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Deep learning enables robust assessment and selection of

human blastocysts after in vitro fertilization
Pegah Khosravi1,2, Ehsan Kazemi3, Qiansheng Zhan4, Jonas E. Malmsten 4, Marco Toschi4, Pantelis Zisimopoulos1,2,

Alexandros Sigaras1,2, Stuart Lavery5, Lee A. D. Cooper 6, Cristina Hickman5, Marcos Meseguer7, Zev Rosenwaks4,

Olivier Elemento1,2,8, Nikica Zaninovic4 and Iman Hajirasouliha1,2

Visual morphology assessment is routinely used for evaluating of embryo quality and selecting human blastocysts for transfer after

in vitro fertilization (IVF). However, the assessment produces different results between embryologists and as a result, the success

rate of IVF remains low. To overcome uncertainties in embryo quality, multiple embryos are often implanted resulting in undesired

multiple pregnancies and complications. Unlike in other imaging fields, human embryology and IVF have not yet leveraged artificial

intelligence (AI) for unbiased, automated embryo assessment. We postulated that an AI approach trained on thousands of embryos

can reliably predict embryo quality without human intervention. We implemented an AI approach based on deep neural networks

(DNNs) to select highest quality embryos using a large collection of human embryo time-lapse images (about 50,000 images) from a

high-volume fertility center in the United States. We developed a framework (STORK) based on Google’s Inception model. STORK

predicts blastocyst quality with an AUC of >0.98 and generalizes well to images from other clinics outside the US and outperforms

individual embryologists. Using clinical data for 2182 embryos, we created a decision tree to integrate embryo quality and patient

age to identify scenarios associated with pregnancy likelihood. Our analysis shows that the chance of pregnancy based on

individual embryos varies from 13.8% (age ≥41 and poor-quality) to 66.3% (age <37 and good-quality) depending on automated

blastocyst quality assessment and patient age. In conclusion, our AI-driven approach provides a reproducible way to assess embryo

quality and uncovers new, potentially personalized strategies to select embryos.
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INTRODUCTION

Infertility remains an unremitting reproductive issue that affects
about 186 million people worldwide.1 In the United States,
infertility affects ~8% of women of child-bearing age.2

In vitro fertilization (IVF) is one of the most common
treatments for infertility. IVF involves ovarian stimulation
followed by the retrieval of multiple oocytes, fertilization, and
embryo culture for 1–6 days in controlled environmental
conditions. Although IVF and embryo-transfer technologies
have improved considerably over the past 30 years, the efficacy
of IVF remains relatively low.3

Conventional embryo evaluation involves manual grading of
human embryos at the blastocyst stage (embryo on day 5) based
on morphological analysis by skilled embryologists.4 While this
selection method is used universally in clinical practice, the
evaluation of an embryo based on a static image represents a
crude, subjective evaluation of embryo quality, which is incom-
plete as well as time-consuming.5–7

Moreover, there continues to be a tendency for inconsistent
blastocyst classification, often associated with different grading
systems among medical centers. Indeed, attempts to establish a

universal grading and selection system have thus far failed to
catch on.8

Improving the ability to select the single best embryo with the
highest implantation potential would increase pregnancy rates as
well as minimize the chance of multiple pregnancies due to the
transfer of multiple embryos.9 Time-lapse imaging (TLI)10 is an
emerging technology that allows continuous observation of
embryo development without removing embryos from controlled
and stable incubator conditions.11 However, even though TLI
represents a step toward more objective embryo evaluation, the
inter- and intra-evaluator variation among embryologists using
conventional morphological grading and/or TLI annotations is well
documented.12–14

There are various efficient machine learning methods, which
due to their relatively better performances in various fields of
research are utilized for embryo classification. Two recent
studies have attempted to use some of these approaches for
embryo quality analysis, with varying degrees of success15,16 on
a limited bovine and mammalian oocytes data, using AI- and
random forest (RF)-based classification, respectively. Their
results showed 76.4% (test set= 73 embryos) and 75% (test
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set= 56 embryos) accuracy for discretization of bovine embryo

grades and mammalian oocyte grades, respectively. Further-

more, a few previously published approaches have focused on

classifying human blastocyst quality based on specific features,

such as the inner cell mass (ICM) area, trophectoderm (TE) area,

zona pellucida (ZP) thickness, and blastocyst area and radius

separately.9,17 In particular, Filho et al.17 presented a semi-

automatic grading system of human embryos. The authors

showed that classifiers can have different accuracies for each

embryo component (blastocyst extension, ICM, and TE). Their

results indicated various accuracy ranges from 67 to 92% for the

embryo extension, from 67 to 82% for the ICM, and from 53 to

92% for TE detection; 92% was the highest accuracy achieved

across a 73-embryo test set.17 Although these methods achieved

reasonable accuracy in assessing human embryo quality, they

require advanced embryological expertize and several prepro-

cessing steps, and do not scale to large datasets.
Deep learning algorithms, in particular convolutional neural

networks (CNNs), have recently been used to address a number
of medical-imaging problems, such as detection of diabetic
retinopathy,18 skin lesions,19 and diagnosing disease.20 They
have become the technique of choice in computer vision and

they are the most successful type of models for image analysis.
Unlike regular neural networks, CNNs contain neurons arranged
in three dimensions (i.e., width, height, depth). Recently, deep
architectures of CNNs such as Inception21 and ResNet22 have

dramatically increased the progress rate of deep learning
methods in image classification.23 In this paper, we sought to
use deep learning to accurately predict the quality of human

blastocysts and help select the best single embryo for transfer
(Fig. 1).

RESULTS

Deep neural network achieves a highly accurate classification of
embryo images

We used time-lapse images from 10,148 human embryos,
obtained from the Center for Reproductive Medicine at Weill
Cornell Medicine to train and validate our DNN. The 10,148
embryos (WCM-NY dataset) were classified into three major
quality groups, good-quality (n= 1345 embryos), fair-quality
(n= 4062 embryos), and poor-quality (n= 4741 embryos) (Fig.
2a, b) based on their assigned grades (see Methods). We obtained
time-lapse images from each of the embryos, each consisting of
several time points, seven focal depths per time point (Fig. 2a, b)
and 500 × 500 pixels black and white images per focal depth (+45,
+30, +15, 0, −15, −30, and −45). Upon preprocessing and
removal of images with readability issues (e.g., those with a dark
background) and random selection of a balanced set of images
(see Methods), we were left with a total of 12,001 images from up
to seven focal depths: 6000 images in 877 good-quality embryos,
and 6001 images in 887 poor-quality embryos.
We then trained an Inception-V1 DNN–based algorithm using the

two quality groups at both ends of the spectrum, i.e., good-quality
and poor-quality. The Inception-V1 architecture is a transfer learning
algorithm, where we initially performed fine-tuning of the
parameters for all of the layers. We used 50,000 steps for training
the DNN and subsequently evaluated the performance of our DNN
(called STORK) using a randomly selected independent test set with
964 good-quality images from 141 embryos and 966 poor-quality
images from 142 embryos. Our results showed that the trained
algorithm was able to identify good-quality and poor-quality images
with 96.94% accuracy (1871 correct predictions out of 1930 images).
To measure the accuracy of STORK for individual embryos, we

used a simple voting system across multiple image focal depths. If

Fig. 1 The STORK flowchart: This flowchart illustrates the design and assessment of STORK. First, Human embryo images are provided from
the embryology lab and labeled by embryologists as good-quality or poor-quality based on their pregnancy likelihood. Then, the labels and
clinical information from the extracted images are integrated, and the Inception-V1 algorithm is trained for good-quality and poor-quality
classes. Furthermore, STORK is evaluated by a blind test set to assess its performance in predicting embryo quality. Finally, the CHAID decision
tree is used to investigate the interaction between patient age and embryo quality
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the majority of images from the same embryo were predicted to
be of good-quality, then the final quality of the embryo was
considered good. For a small number of cases in which
the number of good-quality and poor-quality images was equal
(e.g., three good-quality and three poor-quality for six focal
depths), we used STORK’s output probability scores to break the
tie. At the embryo level, we obtained 97.53% accuracy with 276
correct predictions out of 283 embryos.
At the image level, we observed an average area under the

curve (AUC) of 0.987 (Fig. 3a) on the blind test set. We also found
that training an Inception-V1 model without parameter fine-
tuning did not affect performance (accuracy; Fig. 3b). This
observation is in agreement with previous studies using these
deep learning techniques.20,24,25

We also found that STORK classified the fair-quality embryo
(intermediate group, Figs. 2 and 4) images (4480 images from 640
embryos) as 82% good-quality (526 embryos) and 18% poor-
quality (114 embryos), respectively. As Inception-V1 was trained
for good-quality and poor-quality classes with different pregnancy

probabilities (an ~58% and 35% chance of pregnancy for good-
quality and poor-quality classes, respectively), we wondered if
STORK nonetheless produced relevant predictions (association

between embryo quality and pregnancy rate) within the fair-
quality class. A closer look showed that embryos with fair-quality
images that were classified as poor-quality by STORK had a lower

likelihood of positive live birth (50.9%) as compared to those
classified as good-quality (61.4% positive live birth; p < 0.05 by the
two-tailed Fisher’s test). Note that STORK alone cannot estimate
the pregnancy rate. However, it can detect the association

between embryo quality and pregnancy rate based on morpho-
logical classification.
In addition, we found that fair-quality embryos predicted to be

good-quality by STORK came from younger patients (33.9 years
old on average) than those predicted to be poor-quality (34.25
years old on average). Interestingly, these numbers are similar to

the age of patients with good-quality and poor-quality embryos:
33.86 and 34.72 years old on average, respectively. This suggests

Fig. 2 Embryologists’ evaluation: a This figure shows three examples of Veeck and Zaninovich grades and their corresponding quality labels
across seven focal depths. b Embryologists evaluate embryo quality using an internal scoring system and subsequently classify them into
three major groups (good-quality, fair-quality, poor-quality) based on the pregnancy rate
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that STORK finds sufficient structure within embryos classified as
fair-quality to make clinically relevant predictions (Fig. 4).

STORK is robust when applied to datasets from other clinics

To evaluate STORK’s robustness, we tested its performance by
using additional datasets of embryo images obtained from two
other IVF centers, Universidad de Valencia and IRDB-IC, comprising
127 (74 good-quality, 53 poor-quality) and 87 (61 good-quality, 26
poor-quality) embryos, respectively (Supplementary Table 2). Our
experimental results (See Fig. 3a) demonstrate that although the
scoring systems used for these centers are different from the
system used to train our model, STORK can successfully identify
and register score variations and robustly discriminate between
them, with an AUC of 0.90 and 0.76 for the IRDB-IC and
Universidad de Valencia and (Fig. 3a), respectively. Lower
concordance of the classification results (by STORK) for the
Universidad de Valencia dataset could be related to different
grading systems used by that clinic. The images of Universidad de
Valencia dataset are labeled using Asebir26 while IRDB-IC is labeled
using the Gardner system.27 The Veeck and Zaninovic grading
system is a slightly modified version of the Gardner system
(Supplementary Table 4).

STORK outperforms individual embryologists for embryo selection

It is well known that embryo scoring frequently varies among
embryologists,28 mainly due to the subjectivity of the scoring
process and different interpretations of embryo quality. We,
therefore, sought to create a small but robust benchmark embryo
dataset that would represent the consensus of several embryol-
ogists. We asked five embryologists from three different clinics to
provide scores for each of 394 embryos generated in different labs
(Supplementary Table 6). Note that these images were not used in
the training phase of our algorithm. The embryo images were
scored using the Gardner scoring system27 and then mapped onto
our simplified three groups (good-quality, fair-quality, and poor-
quality; see Supplementary Table 4 for the mapping method).
As expected, we found a low level of agreement among the

embryologists (Supplementary Fig. 1b), with only 89 embryos out
of the 394 classified as the same quality by all five embryologists
(Supplementary Fig. 1a). Therefore, to create a larger and more
accurate gold standard dataset, we used an embryologist majority
voting procedure (i.e., the quality of each image was determined
by the score given by at least three out of the five embryologists)
to classify 239 images (32 good-quality and 207 poor-quality).

When we applied STORK to these 239 images, we found that it
predicted the embryologist majority vote with precision of 95.7%
(Cohen’s kappa= 0.63). In comparison, STORK agreed with each
individual embryologist as follows: 0.69, 0.54, 0.25, 0.62, and 0.54
Cohen’s kappa score. These results indicate that STORK may
outperform individual embryologists when assessing embryo
image quality (Fig. 5).

A decision tree predicts likelihood of successful pregnancy based
on embryo quality and clinical parameters

It is known that other factors, besides embryo quality, such as
patient age, the patient’s genetic background, clinical diagnosis,
and treatment-related characteristics, can affect pregnancy out-
come.29,30 As embryo quality is one of the most important of these
factors, the ultimate aim of any embryo assessment approach is to
identify embryos that have the highest implantation potential
resulting in live birth.27,31,32 However, embryo quality alone is not
enough to accurately determine the pregnancy probability (see
Supplementary Method 1, Supplementary Method 2 and Supple-
mentary Fig. 2).
Therefore, in this section we present an alternative method for

predicting successful pregnancy probability based on a state-of-
the-art decision tree method that integrates clinical information
and embryo quality. We wondered if we could assess the
successful pregnancy rate by using a combination of embryo
quality and patient age, as age is one of the most important
clinical variables. For this purpose, we used a hierarchical decision
tree method known as chi-squared automatic interaction detec-
tion (CHAID) algorithm.33

We designed a CHAID34,35 decision tree using 2182 embryos
from the WCM-NY database (Supplementary Table 6) with
available clinical information and pregnancy outcome results
(Fig. 6). We then investigated the interaction between patient age
(consisting of seven classes: ≤30, 31–32, 33–34, 35–36, 37–38,
39–40, and ≥41) (Supplementary Fig. 3a) and embryo quality
(consisting of two classes: good-quality and poor-quality). The fully
de-identified data consists of a very diverse population of patients
(Supplementary Fig. 3b). The effect on live birth outcome is
demonstrated in (Supplementary Fig. 3c). The CHAID algorithm
can project interactions between variables and non-linear effects,
which are generally missed by traditional statistical techniques.
CHAID builds a tree to determine how variables can explain an
outcome in a statistically meaningful way.34,35 CHAID uses chi-
squared statistics for identification of optimal multi-way splits, and

Fig. 3 Deep neural network results: a Inception-V1 (fine-tuning the parameters for all layers) results for three datasets. b Inception-V1 via two
different training methods (fine-tuning the parameters for all layers and training from scratch) in good-quality and poor-quality embryo
quality discrimination dataset. WCM-NY: data from the Center for Reproductive Medicine and Infertility at Weill Cornell Medicine of New York;
IRDB-IC: data from the Institute of Reproduction and Developmental Biology of Imperial College; Universidad de Valencia: data from the
Institute Valenciano de Infertilidad, Universidad de Valencia
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identifies a set of characteristics (e.g., patient age and embryo
quality) that best differentiates individuals based on a categorical
outcome (here, live birth) and creates exhaustive and mutually
exclusive subgroups of individuals. It chooses the best partition on
the basis of statistical significance and uses Bonferroni-adjusted p-
values to determine significance with a predetermined minimum
size of end nodes. We used a 1% Bonferroni-adjusted p-value, a
maximum depth of the tree (n= 5), and a minimum size of end
nodes (n= 20) as the stopping criteria. The application of a tree-
based algorithm on the embryo data would help to more precisely
define the effect of patient age and embryo quality (good-quality
or poor-quality) on live birth outcome, and to better understand
any interactions between these two clinical variables (patient age
and embryo quality).
Note that while several other classification algorithms could

have been employed for the prediction, CHAID enabled a user-
friendly visualization of the resulting decision tree.36,37

As Fig. 6 shows, patients were automatically classified into three
age groups: (i) ≤36, (ii) 37 and 38, and (iii) ≥39 years old due to age
data distribution. For each age group, embryos were classified in
good- and poor-quality groups (Supplementary Fig. 3c).

The results confirm the association between probability of
successful pregnancy and patient age. The live birth probability for
patients with good-quality embryos is significantly (1%
Bonferroni-adjusted p-value) higher than that for patients with
poor-quality embryos across different ages. Figure 6 indicates that
patients ≤36 years old have a higher successful pregnancy rate
compared to patients in the other two age groups. The CHAID
decision tree analysis also indicates that the chance of favorable
outcome using IVF varies from 13.8% (e.g., when the embryo is of
poor-quality as assessed by STORK and the patient is ≥41 years
old) to 66.3% (e.g., when the embryo is of good-quality and the
patient is <37 years old) (Fig. 6).

Probability analysis optimizes embryo selection and maximizes
likelihood of single pregnancy

It is a common practice in IVF clinics to select and transfer more
than one embryo in order to increase the chance of a successful
pregnancy. As the success rate of individual embryos are typically
<50% and transferring two or more embryos can increase the
success probability. However, when the number of transferred

Fair-Negative
Poor = 0.9999

Good= 0.0001

a b

c d

Poor = 1.0000

Good= 0.0000

Poor = 0.0008 

Good= 0.9992

Poor = 0.0000

Good= 1.0000
Fair-Negative Fair-Positive

Fair-Positive

Fig. 4 STORK vs. embryologists classification: STORK classifies the fair-quality images into existing good-quality and poor-quality classes. For
example, panels “a” and “b” are labeled 3A-B (fair-quality) according to the Veeck and Zaninovic grading system, while STORK classified them
as poor-quality and good-quality, respectively. Also, panels “c” and “d” are both labeled 3BB (fair-quality). However, the algorithm correctly
classified panel “c” as poor-quality and panel “d” as good-quality. As the figure shows, the outcome in the embryos in “b” and “d” is positive
live birth, whereas it is negative live birth in “a” and “c”
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embryos increases, the chance of multiple pregnancies (twins or
even triplets) and associated complications also increase. For
example, let’s simply assume we transfer three embryos each with
an independent success probability of 1/4. The chance of a
pregnancy can be, thus, calculated as p= 1−(3/4)3 ≈ 0.58. How-
ever, in this scenario, the chance of twin and triplets pregnancy
would be 3 × (1/4)2(3/4) ≈ 0.14 and (1/4)3 ≈ 0.02, respectively. The
chance of a single pregnancy would be 3 × (1/4)(3/4)2 ≈ 0.42.
Given a list of potential embryos for transfer and their predicted

success rate using our decision tree analysis, we can calculate the
probability of no pregnancy, single pregnancy, and multiple
pregnancies, for any selection of embryos from the list. In general,
if k embryos are transferred with indicated success probabilities of
p1, …, pk (where pi shows the success probability of embryo i, for
any index i between 1 and k) then the chance of a single
pregnancy can be calculated as P= ∑i pi∏j≠i(1−pj). Given the
success rate of any individual embryo transfer, we showed how to
calculate the probability of a single successful pregnancy when k
embryos (k > 1) are transferred. This will help embryologists to
select those embryos (for example two or three), which maximize
the chance of a single pregnancy when transferred together.

DISCUSSION

Studies on human embryo evaluation are still very limited and
mostly based on morphological features. They often involve low
numbers of embryos from single centers, and they lack validations
in independent cohorts. Furthermore, publications to date have
relied on single static images. However, time-lapse images have
the advantage of being consistent in terms of size, lighting,
contrast, quality, and in terms of capturing the timing of embryo
development, which is particularly important when quantifying
blastocyst expansion. Currently, no robust and fully automatic
method exists to analyze human embryo data by TLI.
Recently, there have been several studies utilizing classical

machine learning approaches, such as support vector machine
(SVM) and RF, and deep learning methods, such as CNN-
basic,15,16,38 for outcome prediction or grade classification. To
date, several AI methods have been used to assess blastocysts.39

Image segmentation and advanced image analysis techniques
using neural networks with textured descriptors, level set, phase
congruency, and fitting of ellipse methods have been demon-
strated in mouse,40 bovine,15 and human blastocysts.4,17

STORK

Embryologist-V

Embryologist-IV

Majority vote

Embryologist-III

Embryologist-II

Embryologist-I

Good

Poor

Fair

Uncertain

Fig. 5 Assessment comparison of STORK with five embryologists: This circular heatmap demonstrates the prediction of STORK and five
embryologists in the labeling of the same images from 394 embryos. STORK outputs good and poor grades. The heatmap compares STORK’s
result with the majority vote results from all of the embryologists for 239 embryos in which the majority (i.e., at least three out of five
embryologists) gives good or poor. The embryologists assess the embryos quality using Gardner grading system. Then, they convert the
grades to the three different quality scores as good-quality (orange), fair-quality (gray), and poor-quality (navy) based on the pregnancy rate.
Also, for a few embryos, the embryologist uses “?” signs (e.g. 3A?), which refer to the low certainty (red) as they are not sure about the exact
label. The heatmap illustrates the result of STORK, Majority vote, Embryologist-V, Embryologist-IV, Embryologist-III, Embryologist-II, and
Embryologist-I from the outer circle to the inner ones. Orange: embryos with good-quality; navy: embryos with poor-quality; gray: embryos
with fair-quality; red: embryos that are not labeled due to uncertainty
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More recently, Segal et al.41 have developed a random forest
classifier-based tool using 2744 embryos to predict which patients
should have extended culture with an accuracy of 76.4%. Also,
Matsumoto et al.42 used time-lapse monitoring of 118 human
embryos to determine good-quality embryos using deep learning-
based method, which is based on the Keras neural network library.
They achieved 70 and 80% accuracy for the validation dataset
through two different cell stages that are significantly lower than
the performance obtained from our framework. Besides, the
advantage of our method is that instead of only focusing on the
predetermined, segmented features that embryologists are
trained to analyze, the entire image of the embryo is assessed,
allowing for quantification of all the available data. Convolution,
therefore, allows the AI to identify patterns in morphological
features that we do not know how to assess.
We have demonstrated that deep learning approaches can

provide accurate quality assessments in various clinical conditions.
The STORK framework presented here provides a method that can
be easily implemented for a wide range of applications, including
embryo grading. Our method yields a cutting-edge sensitivity
when performing the challenging task of assessing embryo quality
using multi-focal embryo images. Notably, our STORK framework
is fully automated and does not require any manual augmenta-
tions or preprocessing on the input images. In fact, it provides
embryologists a straightforward platform to use without requiring
sophisticated computational knowledge. Furthermore, we
designed a decision tree based on the CHAID algorithm to
investigate the interaction between embryo quality and patient
characteristics (i.e., patient age) in a diverse population, and their
effect on the likelihood of live birth.
Finally, although STORK can run on traditional computer

microprocessors (CPUs), abundant system memory and graphics
processing units (GPUs) make the training process faster (at least
one order of magnitude) as training requires loading a significant
number of medical images for training and validation.
Nevertheless, our method still has limitations. For example, we

explored the possibility of directly predicting the likelihood of
pregnancy based on only embryo images that are labeled as
“positive live birth” or “negative live birth” (Supplementary
Method 2). The result showed that the trained algorithm cannot

identify positive live birth and negative live birth successfully
using embryo morphology alone.

METHODS

Images from human blastocysts

This study included 10,148 embryos from the Center for Reproductive
Medicine at Weill Cornell Medicine (2012/05–2017/12). We referred to this
dataset as WCM-NY throughout this manuscript. This study used
retrospective and fully de-identified data. The study was performed in
accordance with relevant guidelines and regulations and was approved by
the Institutional Review Board at Weill Cornell Medicine (IRB number:
1401014735). The images were captured using the EmbryoScope® time-
lapse system (Vitrolife, Sweden) with a built-in microscope. Images were
captured using single red LED (635 nm) every 20min., with seven focal
depths (+45, +30, +15, 0, −15, −30, and −45) of the embryo taken each
time, representing a total of 50,392 images (500 × 500 pixels) captured
precisely 110 h post-insemination (hpi) (Fig. 2a). The standardization of
images by the EmbryoScope software was consistent, and the images of
the blastocysts were labeled using the Veeck and Zaninovic grading
system43 (Supplementary Table 1). For validation, we also used two
external datasets from the Universidad de Valencia, Valencia, Spain, and
the Institute of Reproduction and Developmental Biology of Imperial
College, London, UK (IRDB-IC) (Supplementary Table 2).

Dataset preparation and the comprised images

This study presents a framework to classify different embryo images based
on blastocyst grading and map those grades to good- and poor-quality.
In machine learning, especially for classification, a high-quality training

dataset is important for training the classification model. Therefore, for the
first step of selecting images, we manually eliminated the images with dark
background and uninformative images (Supplementary Fig. 4) from the
training set. Moreover, the number of images with good-quality usually is
much less than that of poor-quality within the training sample. To avoid
unbalanced classes for training the algorithm, we randomly deleted
images from the class, which has sufficient observations (poor-quality) so
that the comparative ratio of two classes is equal in our data.
For the next step, the embryologists labeled the embryo images with

quality labels (good-quality, fair-quality, and poor-quality) to map certain
quantitative scores from the grading system of Veeck and Zaninovic (e.g.,
3AA, 3BB, 1BB) to three quality grades based on the pregnancy outcome
obtained from statistical analysis of clinical data. In this regard, any grade
that contained B- or C and an extension rate equal to or less than three
was considered part of the poor-quality group with <35% pregnancy
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Fig. 6 Interactions between age and embryo quality: The decision tree shows the interactions between IVF patient age and embryo quality
using CHAID
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chance. In addition, any score with two A or A- grades, or one A with B,
with an extension of 3 or greater could be labeled as good-quality with
>58% pregnancy chance. However, the experts debated about some
scores (e.g., 3BB, 3BA-), putting them in a separate category (fair-quality) as
their pregnancy likelihood was about 50%. Then, fair-quality images were
removed manually, and we were left with a total of 12,001 images for
good- and poor-quality images to train the Inception-V1 algorithm using
two quality groups at both ends of the spectrum. The complete list of
scores and their quality map for good- and poor-quality are shown in
Supplementary Table 5.
Finally, we divided the images into training, validation, and test groups.

We allocated 70% of the images to the training group and the remaining
30% to the validation and test groups (Supplementary Table 3). The
training, validation, and test sets (Supplementary Table 6) did not overlap.

Algorithm architectures and training methods

We employed a deep neural network (DNN) for embryo image analysis
based on Google’s Inception-V121 architecture, which offers an effective
run-time and computational cost.44,45

Convolutional neural networks (CNNs) comprise several convolutions to
pass the result to the next layer, pooling layers to combine the outputs of
neurons into a single neuron, and fully connected layers, which represents
the outputs. Inception-V1 architecture (popularly known as GoogLeNet)
utilizes nine inception modules made of 22 layers with parameters and 27,
including pooling layers.21 The preliminary three convolution nodes are
combined with two max pooling operations and followed by nine
inception modules that are stacked linearly. The architecture ends with a
fully connected layer and then a softmax output layer to map the non-
normalized output to a probability distribution over predicted output
classes.21

To train this architecture, we used transfer learning, which involves
training the whole network. We initialized our network parameters to the
best parameter set that was achieved on ImageNet database. We then
fine-tuned the parameters of all of the convolution filters of all outer layers
of the network on our data (WCM-NY images) via back propagation. The
training process was run for 50,000 iterations and implemented using the
TensorFlow software library.46

Evaluation of method and implementation details

To implement our framework called STORK, we used Tensorflow version
1.4.046 and the TF-Slim Python library for defining, training, and evaluating
models in TensorFlow. Training of our DNN method was performed on a
server running the SMP Linux operating system. This server is powered by
four NVIDIA GeForce GTX 1080 GPUS with 8 GB of memory for each GPU
and 12 1.7-GHz Intel Xeon CPUs.
To evaluate the performance of our method, we used an accuracy

measure, which is the fraction of correctly identified images.20 To assess
the performance of different algorithms, precision-recall curves (PRCs)
were used. Additionally, receiver operating characteristics (ROCs) were
estimated. The ROC curve is depicted by plotting the true positive rate
(TPR) versus the false positive rate (FPR) at various threshold settings. The
accuracy is measured by the area under the ROC curve (AUC).47,48
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