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Deep learning encodes robust discriminative
neuroimaging representations to outperform
standard machine learning
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Recent critical commentaries unfavorably compare deep learning (DL) with standard machine

learning (SML) approaches for brain imaging data analysis. However, their conclusions are

often based on pre-engineered features depriving DL of its main advantage — representation

learning. We conduct a large-scale systematic comparison profiled in multiple classification

and regression tasks on structural MRI images and show the importance of representation

learning for DL. Results show that if trained following prevalent DL practices, DL methods

have the potential to scale particularly well and substantially improve compared to SML

methods, while also presenting a lower asymptotic complexity in relative computational time,

despite being more complex. We also demonstrate that DL embeddings span comprehen-

sible task-specific projection spectra and that DL consistently localizes task-discriminative

brain biomarkers. Our findings highlight the presence of nonlinearities in neuroimaging data

that DL can exploit to generate superior task-discriminative representations for characterizing

the human brain.
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T
he application of machine learning for investigation of
neurological and psychiatric disorders has grown greatly in
the last two decades1,2. Standard machine learning (SML)

approaches predict health-related outcomes by manipulating
specific linear or nonlinear prediction functions using rules of
inference. The SML methods do not learn representations but
instead determine decision boundaries in the native, kernel-
transformed, or feature-engineered input spaces. This is, in fact,
one of the most significant limitations of SML methods in
modeling brain data. An indispensable prerequisite to boosting
the performance of SML approaches is reducing the dimension-
ality of the input space, typically enabled through hand-crafted or
expert-designed feature selection (i.e., identification of a subset of
variables that capture most of the information in the data) and/or
feature extraction (i.e., projection of the features onto a lower-
dimensional space by some linear or nonlinear data transfor-
mation) techniques3,4. The persistent challenge imposed by this
preliminary step paved the way for the introduction of deep
learning (DL) approaches. DL approaches, instead, can exploit
the wealth of information available from minimally preprocessed
input images to characterize the subtle patterns inherent in the
input data as an integral part of the training process. The training
phase of DL approaches often involve the automatic and adaptive
discovery of discriminative data representations at multiple levels
of hierarchy in an end-to-end (input to output) learning proce-
dure. Application of this radically different approach in an end-
to-end manner can also provision backwards mapping to the
input image space through methodical interpretations, thus
possibly allowing us to make inferences about brain mechanisms,
for example, delineating the features in the input space that are
most influential in predicting an attempted task. On the contrary,
relevant spatial relationships may be lost at the dimensionality
reduction stage, arguably, required for SML methods to work. DL
approaches have been successful in learning more discriminative
data encodings (i.e., representations) compared with their
manually engineered counterparts and several automated
dimensionality reduction techniques in the field of computer
vision5,6.

DL approaches have already shown great promise in diverse
applications to medical imaging data7–10. Several structural and
functional brain imaging modalities are now being actively used to
study mental health non-invasively. Although SML approaches
have contributed to these efforts making significant advances11–16,
the relatively newer whole-brain DL approaches are just beginning
to record successes, particularly in the image preprocessing, diag-
nostic classification, regression, disease characterization, and disease
prediction domains17–24. Concurrently, similar to preceding influ-
ential technologies, expectations of the future performance of DL
frameworks sometimes grow out of proportion to reality. For
example, their viability to learn subtle properties of complex mul-
tiscale brain imaging data and potential to scale may be hyped25.
Perhaps as a reaction to this inflation, recent critical commentaries
unfavorably compare DL with SML approaches26–28. Yet, these
commentaries are limited in a few fundamental ways, and their
conclusions must be considered at specific merits as reviewed next.

First, although there is a wealth of information to be learned
from manually designed or automatically pre-engineered struc-
tural or functional brain imaging features, these do not necessa-
rily comprise the most idealistic choices for training and
exhaustively benchmarking DL methods. This is attributable to
the fact that the use of pre-engineered features deprives DL of its
main advantage: representation learning from raw or minimally
preprocessed input space. Among these critical studies, Schulz
et al.28 compare SML and DL methods on several tasks including
a combined age and gender task and separate age regression and
gender classification tasks. Their study28 focuses on using several

pre-engineered features and 2D representation learning on partial
data (i.e., central brain slices), whereas additionally testing 3D
representation learning on whole-brain gray matter voxels,
reporting comparable performance for SML and DL for all ana-
lyses. Similar to the use of pre-engineered features, learning from
central 2D slices conveys less information than would learning
from all 2D slices, or perhaps whole-brain 3D images. Further-
more, for 3D whole-brain learning, this study28 attempts separate
age regression and gender classification tasks on whole-brain 3D
images by replicating the DL model and training pipeline in Peng
et al.29. Despite using the same DL model, training pipeline, and
data set, these two studies outline contradictory results for the age
regression task on whole-brain images; with Peng et al. reporting
a significantly higher performance for DL (as compared to SML),
whereas Schulz et al. report no difference in performance in this
task, thus demanding further confirmation for reproducible
research. Incidentally, we explain this discrepancy by additionally
extensively testing the Peng et al. model and pipeline, and
demonstrating that this stark difference can be explained by a
mere miscalculation (coding bug) in Schulz et al. In addition, He
et al.26 and Thomas et al.27 both report no significant improve-
ment in performance with DL from their expansive experi-
mentation on static functional connectivity and several temporal
rest-fMRI features, respectively. The voxel-wise or network-level
fMRI features are highly informative. Nevertheless, for an
exhaustive comparison, it is essential to develop and test DL
models that can learn directly from 4D data, allowing learning
representations in the input fMRI data space in an end-to-end
manner. Hence, the experiments conducted in these two fMRI
studies are limited to training DL models on pre-engineered
features similar to the majority of experiments in Schulz et al.,
thus not allowing exhaustive benchmarking; however, the claims
made in these two studies are rather balanced as their conclusions
are presented within the context of the experiments performed.

In this work, we correct for the above-mentioned deficiencies
of prior benchmarks in a principled, comparative analysis of
structural brain imaging data and show how vital the repre-
sentation learning part of DL is for its performance. To this end,
we systematically profile the classification performance and
empirical time complexity of several SML and DL methods on a
10-way age and gender-based classification task28 using a large
data set of structural magnetic resonance imaging (sMRI) images.
We conduct this comparison for a range of training sample sizes
to compare and contrast the asymptotic behavior in performance
improvement and relative time complexity of the two approaches.
In addition, we probe the consistency in the task-discriminative
power of the DL embeddings by evaluating the performance of
SML methods trained on these features. We also validate the
observed performance trends on additional tasks, including a
gender classification task, an age regression task and a mini-
mental state examination (MMSE) regression task. Furthermore,
to confirm the reproducibility of our results, we conduct an
extensive comparison of our DL models and training pipeline
with that proposed in recent research29. Finally, we conduct post
hoc analyses to assess the degree of consistency and robustness of
the validated task-specific DL models and probe the rationality of
task-specific brain regions via model introspection.

The choices for evaluating our key objectives with the tasks
undertaken in this work were driven by the high scientific utility
of learning age-related and gender-related correlates of MRI and
the need to evaluate performance on an independent cognitive
task in a patient population. In particular, age prediction is a
popular proxy benchmark for determining other scientifically
exciting questions such as cognitive function, mental disorders,
etc.30–38. Similarly, gender may also significantly impact cognitive
function, including memory, emotion, perception, and more, and
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is widely studied in this regard39–43. Moreover, methodological
comparison of models based on these discriminative variables
makes much more sense and brings much more value when done
using models with a high discriminative performance rather than
on models that are trained to random performance. Finally,
although our study results show the best performing approach for
fitting a discriminative classifier or regressor for the attempted
sample tasks and brain imaging modality, a similar analysis could
be extended to other inference tasks and modalities. Next, we
present the findings of our exploratory work.

Results
DL capacitates more discriminative features. We systematically
evaluated how the performance (as measured by accuracy and
run time) of the SML and DL models scaled as a function of
training sample size in a 10 class age and gender classification
task (i.e., five age groups from each gender) evaluated in a stan-
dard repeated (n= 20), stratified cross-validation (CV) procedure
as outlined in Fig. 1. We used gray matter volume maps extracted
from the sMRI data of 12,314 unaffected (i.e., with no diagnosed
or self-reported mental illness) subjects for this assessment. To
establish a performance baseline for the SML methods, we
included three linear SML models—linear discriminant analysis
(LDA), logistic regression (LR) and support vector machine with
a linear kernel (SVML) and three nonlinear SML models—sup-
port vector machines with a polynomial (SVMP), radial-basis
function (SVMR), and sigmoidal (SVMS) kernels (similar to
Schulz et al.28). In addition, we tested two nonlinear DL models—
both 3D CNN variants of the AlexNet architecture44 that differed
primarily in the network depth (depthDL2 > depthDL1) and the
number of channels in the convolutional layers. Given that fea-
ture extraction is an indispensable measure of boosting perfor-
mance of linear and kernel-based SML methods, we reduced the
gray matter maps with three dimensionality reduction methods:
Gaussian Random Projection (GRP), Recursive Feature Elim-
ination (RFE) and Univariate Feature Selection (UFS) as detailed
in the methods section. We trained the DL architectures directly
on the unreduced input space of 3D gray matter maps to fully
utilize their representational power.

We found that the two DL models significantly outperformed
the SML models evaluated on each of the reduced feature spaces
(Fig. 2a). For the highest sample size (n= 10,000), the DL models
reported 10 class classification accuracies of 58.19% (DL1) and
58.22% (DL2), respectively (note, this task had a chance
probability of 10%). In contrast, the SVMS and LDA models
reported the highest accuracies for the GRP (SVMS: 51.15%), RFE
(LDA: 45.77%), and UFS (LDA: 44.07%) features. Indeed, the
GRP method resulted in the most discriminative features for all
SML models, followed by the RFE method. Although both DL
models consistently reported significant improvement (p=
1.03 × 10−14 for a two-tailed paired sample t test comparing
DL1 and best performing SML model) with an increase in
training sample size, this observation was not necessarily true for
the SML models. For example, the performance of LDA on GRP
features dropped initially, possibly owing to a smaller training
sample size than the validation and test data sizes. In addition, as
expected for sparse models, no significant improvement was
observed in the performance of the SVMP for the RFE features,
and SVML and SVMS for UFS features with an increase in
training sample size from n= 5000 to n= 10,000. Interestingly,
our SML baseline is also considerably higher than the SML
baseline in Schulz et al. at the same training sample sizes. This
observation could be owing to (1) differences in the parameter for
the maximum number of iterations used by the SML solvers for
convergence (we allowed 10,000 iterations for convergence as

compared to 100 or 1000 in the comparative work, thus
increasing the probability of convergence in our runs), (2)
preprocessing differences (for example, smoothing kernel size,
gray matter masks and input data—namely raw versus modulated
gray matter probability images), and (3) validation/test data sizes
(for example, 1157 in our study versus 650 in the comparative
work, thus giving our SML models an additional advantage of
generalizing better) but these differences remain to be confirmed.
Despite this improvement in the SML baseline, our results show
that DL significantly outperforms SML on this task.

Interestingly, the performance improvement for DL models
showed asymptotic behavior similar to SML methods, though with
significantly higher performance. That is, for the DL methods as
well, the performance gains are slowing down, although the models
do continue to improve. Whether the slowdown is impactful and
where is the point of diminishing returns occurs is application
dependent. Our observation demands a further confirmation as
there are many ways to potentially score further gains in
performance by testing even deeper models, finetuning the existing
DL models, and exploring other DL approaches. Furthermore, if
the DL models are indeed extracting superior (i.e., more
discriminative) features consistently, the lower-dimensional encod-
ings generated by them should result in significantly improved
performance if used as input features of the SML models as
compared with the three tested dimensionality reduction methods.
To ascertain this, we conducted a post hoc analysis where we
evaluated the performance of the SML models on the trained
encodings from the DL1 model (i.e., the output of the first fully
connected layer in DL1). As expected, we observed a significant
increase in the performance of the SML methods applied to test
data, providing evidence that the SML methods could perform
equally well if using the DL encoded feature spaces (Fig. 2a).

We performed additional comparative analyses on a few
classification and regression tasks to further validate the
comparative performance of SML and DL methods in learning
from the brain imaging data. For the gender classification task
(Fig. 2b), the DL1 classification model reported a mean
classification accuracy of 98.34% for the largest training sample
size (n= 10,000), a significant improvement (p= 4.69 × 10−7;
two-tailed paired sample t test) over the best performing SML
classification method (i.e., the LDA method for GRP features
that reported an accuracy of 97.45%). For the two regression
tasks, we developed and tested a deep vanilla regression
framework (DL3) based on the DL1 classification model to
predict age and MMSE scores. In these regression tasks, we
compared the performance of our DL regression model with
that of SML regression methods including elastic net (EN),
kernel ridge regression (KRR) and random forest (RF)
ensemble learning. To quantify the performance in these two
regression tasks, we relied on two performance metrics: (1) the
mean absolute error (MAE) between the true and predicted
values of interest and (2) the Pearson correlation coefficient
(PCC) between these values. Our results on the age regression
task (Fig. 2b) reported a significantly lower MAE (mean
MAEAge= 2.94; p= 2.76 × 10−11; two-tailed paired sample t
test) and significantly higher PCC between predicted and true
age for the DL models (mean PCCAge= 0.87; p= 2.59 × 10−12;
two-tailed paired sample t test) as compared with the best
performing SML regression method (i.e., the KRR method for
GRP features; mean MAEAge= 3.25; mean PCCAge= 0.84).
Likewise, our results on the MMSE regression task (Fig. 2c)
reported a significantly lower MAE (mean MAEMMSE= 1.74;
p= 2.65 × 10−3; two-tailed paired sample t test) and signifi-
cantly higher PCC between predicted and true MMSE values
for the DL models (mean PCCMMSE= 0.56; p= 2.99 × 10−3;
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two-tailed paired sample t test) as compared with the best
performing SML regression method (i.e., the KRR method for
GRP features; mean MAEMMSE= 1.81; mean PCCMMSE= 0.51).
Notably, our results on regression tasks demonstrate that

representation learning in DL models may be instrumental in
learning more precise continuous scales in neuroimaging
clinical data (i.e., regression tasks) in addition to making
superior categorical predictions (i.e., classification tasks).

Fig. 1 Systematic comparison of classification and regression performance of SML and DL methods. Performance for several SML and DL methods for

multiple classification and regression tasks was assessed using UK Biobank structural MRI data of 12,314 subjects (tasks A, B, and C) and ADNI structural

MRI data of 828 subjects (task D). A rigorous cross-validation procedure was conducted via 20 random partitions of the data into training, validation, and

test sets. For each repeat, the hyperparameters were tuned on the validation data and reported performance was evaluated on the held-out test set. The

SML models were trained/tested on gray matter features reduced by three different feature reduction methods. In contrast, the DL models were trained on

the unreduced (i.e., 3D voxel space) preprocessed gray matter maps.
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DL presents lower empirical asymptotic complexity in relative
computational time. The theoretical and empirical computa-
tional time complexities of machine learning algorithms are not
critical considerations for current clinical applications since
inference is commonly applied at the patient level. Instead, we
compare the computational time complexities of standard
implementations of the SML and DL methods to address the
reactionary, but inconsistent response that standard imple-
mentations of DL methods have a high computational time
complexity and take forever to run. In contrast, the high order of
computational complexity growth of the standard, CPU-based
SML implementations on large training data sets is often over-
looked. Indeed, this demonstration is crucial at the current stage
in the neuroimaging community, as researchers may be dis-
couraged from undertaking the use of DL methods based on this
reactionary, but inaccurate response.

A theoretical computational time complexity analysis is
generally sufficient to describe algorithms’ asymptotic behavior
and can be more informative than an empirical one. However, it
is not straightforward to derive the theoretical computational

complexity for ML algorithms owing to the several, highly
variable steps involved in their training routines. The algorithms
used by SML as well as DL methods are parameter and
implementation-dependent (e.g., optimization solver, caching,
shrinking, parallelization, and model compression), and their
standard implementations may be heterogeneous owing to
external algorithmic calls. This situation is further exacerbated
with iterative training and the need for hyperparameter tuning
(for example, grid search with CV), thus requiring the
algorithms to run several times within the same experiment
(again, with multiple adaptive/variable parameters). Owing to
the above constraints, comprehensive analyses of theoretical
time complexity of the machine learning algorithms are
sparingly and generally non-exhaustively assessed in previous
computer science literature, although empirical comparisons are
commonplace45–53.

Hence, we pursued empirical evidence to determine the growth
in the computational time of the two classes of methods as a
function of training sample size in the age and gender-based
classification task. Figure 3a presents the average computation
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time of all tested models. This comparison illuminates a higher
growth rate of computation time for most of the SML models, as
the recorded differences for the two classes of models diminished
with increasing training sample sizes for all SML models except
LDA. Furthermore, to confirm if this observation indeed implied

lower empirical asymptotic complexity for DL models, we
estimated a relative computational growth rate metric by
normalizing the computation time with the computation time
for the smallest training sample size. The results of this analysis
(Fig. 3b) are an empirical evidence of lower growth rate in

Fig. 2 DL capacitates more discriminative features across multiple classification and regression tasks. a Age and gender-based classification task. We

test six standard machine learning (SML) methods, including linear (red hues—LDA linear discriminant analysis, LR logistic regression, SVML support

vector machine with a linear kernel) and nonlinear models (green hues—SVMP, SVMR, and SVMS, which are abbreviations for SVM models with a

Polynomial, Radial-Basis Function, and Sigmoidal kernel, respectively) by reducing the high-dimensional whole-brain gray matter by three dimensionality

reduction (DR) methods (GRP gaussian random projection, RFE recursive feature elimination and UFS univariate feature selection) and compared against

two deep learning (DL) models (blue hues: DL1 and DL2) trained on 3D whole-brain gray matter. This task was performed with a repeated (n= 20)

random sub-sampling cross-validation scheme on UK Biobank MRI data (n= 12,314; nvalidation= 1157; ntest= 1157) on a range of training sample sizes that

varied between 100 and 10,000 samples. Both DL classification models significantly outperformed (evaluated using a two-tailed paired sample t test) all

six SML classification models regardless of the DR method for all training sizes beyond the test sample size. In addition, superior feature extraction of the

DL models was immediately evident as the SML models trained on the DL1 representations (DL1 Embeddings panel on top right) performed equally well.

The error-bars highlight the mean values ±1 SE across the 20 cross-validation repetitions, whereas the horizontal line along the normalized accuracy level

of 0.1 represents the chance probability for this 10-way classification task. b Gender classification task. The largest sample (ntrain= 10,000; nvalidation=

1157; ntest= 1157) was evaluated for gender classification using the same cross-validation procedure. For this task, the tested DL model significantly

outperformed all six SML classification models for all DR methods. The label abbreviations on the x axis of this plot (except DL) refer to this task performed

by implementing a combination of the listed SML model and the DR method, whereas DL represents this task performed with our DL1 model on 3D whole-

brain gray matter. c Age regression and d Mini-mental state examination (MMSE) regression tasks. We evaluate three SML methods, including the elastic

net (EN), Kernel Ridge (KR), and Random Forrest (RF) regression methods on features estimated by all three DR methods. The label abbreviations on the x

axis of this plot (except DL) refer to these tasks performed by implementing a combination of the listed SML model and the DR method, whereas DL

represents this task performed with our deep vanilla regressor model (DL3) on 3D whole-brain gray matter. The age regression task was evaluated on the

largest training sample size (ntrain= 10,000; nvalidation= 1157; ntest= 1157), whereas the MMSE regression task was implemented on ADNI MRI data (n=

828; ntrain= 428; nvalidation= 200; ntest= 200) using the same cross-validation procedure. The mean absolute error (MAE) and the Pearson correlation

coefficient (PCC) (between the true and predicted values) performance metrics were estimated to compare performance for the DL vanilla regressor

model and the three SML regression models for both regression tasks. Both tasks reported statistically significant improvement in MAE (a decrease) and

PCC (an increase) for the DL regressor as compared to the SML regression models as evaluated using a two-tailed paired sample t test. For the boxplots

plotted in b, c, and d panels, the box shows the inter quartile range (IQR between Q1 and Q3) of the data set, the central mark (horizontal line) shows the

median and the whiskers correspond to the rest of the distribution based on IQR [Q1-1.5*IQR, Q3+ 1.5*IQR]. Beyond the whiskers, data are considered

outliers and represented by red circles. Source data are provided as a Source Data file.
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Fig. 3 Systematic comparison of computational time complexity. This analysis compared the growth in computational time with an increase in the

training sample size across all models and dimension reduction methods in the age and gender-based classification task. a The DL models recorded higher

run times but showed a more linearly increasing trend with an increase in training sample size. On the other hand, the SML models presented a quadratic

trend (except for the LDA method). As a result, the difference between the recorded run times between the two classes of models decreased as the

training sample size increased. b To further validate this trend, we conducted a similar analysis on a metric for relative computational time growth (defined

as the computational time for the given training sample size normalized by this metric for the smallest sample size). This analysis suggested a lower

asymptotic complexity in the relative run time growth for DL models. Source data are provided as a Source Data file.
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computational complexity of DL models compared with all SML
models except LDA.

Furthermore, we note that the computation time of the SML
models did not include the time used for the dimensionality
reduction. In addition, the GPU implementation for DL models
used the same number of CPU threads (n= 8) as that for the
SML models. As the relative computational time metric was
estimated relative to a baseline (i.e., smallest sample size for the
same method), we speculate the difference in nature of the
implementations for the two classes of methods to not result in a
significant change in the relative metric, even though the non-
normalized metric in Fig. 3a could be expected to drop for the
SML models if a GPU- based implementation were used.
Critically, our focus on comparing the computational growth
rate for the commonly used modern implementations of these
models assumes high significance as bigger data samples are
becoming increasingly available for research and can be safely
expected to grow even bigger in coming years.

DL learns meaningful brain representations that span a com-
prehensible projection spectrum. If the DL methods are indeed
learning embeddings that represent the brain in low dimensional
space, the encodings in deeper layers (further from the input)
must be discriminative for the attempted task. Thus, for the
undertaken age and gender-based classification task in this work,
we can expect the inferred DL encodings to capture meaningful
age and gender information from the high-dimensional input
data. Furthermore, we can anticipate such information in the
captured patterns to continually distill with an increase in
training sample size. To validate this statement, we conducted a
post hoc analysis by projecting the learnt DL1 embeddings (i.e.,
the output of the first fully connected layer in the DL1 archi-
tecture) onto a two-dimensional space using t-distributed sto-
chastic neighbor embedding (t-SNE)54 for the entire range of
training sample sizes, and color-coding the two-dimensional
projection spectrum by the class labels. The t-SNE algorithm
works on placing two-dimensional representations maximally
preserving their distances in the original space; thus, if the
embeddings contain pronounced age and gender information,
subjects of the same gender and similar age are expected to end
up nearby. The t-SNE layouts of the learnt DL representations in
Fig. 4a reveal meaningful refinement of the learnt patterns with
increasing training sample size, with the progressive evolution of
an explicit bi-modal structure (i.e., formation of two distinct
gender clusters) both modes of which manifest a comprehensible,
gradual spectrum of age. More specifically, we can see separate
gender clusters ordered in increasing age from one end of the
spectrum to the other, although some outlier observations do
exist.

The nonlinear projections of the inferred embeddings in the
other three learning tasks also showed comprehensive trends,
which further verified the rationality of the learning and inference
processes in the DL methods. The gender classification task
revealed distinct clusters with very few outliers (Fig. 4b). In
addition, continuous gradual spectra with increasing age (Fig. 4c)
and MMSE (Fig. 4d) values from one end of the spectrum to the
other were observed for the undertaken age and MMSE
regression tasks, respectively. Hence, we can conclude that the
implemented methods were indeed able to learn the task-specific
representational patterns of interest from brain imaging data.

DL enables robust relevance estimates for human brain
regions. A critical dimension for validating the robustness of an
algorithm is the similarity in the predictions across its indepen-
dent repetitions. Hence, we sought to determine whether the

validated DL models estimated prediction relevance of the brain
regions in the classification decisions in a consistent pattern
across their independent runs. For this, we recorded the saliency
maps for the multiple repetitions (n= 20) that varied in the
randomly sampled training, validation and testing data for the
highest training size (n= 10,000) in the age and gender-based
classification task. The saliency maps were estimated through two
standard approaches, namely gradient-based backpropagation55

(GBP) and network occlusion sensitivity analysis56 (NOSA). The
GBP approach computes the gradient of the class score with
respect to the input image to determine the relevance of each
pixel with respect to the classification decision. In the NOSA
method, brain functional networks are occluded one at a time,
their class probabilities are re-evaluated, and their relevance in
the classification decisions is estimated proportional to the
reduction in target class probability. Both of these methods are
sensitive to the data and network architecture57, thus perfectly
fitting in the scope of the attempted classification task in
this work.

Figure 5a presents the task-discriminative relevance percen-
tages based on the highest sample size computed for these
approaches on the automated anatomical labeling (AAL) brain
atlas58. Despite some variation in the ranking orders of the
merged brain networks, both saliency approaches estimated
similar prediction levels for most of the brain networks. The
mean relevance estimates for the AAL brain atlas for both
approaches and scatterplot of these metrics comparing the two
approaches (r= 0.921) are illustrated in Fig. 5b. Overall, these
initial results clearly suggest robustness in the relevance estimates
and thus the high potential of the undertaken DL approach to
record consistent representations of the brain imaging data. In
view of such positive evidence, future DL applied to brain
imaging data should investigate incorporate saliency mapping
into learning formulations more comprehensively.

DL reveals rational task-specific relevance distributions of
discriminative biomarkers. Here, we perform DL model intro-
spection to qualitatively assess the brain regions most dis-
criminative of each undertaken learning task and discuss the
relationship between these revelations and previous findings in
the literature. For this assessment, we estimated the task-specific
distributions by averaging the aggregate saliency maps across the
different CV repetitions, normalizing the averaged aggregate
maps to the [0,1] range and smoothing this data for each of the
undertaken tasks. As illustrated in Fig. 6a, the aggregate saliency
maps for the combined age and gender classification task featured
regions distributed in (1) the central structures of insular cortex
and putamen, middle, and anterior cingulate gyrus, (2) the
temporal lobe involving hippocampus, parahippocampal gyrus,
amygdala, fusiform gyrus, Heschl’s gyrus and inferior/middle/
superior temporal gyrus, (3) the occipital lobe involving the cal-
carine fissure, cuneus, lingual gyrus, inferior/middle/superior
occipital gyrus and angular gyrus, (4) the frontal lobe including
the Rolandic operculum, frontal superior and middle gyrus, the
orbital and opercular inferior frontal gyrus and precentral gyrus,
(5) the parietal lobe involving the precuneus gyrus, supramarginal
gyrus, postcentral gyrus, and inferior parietal gyrus, and (6) the
cerebellum (4/5/6/8/Crus1). As we will see next, these activations
showed a high degree of correspondence with previously reported
patterns of gender-related (Fig. 6b) and age-related (Fig. 6c) gray
matter differences. Further investigation into this combined task
can be meaningful, for example, to analyze gender-specific dif-
ferences in aging, but we defer a systematic study of those effects
to a dedicated work and instead review the rationality of our
findings for the separate gender and age tasks next.
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Fig. 4 Projections of the embeddings from the validated DL models. a The projections of the embeddings inferred for the combined age and gender task

were compared across a range of training sample sizes. Representational patterns of the brain are indeed learnt. In fact, they distill continually with

increasing training sample size, and eventually evolve into separate gender clusters (i.e., red/F/female and blue/M/male clusters), both presenting a

gradual spectrum of age (i.e., traceable light colored to dark colored). b The gender classification task (F females, M males) also revealed distinct clusters

with very few outliers. c, d The projections for the age and MMSE regression tasks also revealed comprehensive trends in the spectrum, thus confirming

that the implemented DL methods were indeed able to learn the task-specific brain representations.
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Our findings from the gender classification task, as illustrated
in Fig. 6b, are consistent with previous studies investigating
regional sex dimorphism within the brain, with highest aggregate
saliency reported in the left parietal inferior lobe59, and other
parietal lobe regions60,61 distributed over the angular gyrus,
precuneus, superior parietal gyrus, and postcentral gyrus. The

most salient activations for this task also spanned the occipital
regions including the right inferior occipital lobe62 and cuneus,
followed by the calcarine, lingual gyrus, and middle/superior
occipital lobe regions60. Other key gender-discriminative activa-
tions were distributed in the central structures of thalamus and
putamen60,61, posterior/middle/anterior cingulate gyrus61,63–65,
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Fig. 5 Task-discriminative relevance estimates for the AAL atlas for the network occlusion sensitivity analysis (NOSA) and gradient backpropagation

(GBP) approaches for the age and gender-based classification task. a Aggregate relevance of each brain region was estimated for each independent

(n= 20) cross-validation repetition for the largest training sample size runs (ntrain= 10,000, nvalidation= 1157 and ntest= 1157 subjects). Thus, for both

saliency methods, each boxplot outlines the variation in the mean relevance percentages for each corresponding brain region across the independent (n=

20) cross-validation runs of the classification task. In these boxplots, the box shows the inter quartile range (IQR between Q1 and Q3) of the data set, the

central mark (horizontal line) shows the median and the whiskers correspond to the rest of the distribution based on the IQR [Q1–1.5*IQR, Q3+1.5*IQR].

Beyond the whiskers, data are considered outliers and represented by red circles. These estimates generally spanned a narrow range (except for few

outliers runs for some brain regions), and a comparison of these standard approaches confirmed consistency in the trends for most of the brain regions.

Note, the AAL atlas brain regions are sorted from higher relevance to lower relevance for the NOSA approach for this illustration. b The NOSA and GBP

saliency mapping methods showed a high correlation value (r) of 0.92 in the mean relevance estimates for each brain region (listed on the y axis of a), thus

confirming the consistency in the relevance obtained from the learned DL representations. The dotted line represents the least squares fit for this

relationship. Source data are provided as a Source Data file.

Fig. 6 Visualization of task-specific distributions of discriminative biomarkers. The rationality of the DL model decisions was verified by examining the

peak activations in the task-specific aggregate saliency maps. The panels above present the axial slices of the aggregate saliency maps for each of

the undertaken classification/regression tasks - a age and gender-based classification, b gender classification, c age regression and d mini-mental state

examination (MMSE) regression. Brain regions determined as the most discriminative of the undertaken tasks by the validated DL models showed a high

general correspondence with previous reports in neuroimaging literature.
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the fusiform gyrus60, and Heschl’s gyrus regions66 and several
cerebellum (6/8/9/Crus1 and Vermis 6/7/8/9) regions61. Our
results also corroborate and extend significant relevance of the
medial surface of superior frontal gyrus and paracentral lobule in
this task, as also reported previously60,65.

For the age regression task, highest aggregate saliency was
reported in the insular cortex and subcortical structures including
putamen, thalamus, pallidum, and caudate nucleus (Fig. 6c), with
patterns consistent to those that have been extensively
reported67–71. Ventricular enlargement occurs in normal aging72,
which we speculate might be correlated to the observation of
enhanced activations in these subcortical gray matter regions on
the periphery of the ventricles. Next, in agreement with previous
brain aging reports, the most discriminative brain regions were
additionally distributed through the occipital lobe including the
lingual gyrus, calcarine, and the inferior/middle/superior occipital
lobe AAL atlas regions73. Our findings also confirm significant
relevance of the hippocampus and amygdala in the medial
temporal lobe, the superior/middle temporal lobe regions71,74–76,
and inferior frontal gyrus and rolandic operculum frontal
regions70,74 in learning generalized patterns of age-related gray
matter changes. Additionally, high saliency levels were also
distributed in the supramarginal gyrus, and several cerebellum
(4/5 and vermis 3/4/5/6) regions77 for the age regression task.

At lastly, we discuss the discriminative brain regions identified
by the validated DL models in the MMSE regression task (Fig. 6d)
in relation to previous work that has linked cognitive changes in
old age to specific structural abnormalities in the brain. Consistent
with a recent study78 directly investigating neuroanatomical
correlates of MMSE in mild cognitive impairments (MCI)/AD
and other MCI/AD works in literature, the most salient regions for
this task were distributed mainly in the temporal lobe79–84 and
prefrontal lobe85–88 regions. Specifically, the most salient principal
medial temporal lobe activations included the hippocampus,
parahippocampal gyrus, and amygdala regions, whereas other
temporal lobe activations were localized in the middle and
superior temporal poles, fusiform gyrus, and the temporal middle
and inferior gyrus regions. In addition, the key prefrontal lobe
activations were spread throughout the orbitofrontal cortex
(inferior/middle/superior and medial regions) and in some regions
in the middle and superior frontal gyrus, olfactory cortex, and
gyrus rectus. Overall, our findings from the undertaken classifica-
tion and regression tasks suggest that DL methods reveal rational
task-specific distributions of discriminative biomarkers. Given
such informative evidence, future approaches applying DL to
brain imaging data should investigate incorporating saliency
mapping into learning formulations more comprehensively.
Supplementary Video 1 shows an animation across the different
brain slices for all tasks.

Comparative analysis confirms reproducible DL on brain
imaging data. In this section, we assess the reproducibility of our
DL results by extensively comparing our DL model and training
pipeline to the simple, fully convolutional network (SFCN) DL
model and training pipeline proposed by Peng et al. and replicated
by Schulz et al. For this, we compare our pipeline (DL models,
training pipeline and our custom training code referred to as DL
Abrol@) with other pipelines referred to as SFCN Abrol@ (SFCN
DL model, our training pipeline and our custom training code),
SFCN Schulz@ (SFCN DL model, Schulz et al. training pipeline and
our custom training code) and SFCN Schulz* (SFCN DL model,
Schulz et al. training pipeline and computer code). In this analysis,
we observed that the contradicting results of Schulz et al. as eval-
uated with the SFCN Schulz* pipeline are owing to a coding bug in
batch-wise performance evaluation method of their 3D CNN.

Specifically, for their 3D CNN analyses, the true and predicted
target arguments are swapped in the loss method (lines 89–91,
https://github.com/maschulz/deeperbrain/blob/bdb262833c33a8ef7
14ad38b252c8ec0bd6dca36/subanalyses/3d/base.py) while evaluat-
ing the sklearn R2, MAE, MSE, and accuracy methods. The R2

metric is the ratio of explained sum of squares (sum of squares of
differences in predicted values and the actual sample mean) and the
total sum of squares (sum of squares of differences in the actual
values and the actual sample mean), and therefore sensitive in the
order of predicted and actual targets. They only report the coeffi-
cient of determination (R2) for the age regression task and accuracy
for the classification task; hence, the lack of reporting a directly
comparable metric (i.e., MAE) may have limited Schulz et al.’s
ability to detect or resolve this miscalculation. Similarly, another
inconsistency is the lack of reporting the 3D CNN analysis for the
combined age and gender classification task, the central task of their
work. Regardless, owing to the bug, the R2 metric is estimated
incorrectly, whereas other metric values (for example, MAE, MSE,
and accuracy) remain unchanged by design (for example, a per-
mutation of variables does not affect absolute values or squared
values of their differences). We correct for this miscalculation in the
SFCN Schulz_C* pipeline (SFCN DL model, Schulz et al. training
pipeline and corrected computer code). In addition, since the
reported bug does not affect the accuracy metric, SFCN Schulz* and
SFCN Schulz_C* pipelines are equivalent in the classification tasks
and hence considered only once (as SFCN Schulz*) for the classi-
fication tasks. We evaluate all of these pipelines on the same data
partitions as in all previous analyses.

Figure 7 shows that our results (using our model and pipeline)
can be reproduced by using the originally proposed model and
pipeline of Peng et al. using our code as well as Schulz et al.’s
code. Specifically, a highly similar performance is observed for all
metrics for the SFCN Abrol@, SFCN Schulz@ and SFCN
Schulz_C* pipelines as compared with our DL1 Abrol@/DL3
Abrol@ pipeline (classification/regression), and this is a signifi-
cant improvement over the performance of SML methods. It is
easy to note from these results that the only notable change in the
age regression task is in the R2 metric for SFCN Schulz*, which
gets corrected to a higher value for the corresponding corrected
pipeline (i.e., SFCN Schulz_C*). Some performance differences
remain across the DL1 Abrol@/DL3 Abrol@, SFCN Abrol@, SFCN
Schulz@, and SFCN Schulz_C* pipelines, which may be explained
owing to the stochastic nature of training in DL methods and
parametric differences in the training pipeline. Overall, this
comparative analysis enables a great insight into reproducible
research confirming the similarity in performance of the
considered DL models and pipelines on neuroimaging data.

Discussion
Our results demonstrate that DL methods, if implemented and
trained according to the common practices, have the potential to
substantially outperform SML methods and to scale particularly
well presenting a lower asymptotic complexity in relative com-
putational time, despite being more complex in their architecture
and parameterization. This observation of substantial margins in
the performance graphs is consistent with the notion that the
studied task associations are embedded at intricate abstract levels
in the complex imaging data and therefore can benefit from the
representational power of the DL methods. We further corro-
borated this notion by demonstrating that superior feature
extraction contributed to the excellent performance of DL
methods and that SML methods can perform equally well if we
train them on the DL representations. Hence, we strongly
recommend future work with DL methods to assess the wealth
of spatiotemporal information available in the minimally
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preprocessed input space, as compared to working with reduced
feature spaces. Note, we are not discovering something new here,
the DL field is not only aware of this property of the models, but
arguably they were developed with this as a primary goal5,6,89,90.
Our analysis also suggests that the performance improvement as a
function of training sample size for DL methods eventually
saturates similarly to SML methods, although at a significantly
higher performance mark. Although the deeper variant of the DL
method tested in this work trained faster, it did not result in a
significantly improved performance, therefore demanding a fur-
ther probe to confirm if additional depth could further enhance
the performance of the DL models. We note here that there
are, nevertheless, many gateways to potentially score further

performance gains apart from experimenting with even deeper
variants of the tested class of DL models, for example, exploring
variations in the finetuning process and testing other existing or
newer DL frameworks. Indeed, it would be highly interesting to
benchmark the performance and scalability bounds of an exten-
sive battery of diverse supervised and unsupervised DL frame-
works on brain imaging data.

We also illustrated that the DL embeddings from the validated
models indeed capture meaningful and consistent patterns of
representations of the brain that distilled continuously with more
training data, spanning a comprehensible projection spectrum of
age, gender and a widely used cognitive score in clinical studies.
We further exemplified this by showing that DL consistently

Fig. 7 Comparative analyses confirming reproducible DL research on brain imaging data. A comparative analysis with the simple fully convolutional

network (SFCN) DL model and training pipeline used in Peng et al. (2020) and Schulz et al. (2020) confirmed similar performance levels as our DL models

and training pipeline, thus providing a great insight into the reproducibility of these brain imaging research objectives with DL. Several pipelines that

differed in the combination of the used DL model (“DL1”, “DL3”, or “SFCN”), training settings (for example, choice of optimizer, learning rate, early stopping

parametrization, etc. highlighted as “Abrol” if using similar to our work, and as “Schulz” or “Schulz_C” if using similar to comparative work) and training

code (labeled with the “@” superscript when implemented with our custom training code and the “*” symbol when using the PyTorch lightning trainer as in

Schulz et al.). Note, “Schulz_C” denotes the case when the coding bug in this comparative work was corrected. Specifically, the distributions of the mean

absolute error (MAE), Pearson correlation coefficient (r), and coefficient of determination (R2) metrics are compared for the age regression task (top row),

and the distribution of classification accuracy is compared for the two classification tasks (bottom row). Each boxplot shows the discriminative

performance on unseen test data for the cross-validation repetitions (n= 20) for the highest training sample size (ntrain= 10,000; nvalidation= 1157; ntest=

1157). The color scheme for the boxplots is arbitrary, whereas the circles on these boxplots indicate the performance for a given cross-validation repetition.

The box in these boxplots shows the inter quartile range (IQR between Q1 and Q3) of the data set, the central mark shows the median and the whiskers

correspond to the rest of the distribution based on the IQR [Q1–1.5*IQR, Q3+1.5*IQR]. Beyond the whiskers, data are considered outliers and represented

by the diamond-shaped marker. Source data are provided as a Source Data file.
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localizes discriminative brain representations, demonstrating the
robustness of task-discriminative relevance estimates in multiple
relevance interpretation methods. However, further substantia-
tion of the observed robustness is recommended in future work,
for example, by evaluation of the findings on a secondary data set
or non-overlapping partitions of the same data set. Our obser-
vation of rational task-specific relevance distributions of dis-
criminative biomarkers for all undertaken tasks also demands
further verification, especially given the limited confirmatory
knowledge on the human brain. Nonetheless, these initial results
suggest the high potential of DL methods in learning specific
changes in the brain that explain the differences in the analyzed
groups, an attribute that holds paramount significance in
important applications such as disease characterization and
studying treatment effects. We presume the effectiveness of
engaging DL methods in the domain of brain imaging would
primarily depend on how well we can explain such vital tasks, by
leveraging the existing as well as by building newer methodical
interpretations for the diverse range of DL models. Eventually,
the DL chalk-horses in neuroimaging would highly likely be the
ones that source a healthy blend of superior representational
learning and finer interpretability.

Notably, the capability of DL models to learn brain repre-
sentations in an end-to-end manner does not imply that DL will
necessarily perform significantly better for all learning tasks,
especially not while learning from data lacking predictive signal
(for example, tough problems that are barely predictable around
chance levels). In addition, it may be possible to design abstract
data representations (manually designed or automatically pre-
engineered or a combination of these) that offer even more
predictive value than made available by end-to-end trained DL
models. Yet the current trends in generic computer vision clearly
suggest a wide range of DL models that perform exceptionally
well (better than SML methods) on tasks that can be predicted
beyond chance. One may also argue that certain DL operations
(for example, convolution and pooling) may decrease efficacy in
specific sub-tasks (for example, learning high fractal dimension
white matter bundles91). However, it is possible to efficiently
overcome these limitations by tweaking the studied DL model or
perhaps learning these patterns with other supervised/semi-
supervised/unsupervised DL models92–94. In addition, the trans-
fer learning efforts demonstrate that even basic segmentation
models such as fully convolutional neural networks may con-
struct representations useful for the downstream tasks95 and that
the models without them generalize poorly. Contrarily, SML
methods cannot learn such representations and are dependent on
informative lower-dimensional data representations.

Large-scale data collection96,97, collaborative data meta-
analyses98, and decentralized data analysis99 have gained enor-
mous ground in recent years, thus providing the neuroimaging
community with an unparalleled opportunity for researching big
sample sizes. Yet, sample sizes for rare affected populations or
isolated tasks may still be limited from tens to a few hundreds of
subjects. Although DL consistently outperformed SML for larger
training sample sizes in our work, DL analysis at small sample
sizes (n= 50 and n= 100) did not perform worse than SML on
our data. In fact, Peng et al.29 report a significant improvement
with DL at as few as 50 subjects for this same task. Nonetheless, as
we did not observe a substantial difference in the DL’s perfor-
mance compared to SML at such low sample sizes, we urge the
need for evaluating small sample sizes with additional caution.
We also note that a future study focusing on rare low-sized data
samples and isolated tasks is necessary to establish a consensus
in this regard. Notably, not all tasks where DL methods perform
remarkably well require many subjects, for example, segmenta-
tion. Furthermore, an active research area in the DL field is

self-supervised and meta-learning, where the models are trained
on larger data collections unrelated to the task at hand and then
fine-tuned on small datasets. We have observed improvements in
performance with this approach on training sets as small as
30 subjects100.

In essence, our findings highlight the presence of nonlinearities
in the brain imaging data that DL frameworks can exploit to
generate more discriminative encodings for characterizing the
human brain. Results are in support of the potential of DL
applications to brain imaging data, even with currently available
data sizes; existing claims/speculations of the unlimited scalability
of DL methods, however, demand further confirmation. Our
findings motivate future DL work in brain imaging to focus on
excelling in the discriminative power of the encodings and
facilitating more precise discriminative feature localization
through methodical model interpretations. Notably, the dis-
criminative capacity of DL models is more straightforward to
evaluate, but that is not the only and, arguably, the primary use
that can benefit from them. A number of other applications such
as segmentation and multimodal data integration directly benefit
from representational powers and ease of model construction of
the DL approaches. Rather than focusing on ways to show DL
does not predict as well in some instances, we should be lever-
aging the flexibility of these models, to greatly advance in brain
imaging problems that the current workhorse SML methods are
not able to further push.

Methods
Data. The combined age and gender-based classification, gender classification, and
age regression tasks in this work used sMRI images (n= 12,314) from unaffected
subjects (i.e., those who had no diagnosed or self-reported mental illnesses based
on 22,392 subjects’ sMRI data available as of 7 April 2019) from the UK Biobank
repository. The sMRI data were segmented into tissue probability maps for gray
matter, white matter, and cerebral spinal fluid using SPM12. The gray matter
images were then warped to standard space, modulated and smoothed using a
Gaussian kernel with an FWHM= 10 mm. The preprocessed gray matter volume
images had a dimensionality of 121 × 145 × 121 in the voxel space, with the voxel
size of 1.5 × 1.5 × 1.5 mm3. The MMSE regression task in this work used sMRI
images (n= 828) from the ADNI repository (available as of 6 November 2017) and
that satisfied our Alzheimer’s disease (AD) progression study criterion in our
recent work19. The preprocessed gray matter volume images for the ADNI data had
a dimensionality of 160 × 195 × 170 in the voxel space, with the voxel size of 1 ×
1 × 1 mm3. The subjects included cognitively normal individuals (n= 237), indi-
viduals with MCI (n= 434; 245 stable MCI and 189 progressive MCI) as well as
AD diagnosed individuals (n= 157).

The scientific study protocol of the UK Biobank is approved by the Ethics and
Governance Council. Written, informed consent was obtained from all subjects
participating in the UK Biobank study. The ADNI study procedures were approved
by the institutional review boards of all participating centers as detailed in this
document—https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf. Written, informed consent was obtained from
all subjects participating in the study according to the Declaration of Helsinki, and
the study was approved by the institutional review board at each participating site.

Our choice of the sMRI modality for this project was made owing to the ease of
availability of diverse and easily modifiable DL architectures for three-dimensional
images. On the other hand, training on fMRI images’ four-dimensional space
demands processing the additional time dimension when off-the-shelf architectures
that can handle it are lacking. Nonetheless, we believe that enabling training
directly from fMRI, perhaps together with sMRI, is an exciting challenge that can
expand representational learning’s advantages to dynamic brain imaging. Indeed,
comparing the performance of models trained directly on the minimally
preprocessed fMRI data input space in an end-to-end manner with those trained
on pre-engineered voxel-level or network-level fMRI features would allow for a
more exhaustive benchmarking and forms an excellent topic for future research.
Likewise, segmentation is not a necessity for representational learning on MRI data,
and we use gray matter maps in this paper to allow a direct comparison with the
previous work28. In fact, the DL models do exceptionally well at segmenting the
data101,102. Also, if unsegmented data were used instead, the DL methods could
appropriately identify discriminative regions in the multiple tissue structures
concurrently (i.e., set up as a single problem), and possibly predict even better
given the additional information accessible to them. At last, the choice of
smoothing the gray matter maps, although not critical for our demonstrations, is
based on results from our previous analysis on sMRI data19 that revealed a
significant performance improvement on smoothed data (p < 0.05) as compared

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20655-6 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:353 | https://doi.org/10.1038/s41467-020-20655-6 | www.nature.com/naturecommunications 13

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


with that evaluated on non-smoothed data. This improvement is arguably owing to
the marginal increase in the signal to noise ratio caused by smoothing. Moreover,
the data were smoothed at the subject level (and not the group level) to retain
maximal inter-individual variability (differences).

CV procedure. A key objective of this work was to compare how classification
performance on the human brain images scaled with increasing sample sizes across
the different SML and DL models. To execute this, the UK Biobank data set of
12,314 subjects was stratified into three partitions: training (n= 10,000), validation
(n= 1157), and test (n= 1157), with the training sample size varying in the range
100 to 10,000 subjects (n= 100, 200, 500, 1000, 2000, 5000, and 10,000) for the age
and gender classification task, while using the largest training sample size partitions
(n= 10,000) for the gender classification and age regression tasks. In a similar
fashion, for the MMSE regression task, the ADNI data set of 828 subjects was
stratified into training (n= 428), validation (n= 200), and test (n= 200) parti-
tions. For all tested (SML and DL) models, a repeated (n= 20 for the age and
gender tasks and n= 10 for the MMSE task) stratified Monte Carlo (i.e., repeated
random sub-sampling) CV procedure was employed. For each repetition, the
training, validation and test samples were sampled exactly once to ensure a con-
sistent comparison by keeping them the same across the different methods.
Notably, the above procedure was repeated to decrease the estimator bias and
generate better estimates of the distribution of the classification performance
metric. Finally, hyperparameter tuning (detailed in the following section) was
employed using the training and validation folds and held-out test data samples
were fed to the validated models to compute test accuracies for each CV repetition
and classification approach. In summary, the primary performance comparison
was employed across multiple dimensions: 20 repetitions, 7 training sample sizes,
3/none (SML/DL) dimension reduction methods, and 6/2 (SML/DL) classifiers for
the classification tasks as well as three/one (SML/DL) regression models for the
regression tasks.

SML models. Six linear and nonlinear SML models (motivated by Schulz, et al.28)
were tested for the classification tasks to estimate a diverse baseline to compare the
performance of DL models. The linear approaches included LDA method, LR, and
SVML models, whereas the nonlinear SML models included SVMP, SVMR, and
SVMS. Three SML models, including the EN, KRR, and RF ensemble learning
methods were tested in the regression tasks to estimate the baseline to compare the
performance of DL models. All models were implemented with the scikit-learn
python machine learning library.

Feature extraction for SML models. Feature extraction is a crucial process to
eliminate redundant features in the data to boost the performance of linear and
kernel-based algorithms3. This step helps in reducing overfitting as lesser data
dimensions imply a lesser probability of inferring decisions based on noise, and
also significantly reduces the model complexity and training time of the algorithms.
Hence, three dimensionality reduction methods (DRMs) were tested for feature
extraction (as in Schulz et al.28) for all six SML models: GRP, RFE, and UFS. The
GRP method projects the high-dimensional data onto a lower-dimensional sub-
space preserving the similarity in the data vectors using a random matrix generated
using a Gaussian distribution103,104. Recursive feature elimination is an iterative
procedure that prunes the least ranked (i.e. least significant) features in each
iteration until the desired number of features is achieved105,106. In this analysis, we
reduced 25% of the least ranked features at each step. Finally, the UFS method is
based on univariate statistical tests to select the highest scoring features. We used
the ANOVA F-values to return the univariate scores for feature ranking. For a
consistent comparison and following the same work, the (voxel-wise) input space
for each subject was reduced to a 784-dimensional subspace using each of these
methods.

Hyperparameter Validation. Hyperparameter tuning was employed for SML
models through a grid parameter search with the hypopt python package. For the
classification tasks, the hyperparameter grids were chosen to be consistent with the
commonly evaluated parameter ranges as also employed in Schulz et al.28. The cost
parameter (that is proportional to the inverse of the regularization strength) was
tested for 10 values sampled on a logarithm scale for a range of powers of 2 from
[−20, 10] for the LR and SVML models. This range of powers was shifted for all
three nonlinear SVM kernel models to [−10, 20]. The other regularization para-
meter, gamma, was tested for 10 values sampled on a logarithm scale for a range of
powers of 2 from [−25, 5] for all nonlinear SVMs. Coefficients for the poly and
sigmoid kernel SVMs were tested for −1, 0, and 1 values. To ensure computational
tractability, the maximum number of iterations was set to 10,000 for all four SVM
classification models. The number of CPU threads to be used for the grid search
class in the hypopt package was set to 8, and this parameter was kept the same in
the DL training routines to allow a consistent comparison in the empirical
asymptotic relative time complexity.

Similarly, several hyperparameters were tuned for all SML regression methods
used in the age and MMSE regression tasks. For the KRR method, the
hyperparameter grids were spanned for the kernel mapping function (linear/radial-
basis-function/polynomial/sigmoidal), regularization strength (alpha in the [1e -3,

1e -2, 1e -1, 1] range) and the gamma parameter in kernel mapping functions (20
values sampled on a logarithm scale for a range of powers of 10 from [−20, 10]).
For the RF method, the number of trees in the forest (10 values sampled uniformly
in the [100, 200] range), maximum number of features considered at each split
(chosen as square root or logarithm to the base 2 of the number of features), the
minimum number of samples required to split an internal node (2, 5 or 10), the
minimum number of samples required to be at a leaf node (1, 2, or 4) and the
bootstrap flag (on/off) were tuned as hyperparameters. At l, for the EN regression
method, the alpha tuning parameter multiplied to the penalty terms (in the [1e -1,
1e -2, 1e -3, 1e -4, 1e -5, 1e -6] range) and convex combination penalty parameter
(10 values sampled uniformly in the [0,1] range) were tuned as hyperparameters.

DL models. Two 3D-CNN variants of the AlexNet architecture44 were imple-
mented on the open-source PyTorch GPU framework to establish a performance
baseline for the DL models in the combined age and gender classification task. The
first variant (DL1) was configured with five convolutional layers with a variable
number of channels in each of the convolutional layers (64C-128C-192C-192C-
128C). In contrast, the second variant (DL2) was a deeper version with six con-
volutional layers and an increased number of channels in the later layers (64C-
128C-192C-384C-256C-256C). Only the DL1 variant was used for the gender
classification task. For both regression tasks, the DL1 variant was adapted to a deep
vanilla regressor (DL3) by reducing the output nodes in the final fully connect layer
to one.

DL training. Training and testing routines for the DL architectures were imple-
mented on an NVIDIA CUDA parallel computing platform (accessing 2 Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10 GHz nodes on the TReNDS slurm-managed
cluster each with 4 NVIDIA Tesla V100 SXM2 32 GB GPUs) using GPU accel-
erated NVIDIA CUDA toolkit (cudatoolkit), CUDA Deep Neural Network
(cudnn) and PyTorch tensor libraries. The Adam algorithm107 (as implemented in
the torch.optim package) for first-order gradient-based optimization of stochastic
objective functions was preferred for its computational efficiency, low memory
requirements, and suitability for tasks with high-dimensional parameter spaces.
Our custom code also uses nipy, scipy, numpy, nibabel, and pandas packages for
basic image processing and read-write operations. All package versions used in our
conda environment management system are listed in the Reporting Summary.

For the DL1 method, a batch size of 32 and learning rate parameter of 10−5 was
validated in the hyperparameter tuning stage from an initial grid parameter search
(batch size: [2, 4, 8, 16, 32, 64] and learning rate: [1e -1, 1e -2, 1e -3, 1e -4, 1e -5, 1e
-6] on a randomly chosen largest training sample size CV fold. These parameters
were retained for the second DL architecture due to the high similarity in the
architectures. For the regression tasks, the learning rate was tuned in a similar
range for the DL3 method for the regression tasks. For these tasks, a batch size of
32 and learning rate parameter of 10−5 was validated in the hyperparameter tuning
stage. For all four tasks, a learning rate scheduler callback was employed to reduce
the learning rate by a factor of 0.5 on plateauing of the validation accuracy metric.
Early stopping with a patience level of 20 (40) epochs was implemented on the
validation accuracy metric to reduce overfitting and achieve lower generalization
error in the testing phase for the classification (regression) tasks. The cross-entropy
loss function was used for the classification tasks, whereas the MSE loss was used
for the regression tasks. Similar to the SML models, a maximum number of 8 CPU
threads were allocated to each of the DL runs for a consistent comparison in the
time complexity analysis.

For the comparative analysis in this work, we compared the following pipelines
on the exact same data partitions as in all previous analyses. We superscript the use
of our custom trainer with an “ @” symbol in the name of the pipeline and refer to
the use of PyTorch lightning trainer with a “ *” symbol.

1. Our DL models, our training pipeline and our custom training code (DL
Abrol@).

2. SFCN DL model, our training pipeline and our custom training code (SFCN
Abrol@).

3. SFCN DL model, Schulz et al. training pipeline and our custom training
code (SFCN Schulz@).

4. SFCN DL model, Schulz et al. training pipeline and computer code (SFCN
Schulz*).

5. SFCN DL model, Schulz et al. training pipeline and corrected computer
code (SFCN Schulz_C*).

The training pipeline in Schulz et al. implemented an SGD optimizer with an
initial learning rate of and an L2 weight decay parameter of 0.001, a learning rate
step scheduler to reduce the learning rate by a factor of 0.3 every 30 epochs, and
used the best validation model (i.e., at the epoch with minimum validation MAE
for regression and maximum validation accuracy for classification) from 150
epochs for testing. These settings were also replicated in our code (SFCN Schulz@

pipeline).
In summary, this work used several standard checks for appropriately training

the DL models—(1) a rigorous CV procedure, (2) a learning-rate scheduler, (3)
fully automated early stopping criterion, (4) batch normalization, (5) L2 weight
decay in optimizer function, and (6) dropout layers. These steps are routine in
modern DL practices for combatting overfitting and thus, control for the bias-
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variance tradeoff frequently discussed in the field. In addition, we note that bias-
variance tradeoff gains a complex interpretation in the case of overparametrized
DL models as recently noted by Belkin et al.108. We also note that a more rigorous
hyperparameter validation for the used DL methods and steps such as controlling
for the number of DL model parameters, by studying space complexity could be
useful for further reduction of generalization errors. These additional steps could
be crucial in solving even more complex problems such as predicting cognitive
scores, etc. However, hyperparameter validation in DL remains a challenge. It is
itself a vast emerging field since basic random-search or grid search methods are
inadequate for DL investigations owing to increased computational demand of
large powerful models, whereas other proposed approaches such as Bayesian
reasoning109,110 are not fully optimized and may suffer from the local minima
problem. As such, we put DL models at a disadvantage here extensively tuning
hyperparameters of SML methods in broad ranges for all four learning tasks.
Meanwhile, for hyperparameter search of the DL models we employ a narrow grid
search on the most important parameters such as learning rate and batch size,
using defaults for the less significant ones.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The MRI data that support the findings of this work are available to researchers via the

UK Biobank data access procedure described at https://www.ukbiobank.ac.uk/enable-

your-research and via the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data

access procedure described at http://adni.loni.usc.edu/data-samples/access-data/. The UK

Biobank MRI data were obtained under data application number 34175 and the ADNI

preprocessed MRI data were obtained under account ID aabrol@mrn.org for a previous

study (https://doi.org/10.1016/j.jneumeth.2020.108701). Source data are provided with
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