. TD_MLE gave a distribution similar to that of flimGANE, but with a larger FLIRR peak 256 

value, due to the inaccurate estimate of NAD(P)H lifetime under photon-starved conditions. 257 

 

Discussion  258 

flimGANE addresses an unmet need for FLIM analysis – a computationally efficient, high-throughput 259 

and high-quality method for fluorescence lifetime estimation that works reliably even in ultra-low-photon-260 

count conditions (e.g., 50 photon counts per pixel; Fig. 1d). In the cases studied above, flimGANE generated 261 

FLIM images with quality similar to those produced by the gold standard TD_MLE, but flimGANE clearly 262 

outperforms TD_MLE in barcode identification (Fig. 2), FRET characterization (Fig. 4), and metabolic 263 

state analysis (Fig. 5). We emphasize that in this report we intentionally acquired fluorescence data under 264 

low- to medium-light conditions in order to demonstrate the capabilities of the four methods, and we found 265 

even the gold standard TD_MLE may not necessarily give consistent lifetime estimates under different 266 

excitation powers (Fig. 3g). It is thus critically important for users to understand the limitations of their 267 

lifetime analysis methods, especially when handling the low-count decays. Here we provide an alternative 268 

FLIM analysis approach for users to consider, where the low-laser power requirement will reduce 269 

photobleaching and phototoxicity issues in delicate samples. 270 

As FLIM finds more clinical applications such as retina imaging53 and tumor margin identification54 in 271 

recent years, it becomes critically important that we have a fast, fit-free and accurate method to perform the 272 

lifetime imaging analysis. Whereas the previous deep-learning methods also provided high-speed FLIM 273 

analysis55, 56  and addressed the low-photon count issues56, 57, by using GAN in our model we may gain 274 

additional advantage in the image quality over the standard CNN28. Our flimGANE takes raw fluorescence 275 

decay histograms and experimental IRF as inputs and adopts a virtual resampling procedure that is 276 

integrated into the model. Through the use of convolutional block that mitigates the artifacts dependent on 277 

neighboring temporal bins and residual block that allows for the flow of memory from the input layer to 278 

the output layer, our generative model generates high-quality decays based on low-photon-count inputs 279 

without introducing bias. The inference of lifetime is non-iterative and does not require parameter search 280 
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to perfect the network performance. In this work, we evaluated the network performance using in-silico 281 

data, demonstrating that flimGANE can generate reasonable lifetime estimates with photon counts as low 282 

as 50 per pixel. However, considering background noises and other imperfect conditions in the real 283 

experiments, 100 photons per pixel are likely still required to get a reliable lifetime estimate.  284 

To the best of our knowledge, this is the first demonstration of a GAN model applied to reconstruct 285 

FLIM images. Since the use of Jensen-Shannon divergence as the objective function can cause problems 286 

such as vanishing gradients and mode collapse during GAN training, we incorporated Wasserstein metric 287 

in our model which provides much smoother value space to avoid those issues31. We are continuing to 288 

explore the incorporation of other frameworks in our model, including the gradient penalty (WGAN-GP)58, 289 

the sequence generation framework (SeqGAN)59, and the context-aware learning60, that may in some 290 

instances provide more suitable approximate inference. 291 

While flimGANE provides rapid, accurate and fit-free FLIM analysis, its cost lies in the network 292 

training. In other words, flimGANE is particularly valuable for the FLIM applications where retraining is 293 

not frequently required. For instance, samples have similar fluorophore compositions (i.e., autofluorescence 294 

from metabolites in patient-derived organoids) and IRF of the imaging system is stable and seldom changes. 295 

Different training datasets were employed to train the model separately that eventually led to the results 296 

shown in Figs. 1-5 (Supplementary Table 1). A primary reason to retrain the model is due to the change 297 

of IRF (Supplementary Fig. 14). Whenever a different laser source is chosen for excitation, the filters are 298 

replaced, or the optics system is realigned, the IRF can also change and the network should be retrained. 299 

For an entirely new imaging system, it can take more than 500 hours to fully train the network with a 300 

lifetime range of 0.1-10.0 ns (two components, 1 and 2) and a pre-exponential factor range of 0.0-1.0 (for 301 

1). However, if we know the range of lifetime of interest on our samples (e.g., 1.3-4.0 ns as the two lifetime 302 

components for barcode identification and 0.5-5.0 ns for live HeLa cell studies), a smaller training dataset 303 

can be employed to speed up the training process (e.g., 19 hours in Supplementary Table 1).  304 

Transfer learning61 from a previously trained network for another type of sample can also speed up 305 

the convergence of the learning process. However, this is neither a replacement nor a required step for the 306 

entire training process. After running a sufficiently large number of training iterations for generator (> 307 

2,000), the optimal network can be selected when the validation loss no longer decreases. No matter what 308 

kinds of data sets is used for model training, flimGANE can rapidly generate batches of FLIM images 309 

without using a graphics processing unit (GPU). Notably, an essential step in generating a FLIM image by 310 

our network is the accurate alignment of a fluorescence decay with respect to its corresponding IRF. A 311 

multi-stage preprocessing step, termed CoME (Supplementary Fig. 10), was employed to bypass the 312 

instability issues in the TCSPC electronics, leading to bias-free estimates of fluorescence lifetimes.  313 

Taken together, our work represents an important step forward towards real-time and super-314 

resolution62, 63 FLIM. In fundamental biological research, further development of flimGANE will enable 315 

monitoring of fast binding kinetics and molecular dynamics inside live cells. In medicine, flimGANE can 316 
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provide rapid identification of tumor-free margin during tumor surgery54 and investigation of disease 317 

progression in the retina53. We envision that our method will soon replace TD_MLE and TD_LSE analysis 318 

packages in some commercial FLIM systems. 319 

 

Materials and methods 320 

Structure of dataset. The dataset is composed of training data and testing data. Both training and testing 321 

data can be obtained either by a Monte Carlo (MC) simulation with the parameters or by acquiring 322 

experimental data from the ISS Alba v5 confocal microscopic system. The experimental data is the 323 

fluorescence decay histogram matrix of dimension n by n by b (n is the image size, which is either 256 or 324 

512; b is the number of histogram bin size, which is 256 in this work). 325 

Structure of flimGANE. The flimGANE consists of a generator, a discriminator, and an estimator. The 326 

generator is composed of a convolutional block, a multi-task layer associated with the rectified linear unit 327 

(ReLU) activation function, a decoding layer associated with the tanh activation function, and a residual 328 

block implicitly. The discriminator is composed of four layers of neural networks. All the layers are fully-329 

connected layers composed of 128, 64, 8, and 1 node. The first three layers are associated with the sigmoid 330 

activation function, and the last one used linear function. The estimator begins with two fully-connected 331 

neural networks with 64 nodes for incoming inputs, followed by the concatenation layer and a multi-task 332 

layer associated with ReLU activation function (for further details, see Supplementary Methods). 333 

We trained flimGANE with three-stage processes: generative model training, estimative model training, 334 

and flimGANE combination training. In generative model training, we adopt Wasserstein GAN algorithm, 335 

where the generator and the discriminator are trained with Wasserstein loss. In estimative model training, 336 

the estimator is trained with the mean squared error cost function. In flimGANE combination training, well-337 

trained generator and estimator are combined and trained with the mean squared error cost function. The 338 

RMSprop optimizer is applied to both the generator and the discriminator by setting the learning rate as 5 339 

x 10-5. The Adam optimizer is applied to the estimator by setting the learning rate as 0.001 (for further 340 

details, see Supplementary Methods).  341 

Evaluation metrics. To compare the proposed methods with other existing algorithms, we utilized several 342 

metrics, including execution time, mean squared error for pixel-wise comparison, peak signal-to-noise ratio, 343 

structural similarity index, and visual information fidelity for the quality of the FLIM image with respect 344 

to the reference FLIM image (for further details, see Supplementary Methods). 345 
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Fig. 1. flimGANE (fluorescence lifetime imaging based on Generative Adversarial Network Estimation) is a 

rapid and accurate method to generate fluorescence lifetime microscopy (FLIM) images. (a-c) Schematic of 

deep learning framework for flimGANE architecture. (a) The generator section is used to transform the acquired 

decay curve into a higher-count one. It comprises two CNN blocks, each of which are made up of one convolutional 

layer followed by an average pooling layer of stride two. The CNN section is followed by a flatten layer. Then a 

multi-task layer converts data into virtual lifetime parameters, followed by two fully-connected layers. Skip 

connection is used to pass data between layers of the same level. (b) The discriminator consists of four fully 

connected layers. (c) The estimator comprises a partially connected and a fully connected layer followed by a multi-

task layer to map the high-count decay curve into lifetime parameters. (d) Comparison of FLIM image generated 

by different methods (n = 134 pixels). (e) Squared error with the ground truth comparison of different methods. 

Under extremely low photon count condition (50 counts), only flimGANE successfully provides accurate 

estimation. Under low photon count condition (100 counts), TD_LSE and DFD_LSE failed to generate accurate 

FLIM image; while under high photon count condition (1500 counts), all the FLIM images match well with the 

ground truth. Significant differences are indicated as: *** (p < 0.001). (f) Our model successfully characterizes 

apparent lifetime of the mixture of two fluorescent dyes (stock solution: 3 μM Cy5-NHS ester and 7 μM Atto633 

in DI water) with 10 different ratios (20*20 pixels). The mean values obtained from Gaussian fitting are indicated 

as white solid circles.    
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Fig. 2. flimGANE accurately classifies the three fluorescence barcodes. (a) A contrast image shows 3-µm 

fluorescent beads with various brightness, where (b) FLIM images obtained from TD_LSE, TD_MLE, DFD_LSE, 

flimGANE reveal three lifetime species. (c) Mean lifetimes vs. brightness of 97 beads shows the intensity 

differences of the 3 barcodes and the cutoff lifetimes (2.15 and 2.95 ns) for barcode identification. (d) Barcode 

classification results by the four methods indicate that only flimGANE can correctly identify the barcodes and 

restore the correct barcode ratio (1:1:1). (e) Classification results of all 97 beads show that many barcode_2 beads 

were misidentified as barcode_1 beads by TD_LSE, TD_MLE and DFD_LSE, while the identification of 

barcode_3 is mostly reliable among these methods (except for TD_LSE, which performs poorly under the low-

light conditions). 
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Fig. 3. flimGANE provides better and more consistent visualization of Convallaria and HeLa cell samples. 

(a) Intensity contrast of Convallaria was imaged with a size of 512 x 512 pixels and an intensity ranged from 50 – 

150 counts (left; low photon counts) and from 300 – 400 counts (right; medium photon counts). (b) FLIM images 

generated by DFD_LSE and by flimGANE demonstrated that flimGANE was more robust than DFD_LSE, where 

the estimation was independent of photon counts. (c) Histogram of lifetime obtained from TD_LSE, TD_MLE, 

DFD_LSE, flimGANE, and medium-count based TD_MLE in the selected ROI showed that flimGANE showed the 

most similar distribution with the standard. (d) A zoomed-in ROI (red box; low photon counts) was selected and 

analyzed with TD_LSE, TD_MLE, DFD_LSE and flimGANE to reveal further details of the structure. (e) Intensity 

contrast of plasma membrane of live HeLa cells was imaged with a size of 512 x 512 pixels in red channel (685/40 

nm,) and an intensity ranged from 80 – 400 counts (left; medium photon counts) and from 300 – 1,000 counts 

(right; medium-high photon counts). Dash line represents the contour of live cells. (f) Intensity contrast of nuclei 

of live HeLa cells was imaged with a size of 512 x 512 pixels in blue channel (494/34 nm) and an intensity ranged 

from 50 – 300 counts (left; medium photon counts) and from 300 – 1,500 counts (right; medium-high photon 

counts). (g) 2D scatter plots of lifetime acquired at low and medium excitation power. flimGANE provided more 

consistent estimates at two different photon rates. The coefficient of determination, R2, ranged from -ꝏ to 1.00, 

was utilized to evaluate the consistency by setting the true value of medium-high-count estimations as the medium-

count ones. (h) Overlay of FLIM images in red and blue channels (left; medium photon counts; right; medium-high 

photon counts).  
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Fig. 4. Deep-learning enabled FRET measurement from low-photon-count FLIM imaging. (a) Normalized 

excitation and emission spectra of CFP and YFP. Dotted rectangles indicate transmission of emission filters and 

schematic of CFP-g-YFP FRET pair interaction with glucose. (b) Intensity contrast, FLIM images generated by 

TD_LSE, TD_MLE, DFD_LSE and flimGANE of CFP are presented before adding 2 mM glucose, and immediately 

after adding 2 mM glucose. (c) Energy transfer efficiency, E, was plotted the versus the concentration of Glucose 

that was added (error bars, standard deviation errors on the parameter estimate, n = 1507 ~ 6824). An asymptotic 

phase of sigmoidal curve fitted well with the observation from flimGANE (R2 = 0.92). 
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Fig. 5. Deep-learning enabled metabolism quantification from low-photon-count autofluorescence FLIM 

imaging with live HeLa cells. (a) Intensity contrast images of FAD and NAD(P)H, respectively. (b) FLIM images 

generated by TD_LSE, TD_MLE, DFD_LSE and flimGANE of FAD and NAD(P)H, respectively. (c) Summary of pre-

exponential factor of FAD and NAD(P)H obtained by different methods (error bars, standard deviation, n = 160k 

pixels). (d) FLIRR images showing that flimGANE-based quantification matches well with TD_MLE. (e) Intensity 

contrasts from (a) were normalized for the segmentation of mitochondria, cytoplasm, and nuclei. (f) Comparison of 

FLIRR for redox states obtained from TD_LSE, TD_MLE, DFD_LSE, and flimGANE (solid line: mitochondria only; 

dashed line: whole cell analysis except for the nucleus; n = 5 cells). 
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