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Abstract—Along with the rapid development of Cloud 

Computing, IoT, and AI technologies, cloud video surveillance 

(CVS) has become a hotly discussed topic, especially when facing 

the requirement of real-time analysis in smart applications. Object 

detection usually plays an important role for environment 

monitoring and activity tracking in surveillance system. The 

emerging edge-cloud computing paradigm provides us an 

opportunity to deal with the continuously generated huge amount 

of surveillance data in an on-site manner across IoT systems. 

However, the detection performance is still far away from 

satisfactions due to the complex surveilling environment. In this 

study, we focus on the multi-target detection for real-time 

surveillance in smart IoT systems. A newly designed deep neural 

network model called A-YONet, which is constructed by 

combining the advantages of YOLO and MTCNN, is proposed to 

be deployed in an end-edge-cloud surveillance system, in order to 

realize the lightweight training and feature learning with limited 

computing sources. An intelligent detection algorithm is then 

developed based on a pre-adjusting scheme of anchor box and a 

multi-level feature fusion mechanism. Experiments and 

evaluations using two datasets, including one public dataset and 

one homemade dataset obtained in a real surveillance system, 

demonstrate the effectiveness of our proposed method in 

enhancing training efficiency and detection precision, especially 

for multi-target detection in smart IoT application developments. 

 
Index Terms—Deep Learning, Neural Network, Object 

Detection, Edge Computing, `Smart IoT, Cloud Video 

Surveillance 

 

I. INTRODUCTION 

loud video surveillance (CVS) has increasingly received   
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widespread attention due to the high development of IoT and 

edge computing technologies. Recently, many smart 

applications are exploiting based on CVS systems, which focus 

on handling the continuously generated sequences of data from 

a whole surveillance environment. Accordingly, multi-object 

detection has become a significant technique and drawn lots of 

attentions from both industrial and academic fields [1-3]. 

Challenges include detecting and locating the moving objects, 

and then recognizing and extracting the instant features, which 

requires a strong real-time computing capability to efficiently 

handle the huge amount of IoT data in smart surveillance 

systems. 

Conventional CVS system is usually implemented in a 

centralized computing manner. With the explosive growth of 

surveillance devices and continuous enhancement of large-

scale of high-quality surveillance data in IoT environments, 

traditional paradigms with centralized processing are facing 

with more and more challenging issues. First, the gap between 

capabilities of data processing in cloud and speed of 

surveillance data generation is growing bigger. It is predicted 

that, only the data collected by the camera will exceed 869PB 

by the end of 2020. Second, the transmission of huge amounts 

of data across CVS systems requires high bandwidth, which 

calls for new techniques to realize the real time, low latency, 

energy efficiency, and high accuracy surveillance tasks [4]. It is 

essential to design a new edge-cloud surveillance infrastructure, 

in which the massive computing tasks are transferred from the 

central cloud server to edge servers. Thus, the well-trained AI 

models can be deployed in edge servers, to build a smart IoT 

system and effectively solve the above time-consuming 

problems in a distributed and reliable computing manner. 

State-of-the-art techniques have achieved significant results 

for object detection in fixed static scenes, however, it still feels 

difficult when dealing with complex dynamic scenes. Tasks of 

object tracking and detection in dynamic scenes are often 

affected by multiple factors including location, density, moving 

state, and illumination changes. Moreover, current smart 

applications in dynamic surveilling environments, such as 

visual object detection [5], emotion analysis and identification 

recognition [6], require real-time data control, processing and 

communications [7]. Traditional strategies are no longer 

available in end devices, due to their high requirements on 

computing resources, management and storage capabilities. 

Therefore, it is necessary to exploit the lightweight learning 

model for intelligent object detection, and deploy the efficient 
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training process in edge devices [8, 9], in order to realize the 

newly established edge-cloud surveillance with smart IoT 

application development. 

In this study, to overcome the above problems and meet the 

need of real-time control and analysis in big data surveilling 

environments, we aim to implement a distributed end-edge-

cloud surveillance with smart IoT system. In particular, an 

intelligent object detection method is proposed to recognize 

multiple moving targets with different sizes in dynamic scenes. 

To optimize the limited computing sources, the surveillance 

data is compressed and key features are extracted in the end. A 

lightweight learning model with a newly designed deep neural 

network structure is deployed in the edge, which may 

efficiently improve the training process, and further facilitate 

the smart application development in the cloud. Our 

contributions are mainly concluded as follows. 

i) A three-layer of “end-edge-cloud” architecture is built, 
which can realize data compression and feature 
extraction in the end, multi-level feature fusion and 
lightweight model training in the edge, and smart 
application deployments in the cloud, for the real-time 
surveillance and analysis in intelligent IoT systems. 

ii) An integrated learning model, called A-YONet, is 
proposed, in which a newly designed network structure 
is constructed by combining the advantages of YOLO 
and Multi-Task Convolutional Neural Network 
(MTCNN), and a multi-level feature fusion mechanism 
is developed to enhance the training efficiency during 
feature mapping for multiple targets with different sizes. 

iii) A multi-target detection algorithm is developed, in 
which a clustering-based pre-adjusting scheme for 
anchor box is designed to improve the precision when 
coping with multiple moving objects in real surveillance 
systems. 

The rest of this article is organized as follows. Section II 

presents an overview of related works. In Section III, we 

introduce the infrastructure of the end-edge-cloud surveillance 

system, and the detailed network architecture of our proposed 

learning model. Algorithm and mechanism for multi-target 

detection are discussed in Section IV. In Section V, we 

demonstrate the experiment and evaluation results using real-

world datasets. We conclude this study and give a promising 

perspective on future research in Section VI.  

II. RELATED WORK  

A. Cloud Video Surveillance with Edge Computing 

In IoT application environments, surveillance data is 

captured by a series of sensor devices distributed in various 

places. Considering its advantages of low bandwidth, low 

latency, high reliability and scalability, edge computing has 

been successfully applied to many fields, such as medical care 

[10], autonomous driving [11], remote acoustic detection [12], 

and achieved satisfactory results. Ananthanarayanan et al. [13] 

discussed the application of edge computing to CVS. They 

argued that this would make it possible to build a low-cost 

surveillance analysis system, and solve the problem of high 

demand for latency and bandwidth in surveillance applications. 

In particular, Xu and Helal [14] proposed an edge computing 

enabled architecture which considered the expansion of IoT 

with its scalability features. An event-driven programming 

model was built to deal with scaling behaviors and increase the 

flexibility of this newly designed architecture. To improve the 

transmission efficiency, Guo et al. [15] introduced an adaptive 

compression scheme, which could help end devices compress 

and transmit data without reducing the accuracy of target 

detection. Sun et al. [16] presented a video usefulness model 

based on edge computing, which could quickly screen out 

faulty devices for online failure detection, and thus relieved the 

network bandwidth across large-scale video surveillance 

systems. To reduce the workload of the backbone network and 

cloud, Wang et al. [17] adopted a resource allocation scheme 

which could dynamically adjust the computing resources 

among the three layers of end, edge, and cloud, so as to adapt 

to the actual situation. 

B. Intelligent Object Detection in IoT 

Intelligent object detection is an important technology in the 
field of computer vision, which plays a significant role in 
solving many problems related to IoT in modern society with 
video surveillance and remote control [18]. Extracting the 
valuable information from background area has been proved as 
effective means for object detection. Ebadi et al. [19] proposed 
an approximated robust principal component analysis method, 
to deal with the sequential surveillance data and obtain crisp 
object regions based on a dynamic tree-structured sparse matrix. 
Recently, deep learning models have been employed to improve 
object detections in IoT systems with smart sensors, which 
shows distinctive ability in pursuing higher accuracy and 
efficiency. Ren et al. [20] integrated a region proposal network 
with the Faster-RCNN, in which their shared convolutional 
features were utilized to improve the accuracy of real-time 
object detection. Peng et al. [21] designed a environment 
estimation scheme, in which the non-convex geometry 
information and texture information were incorporated into a 
general light reflection model, in order to improve the 
composite detection efficiency and optimize the lighting 
estimation accuracy. Liu et al. [22] constructed a single deep 
neural network, which could generate multiple feature maps to 
detect objects with various sizes. It is noted that traditional 
learning models may consume lots of computing resources, thus 
are not suitable to be directly deployed in IoT devices. Newly 
designed architectures with a small number of parameters, such 
as KPNet [23] and SquuezeNet [24], were considered to 
facilitate intelligent object detections in modern surveillance 
systems. Ahmed et al. [25] investigated applications of different 
CNN algorithms in IoT domain. In particular, they tested the 
Faster-RCNN and Mask-RCNN models trained by a new 
overhead view dataset. The results demonstrated the potential 
of these models in multiple object detections. Guo et al. [26] 
focused on context-aware object detection in an edge-cloud 
cooperation way. They built a deep learning based model in 
cloud server, and utilized a message-passing method to explore 
features based on spatial relations between objects and adjust 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

the detection model.  

III. INTELLIGENT END-EDGE-CLOUD SURVEILLANCE SYSTEM 

In this section, the infrastructure of an intelligent end-edge-
cloud surveillance system with its fundamental function 
modules is introduced. A framework of newly designed neural 
network model is then discussed to realize the multi-target 
detection based on a deep learning scheme in smart IoT systems. 

A. Infrastructure for Intelligent End-Edge-Cloud 
Surveillance System 

To tackle the real-time object detection and analysis of huge 

amount surveillance data across IoT networks in CVS 
environments, a three-layer “end-edge-cloud” surveillance 
system based on different IoT devices is designed. Precisely, it 
includes the End Data Processing Layer, Edge Model Training 
Layer, and Cloud Application Development Layer, to realize 
the data acquisition and compression in the end, multi-feature 
fusion and lightweight model training in the edge, and smart 
applications in the cloud respectively. The system infrastructure 
with detailed functional components is illustrated in Fig. 1. 

 

 
Fig.1. Infrastructure of End-Edge-Cloud Surveillance System in Smart IoT  

 

End Data Processing (EDP) Layer: This layer is in charge 
of data collection and processing based on several sets of IoT 
sensors. Taking the video stream captured by cameras as an 
example, the data stream in this layer will be split into several 
segments, and only the key image frames containing the 
important information for target identification will be 
transmitted to the next layer. 

Edge Model Training (EMT) Layer: This layer is mainly 
responsible for completing data analysis and target detection. 
We deploy a lightweight learning model using an improved 
deep neural network structure in this layer, which can bring in 
a better balance between the detection efficiency and resource 
consumption. 

Cloud Application Development (CAD) Layer: This layer 
provides a programming platform and operating environment 
for different applications. Connecting with the cloud database, 
smart applications, such as event alarm and traffic statistics, can 
be safely deployed in this layer. In addition, this layer can 
collaborate with the EMT layer to balance the compute power 
as well. 

Based on the three-layer “end-edge-cloud” system discussed 
above, the problem investigated in this study can be formalized 
as follows. Given a generated image frame set 𝐹 = {𝑓1, 𝑓2, … }, 
in which we assume each image frame 𝑓𝑖 contains several target 
objects, the goal of this study is to design an efficient detection 
method to identify as many objects as possible in each 𝑓𝑖. To 
address this problem, 𝐺𝑖 is defined to represent the set of actual 
objects for 𝑓𝑖  as the ground truth, in which 𝑔𝑖𝑗  is the 𝑗_𝑡ℎ  element of 𝐺𝑖 . More precisely, 𝑔𝑖𝑗  is composed of the 
detailed location of the object as (𝑥𝑔𝑖𝑗 , 𝑦𝑔𝑖𝑗 , 𝑤𝑔𝑖𝑗 , ℎ𝑔𝑖𝑗) and its 
corresponding class as 𝑐𝑙𝑎𝑠𝑠𝑔𝑖𝑗 . 𝑇𝑖  is defined to represent the 
set of detected objects for 𝑓𝑖, in which 𝑡𝑖𝑙 is the 𝑙_𝑡ℎ element of 𝑇𝑖 . Likewise, 𝑡𝑖𝑙   is composed of (𝑥𝑡𝑖𝑙 , 𝑦𝑡𝑖𝑙 , 𝑤𝑡𝑖𝑙 , ℎ𝑡𝑖𝑙)  and the 

corresponding 𝑐𝑙𝑎𝑠𝑠𝑡𝑖𝑙  as well. Accordingly, the goal of this 
study can be formulated as to minimize the gap between the 
detected targets (𝑥𝑇 , 𝑦𝑇 , 𝑤𝑇 , ℎ𝑇, 𝑐𝑙𝑎𝑠𝑠𝑇)  and the ground truth (𝑥𝐺 , 𝑦𝐺 , 𝑤𝐺 , ℎ𝐺 , 𝑐𝑙𝑎𝑠𝑠𝐺)  for all the image frames in 𝐹 , which 
can be addressed as follows. Φ=arg  min𝑇 ∑ √(𝑥𝑇𝑖 − 𝑥𝐺𝑖 )2 + (𝑦𝑇𝑖 − 𝑦𝐺𝑖)2𝑖                        

s.t. { 𝑐𝑙𝑎𝑠𝑠𝐺𝑖 = 𝑐𝑙𝑎𝑠𝑠𝑇𝑖|𝑤𝑇𝑖 × ℎ𝑇𝑖 − 𝑤𝐺𝑖 × ℎ𝐺𝑖| ≤ 𝜀|𝑤𝑇𝑖 − 𝑤𝐺𝑖| + |ℎ𝑇𝑖 − ℎ𝐺𝑖| ≤ 𝜖                      (1)  

where 0 < 𝜀 < 0.01  and 0 < 𝜖 < 0.1  are the corresponding 
thresholds.  

B. Basic Framework of A-YONet Model 

We propose a multi-target detection model based on the 

combination of YOLOv3 and MTCNN, which is called as 

Advanced YONet (A-YONet), and deploy it in the “end-edge-

cloud” surveillance system to improve the detection 

performance from the large amount of CVS data. Specifically, 

YOLOv3, an end-to-end method for object detection based on 

non-regional candidates, is employed and developed for feature 

extraction. Since the traditional YOLO model utilizes so many 

convolution layers, which results in a large storage usage and 

low detection speed in constrained environments, we introduce 

the O-Net, the last component in MTCNN, as the filter of 

candidate targets.  The basic framework of the A-YONet is 

illustrated in Fig. 2. 

The default size of the input data in the A-YONet is 416 x 

416, which will be divided into 𝑆 ×  𝑆  grids with the same 

width and height for feature extraction. The Darknet-53 without 

the fully connection layer, which is the backbone network of 

YOLOv3 and consists of a series of CBL (i.e., convolution 

layers, batch normalization layers, and Leaky ReLU layers) 

units, is selected as the feature extractor in the model. To get a 
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smaller, faster and better model that can run in constrained 

environments, we use 1 × 1 convolution layer to replace the 

usually used 3 × 3 convolution layer when the size of filters is 

1024. Furthermore, we design a feature fusion strategy to 

integrate the low-level and high-level feature maps for better 

feature representations. The size of the anchor box is re-

adjusted based on a clustering scheme, which can accelerate the 

convergence compared with the traditional random selection 

scheme. Finally, the O-Net in MTCNN based on the shallow 

network, is utilized to filter the candidates, and pursue a high 

efficiency for multi-target detection. 

 

 
Fig.2. Network Architecture of A-YONet 

 

IV. MULTI-TARGET ORIENTED OBJECT DETECTION IN 

SMART IOT SYSTEM 

 In this section, we discuss the detailed mechanism and 

implementation of the proposed A-YONet, including the 

anchor box adjusting mechanism, multi-level feature fusion 

strategy, and multi-target detection algorithm. 

A. Pre-Adjusting Scheme for Anchor Box 

We introduce a clustering scheme to adjust the anchor boxes 
in terms of the prediction of bounding boxes in the A-YONet 
model. Following the training of YOLO model, we can obtain (𝑥𝜆, 𝑦𝜆, 𝑤𝜆, ℎ𝜆) to represent the translational positions and the 
corresponding changes of size for the anchor box, which can be 
used to predict four coordinates for each bounding box. Given 
the 𝑛_𝑡ℎ  bounding box 𝑏𝑖𝑛  for target 𝑡𝑖𝑙 , the prediction of its (𝑥𝑏𝑖𝑛 , 𝑦𝑏𝑖𝑛 , 𝑤𝑏𝑖𝑛 , ℎ𝑏𝑖𝑛) is shown in Fig. 3, and can be formulated 
as follows.  𝑥𝑏𝑖𝑛 = 𝜎(𝑥𝜆) + 𝑥𝑔𝑟𝑖𝑑𝑦𝑏𝑖𝑛 = 𝜎(𝑦𝜆) + 𝑦𝑔𝑟𝑖𝑑𝑤𝑏𝑖𝑛 = 𝑤𝑎𝑚 ∙ 𝑒𝑤𝜆ℎ𝑏𝑖𝑛 = ℎ𝑎𝑚 ∙ 𝑒ℎ𝜆

                                  (2) 

where 𝑤𝑎𝑚  and ℎ𝑎𝑚  indicate the corresponding width and 
height of the 𝑚_𝑡ℎ anchor box 𝑎𝑚. Function 𝜎(∗) is utilized to 

normalize the value between 0 and 1. (𝑥𝑔𝑟𝑖𝑑 , 𝑦𝑔𝑟𝑖𝑑) represents 

the position of the upper left corner of the current grid. 

A cluster center set 𝐶 is defined to describe characteristics in 
terms of the size of objects, which will be further used to adjust 
the size of the anchor box. Concretely, we randomly select K 
elements from {𝐺𝑖} as the cluster center to initialize the set 𝐶, 
and the clustering will be generated based on the distance 
calculation according to the width and height (𝑤𝑔𝑖𝑗 , ℎ𝑔𝑖𝑗)  of 
each element 𝑔𝑖𝑗. Following this process, we can assign all the 

elements in {𝐺𝑖} to its closest center, and generate K clusters. 
We keep update the cluster center 𝐶 by calculating the average 
width and height until 𝐶 does not change anymore. 

 

 
Fig.3. Prediction of Position for Bounding Box 

 

Given 𝑐𝑜 represents the 𝑜_𝑡ℎ cluster center of C, the distance 𝑑(𝑔𝑖𝑗 , 𝑐𝑜) between 𝑔𝑖𝑗 and 𝑐𝑜 can be calculated as follows. 𝑑(𝑔𝑖𝑗 , 𝑐𝑜) = 1 − 𝐼𝑜𝑈(𝑔𝑖𝑗 , 𝑐𝑜)                             (3) 
where 𝐼𝑜𝑈(𝑔𝑖𝑗 , 𝑐𝑜)  indicates the ratio of the overlap part of the 

two regions 𝑔𝑖𝑗  and 𝑐𝑜 . The detailed calculation can be 

expressed in Eq. (4). 𝐼𝑜𝑈(𝑔𝑖𝑗 , 𝑐𝑜) = 𝑆𝑔𝑖𝑗∩𝑐𝑜𝑆𝑔𝑖𝑗∪𝑐𝑜                                   (4) 

where 𝑆𝑔𝑖𝑗∩𝑐𝑜 is the intersection of 𝑔𝑖𝑗 and 𝑐𝑜, while 𝑆𝑔𝑖𝑗∪𝑐𝑜 is 
the corresponding union of  𝑔𝑖𝑗 and 𝑐𝑜. 

B. Multi-Level Feature Fusion Mechanism 

The Darknet-53 network in YOLOv3 has excellent feature 
extraction performance, because it calculates the feature 
hierarchy layer by layer based on a series of convolution 
networks. Feature maps can then be generated based on the 
feature hierarchy with different spatial resolutions by increasing 
the step size of convolution kernel. Consequently, it gradually 
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reduces the  𝑁 × 𝑁  input key image frame to 132 × 𝑁 × 𝑁. The 
generation process of each layer of feature map is described as 
follows. 𝑓𝑚𝑖𝑟 = { 𝐴𝑐𝑡𝑖𝑜𝑛(𝑓𝑖), 𝑟 = 0𝐴𝑐𝑡𝑖𝑜𝑛(𝑓𝑚𝑖𝑟−1), 𝑟 = 1,2, … ,74                 (5) 

where 𝑓𝑚𝑖𝑟  indicates the 𝑟_𝑡ℎ  layer feature map of 𝑓𝑖 , 𝐴𝑐𝑡𝑖𝑜𝑛 ∈ {𝑎𝑐𝑡𝐶𝑜𝑛𝑣, 𝑎𝑐𝑡𝐵𝑁, 𝑎𝑐𝑡𝐿𝑅, 𝑎𝑐𝑡𝐴𝑑𝑑} stands for the action 

of convolution, batch normalization, Leaky ReLU activation 

function, and tensor addition, in the 𝑟_𝑡ℎ layer. 

We thus introduce a multi-level feature fusion strategy to 

realize the different scales of fusion of feature maps. 

Specifically, the shape of the feature hierarchy is set as pyramid, 

and the low-resolution features with strong semantics and high-

resolution features with weak semantics are fused together 

based on deep-shallow connections. Thus, the detection 

accuracy can be improved by making a full use of all feature 

maps. The detailed fusion process can be described as follows. 𝑓𝑓𝑚𝑖𝑝 = 𝑎𝑐𝑡𝐶𝑜𝑛𝑣(𝑎𝑐𝑡𝐹𝐶(𝑎𝑐𝑡𝑈𝑆(𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ), 𝑓𝑚𝑖𝑟𝑙𝑜𝑤)))         (6) 
where 𝑓𝑓𝑚𝑖𝑝 indicates the 𝑝_𝑡ℎ fused feature map. 𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ  and 𝑓𝑚𝑖𝑟𝑙𝑜𝑤   indicate the high-resolution feature map and low-
resolution feature map respectively. 𝑎𝑐𝑡𝑈𝑆 stands for the action 
of upsampling, 𝑎𝑐𝑡𝐹𝐶 stands for the action of full connection, 
and 𝑎𝑐𝑡𝐶𝑜𝑛𝑣 stands for the action of convolution. 

During this feature fusion process, the size of the 

corresponding feature map 𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ  will be expanded by 2*2 

times while the number of channels will remain the same after 

upsampling, which will then be connected with the closest 

feature map 𝑓𝑚𝑖𝑟𝑙𝑜𝑤 of the same size after 𝑎𝑐𝑡𝑈𝑆(𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ). For 

instance, when 𝑝 = 1, 2, 3, after the final convolution, the size 

of fused feature map 𝑓𝑓𝑚𝑖1, 𝑓𝑓𝑚𝑖2, 𝑓𝑓𝑚𝑖3 will become 132, 
116, 18 of the original input sample respectively.  

Accordingly, in each fused feature map, the appropriate 
anchor box will be chosen based on the proposed clustering 
scheme to generate bounding boxes, and the O-Net in MTCNN 
can then filter the candidate targets with the corresponding 
bounding boxes more quickly based on the multi-level feature 
fusion. 

C. Multi-Target Detection Algorithm 

We design a multi-target detection mechanism based on the 
A-YONet model, to facilitate the intelligent detection in CVS, 
which can be described in Algorithm 1. 

According to Algorithm 1, the main structure of YOLO 
model ensures the fast speed in object detection, and the fusion 
of multi-level features can efficiently improve the accuracy in 
multi-target detection. In addition, the adjusted anchor box 
according to characteristics in terms of the size of objects can 
help to generate a bounding box which is more reasonable in an 
actual situation. Finally, the integration of MTCNN can 
enhance the detection precision by timely filtering the candidate 
targets for real-time analysis of moving objects in CVS. 

 

 

 

 

Algorithm 1: Multi-target detection algorithm based on A-YONet 
Input: The key image frameset retrieved from video stream 𝐹  

The ground truth {𝐺𝑖} 

Output: The trained model 𝑀A-YONet 

1:     Initialize the loss threshold 𝜎 for 𝑀A-YONet 
2:     Initialize 𝑙𝑜𝑠𝑠 = ∞ 

3:     Initialize 𝐾 = 3 ∗ 𝑞, 𝑞 ∈ {1,2, …} 

4:     Randomly select 𝐾 elements from {𝐺𝑖} to initialize the set 𝐶 

5:     while 𝐶 changed do: 
6:           for each 𝐺𝑖 do: 
7:              for each 𝑐𝑜 in 𝐶 do: 
8:                Calculate the distance 𝑑(𝑔𝑖𝑗 , 𝑐𝑜) for each element 𝑔𝑖𝑗 

in 𝐺𝑖 by Eq. (3) and (4) 
9:              end for 

10:              Assign 𝑔𝑖𝑗 to the closest center 
11:          end for  
12:          Update 𝐶  
13:     end while 

14:     {𝑎𝑚} =  𝐶 

15:     while 𝑙𝑜𝑠𝑠 > 𝜎 do: 
16:         for each 𝑓𝑖 from 𝐹 : 
17:             𝐹𝑀 = ∅ 

18:             Get feature map 𝑓𝑚𝑖𝑟 by Eq. (5) for each layer 𝑟 in  
Darknet-53 and set 𝐹𝑀 = 𝐹𝑀 ∪ 𝑓𝑚𝑖𝑟 

19:             for each 𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ : 
20:                  Fuse the lower- resolution feature maps 𝐹𝑀 and 

current (high- resolution) feature maps 𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ  to 
generate the fused feature maps 𝑓𝑓𝑚𝑖𝑝 by Eq. (6) 

21:              end for  
22:              Obtain the bounding box set 𝐵𝑖 = {𝑏𝑖𝑛} for 𝑓𝑖 based 

on 𝑓𝑓𝑚𝑖𝑝 by Eq. (2) with {𝑎𝑚} 

23:              Obtain 𝑇𝑖 by filtering bounding boxes 𝐵𝑖 with O-Net 
24:          end for 

25:          Update 𝑙𝑜𝑠𝑠 according to the prediction error between {𝑇𝑖} against {𝐺𝑖} 

26:     end while 

27:     return 𝑀A-YONet 

 

V. EXPERIMENT AND ANALYSIS 

In this section, to investigate the effectiveness of the 
proposed A-YONet model for multi-target detection, we 
conduct evaluation experiments based on two datasets, 
including one public dataset and one homemade dataset 
obtained from the CVS system respectively. 

A. Dataset and Experiment Design 

To train and test our model in resource-constrained 
embedded platform, we choose Jetson TX1 with 6GB memory 
and 256 CUDA cores NVIDIA Maxwell GPU as the single-
board chip, which has a computing power of one TFLOPs and 
a peak power consumption of only 10W. We set gn6i as our 
server, which has 2560 CUDA cores and a computing power of 
65 TFLOPs. The training parameters of the A-YONet are shown 
in Table I. 

The PASCAL VOC dataset is widely used for evaluation of 
classification and detection, which contains 20 kinds of objects 
ranging from person, animals, vehicles and household. Unlike 
images of specific light and background taken in the laboratory, 
PASCAL VOC consists of images collected from the Internet, 
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and each image includes several kinds of objects. Thus, it can 
be used to evaluate algorithms in different scenes and be more 
similar to the real detection environment for surveillance. 
Specifically, the VOC 2007 and 2012 are chosen as the training 
and validation datasets in this experiment, which contain 16551 
images and 40058 objects with annotations of classes and 
positions. 

 

TABLE I 
BASIC SETTING OF NETWORK PARAMETERS 

Parameter Setting Value 

Learning Rate 0.0001 

Epoch 5000 

Batch Size 32 

Weight Decay 0.0005 

 

In addition to the public dataset, we deploy the proposed 
intelligent surveillance system in the university campus, which 
results in a large homemade dataset based on several real scenes, 
including 7043 images from classrooms and other public areas. 
Objects covered in this dataset include person, books, bags, 
bottles, cell phones, and etc. The re-adjusted sizes of anchor box 

based on our clustering scheme are shown in Fig. 4. 
 

 
Fig.4. Adjusted Size of Anchor Box 

B. Comparison Experiment Using Public Dataset 

We first compare the training efficiency of our method with 
three traditional object detection methods: YOLOv3, Faster R-
CNN, and SSD. As shown in Fig. 5, it is found that A-YONet 
can better locate the grid of candidate objects and converge 
faster during the training process. Because the proposed method 
uses a more precise mechanism for anchor box adjusting, which 
can efficiently reduce the losses in height and width of the 
bounding box, and accurately locate the coordinate of those 
candidates. 

 

(a) (b) (c) (d) 
Fig.5. Training Efficiency Comparisons Among Different Methods 

 

Table II shows the comparison results among the four 

methods according to Average Intersection-over-Union (IoU) 

and Frames Per Second (FPS). Average IoU refers to the 

average value of the coincidence degree between the detected 

candidate bounding box and the ground truth bounding box. 

The larger the Average IoU, the more consistent the detected 

result is with the actual situation. FPS represents the number of 

frames detected per second, which can be used to describe the 

speed of the object detection. 
 

TABLE II 
PERFORMANCE COMPARISONS FOR DIFFERENT DETECTION METHODS.  
Method  YOLOv3 Faster R-CNN SSD  A-YONet 
Average 

IoU  0.756 0.774 0.762 0.787 

FPS  49 15 17 48 

 

As shown in Table II, according to Average IoU, the 
performance of A-YONet is 0.031 higher than YOLOv3, 0.025 
higher than SSD, and 0.13 higher than Faster R-CNN. This can 
be explained as the adjustment of the anchor box can efficiently 
improve the detection performance. On the other hand, 
according to FPS, the A-YONet is much faster than Faster R-
CNN and SSD, and only a little slower than YOLOv3. This 
result indicates that the combination of O-Net will not lose a lot 

of time advantage.  
 

 
Fig.6. Comparisons Based on Precision-Recall Curve for Different 

Methods 

 

Furthermore, Fig. 6 shows the results based on Precision-
Recall curve for all the four methods. The results demonstrate 
that the performance of A-YONet is between Fast R-CNN and 
YOLOv3. In addition, we evaluate detection performances of 
the four methods among different classes according to Mean 
Average Precision (mAP). As shown in Table III, the A-YONet 
improves the detection precision by 5.4% compared with 
YOLOv3, 2.0% compared with Faster R-CNN, and nearly 9.6% 
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compared with SSD. In details, performances of the A-YONet 
in all the 20 kinds of objects are better than YOLOv3 and SSD. 
Except classes of bottle, potted plant, and sheep, performances 
of the A-YONet in the other 17 kinds of objects are better than 
Faster R-CNN.  

 

TABLE III 
COMPARISONS AMONG DIFFERENT CLASSES 

Class 
YOLOv3 

(%) 
Faster R-CNN 

(%)  
SSD 
(%) 

A-YONet 
(%) 

Aero plane 84.5 85.4 83.1 86.1 

Bicycle 80.2 86.2 81.3 87.8 

Bird 71.6 73.6 73.9 74.2 

Boat 68.7 69.2 58.9 69.9 

Bottle 67.1 68.9 51.2 67.4 

Bus 84.3 87.9 79.8 88.3 

Car 75.7 84.5 75.8 85.1 

Cat 84.1 88.9 88.3 89.2 

Chair 64.7 66.2 51.9 67.1 

Cow 77.6 82.7 78.1 83.5 

Dining table 56.7 74.4 58.2 75.7 

Dog 84.3 86.7 87.6 89.0 

Horse 82.4 82.1 82.2 84.3 

Motorbike 82.5 85.7 80.9 83.9 

Person 79.8 81.7 81.4 83.2 

Potted plant 57.6 60.7 40.6 59.3 

Sheep 76.8 78.6 72.7 77.4 

Sofa 61.7 78.8 62.5 79.6 

Train 83.8 82.3 83.2 84.2 

Tv/monitor 62.1 78.7 68.9 79.2 

mAP 74.3 77.7 70.1 79.7 

C. Performance Evaluation in CVS System 

We go further to compare detection performances of the four 
methods in a typical CVS system. Fig. 7 shows the precision 

results of different methods in detecting five kinds of objects in 
real-world. Obviously, the A-YONet achieves a better 
performance than the other three methods. This is because the 
proposed method efficiently leverages the fused features in both 
high and low layers, which is very important in improving the 
detection precision.  

 

Fig.7. Precision Results of Different Methods on Five Different Objects 

 

Fig. 8 demonstrates detection results of the four methods in 
two different surveilling scenarios, namely the classroom and 
hallway. It can be observed that performances of YOLOv3 and 
SSD are worse than Faster R-CNN. Although the Faster R-CNN 
can detect almost all the people in the two scenarios, some 
targets are wrongly detected and a few of books and bottles are 
missed. Contrastively, the A-YONet model outperforms the 
other three methods in both classroom and hallway 
environments, which indicates the outstanding capability of our 
method in multi-target detection among different real 
surveilling environments.  

 

 
Multi-Target Detection in Classroom 

Multi-Target Detection in Hallway  
(a)                               (b)                 (c)                (d)  
Fig.8. Performance Comparisons on Multi-Target Detection. (a) YOLOv3. (b) Faster R-CNN. (c) SSD. (d) A-YONet 

 

VI. CONCLUSION 

In this paper, we investigated the real-time surveillance in 

smart IoT systems, and proposed a multi-target detection 

method, which could be deployed in an end-edge-cloud 

surveillance system, to facilitate the lightweight training and 

multi-level feature learning with limited computing sources in 

IoT environments. 

In particular, a three-tier system infrastructure was 

introduced for the intelligent surveillance based on an end-

edge-cloud architecture, in which the EDP layer was designed 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

to deal with data compression and feature extraction in the end, 

the EMT layer was responsible for multi-level feature fusion 

and lightweight model training in the edge, and the CAD layer 

was employed for smart applications in the cloud. An integrated 

deep neural network model called A-YONet, which was 

constructed by utilizing both advantages of YOLO and 

MTCNN, was newly designed to realize the lightweight 

training and feature learning with limited computing sources. A 

pre-adjusting mechanism for anchor box was devised based on 

a clustering scheme to dynamically change the bounding boxes, 

and a multi-level feature fusion mechanism was introduced to 

enhance the training efficiency when handling multiple targets 

with different sizes during feature mapping processes.  A multi-

target detection algorithm was finally developed, which could 

improve the precision when dealing with multiple moving 

objects for real-time surveillance. Experiments were designed 

and conducted using two datasets: one public dataset and one 

homemade dataset in a real surveillance system. Evaluation 

results demonstrated the effectiveness of our proposed model 

and method for real-time surveillance in smart IoT systems, 

comparing with three baseline methods. 

In the future, we will further study more deep learning 
schemes to enhance the detection accuracy and efficiency in the 
edge computing environment. More evaluations in different 
dynamic scenes will be investigated to improve the adaptability 
of our method. 
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