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Abstract

Predicting face attributes in the wild is challenging due

to complex face variations. We propose a novel deep

learning framework for attribute prediction in the wild.

It cascades two CNNs, LNet and ANet, which are fine-

tuned jointly with attribute tags, but pre-trained differently.

LNet is pre-trained by massive general object categories for

face localization, while ANet is pre-trained by massive face

identities for attribute prediction. This framework not only

outperforms the state-of-the-art with a large margin, but

also reveals valuable facts on learning face representation.

(1) It shows how the performances of face localization

(LNet) and attribute prediction (ANet) can be improved

by different pre-training strategies. (2) It reveals that

although the filters of LNet are fine-tuned only with image-

level attribute tags, their response maps over entire images

have strong indication of face locations. This fact enables

training LNet for face localization with only image-level

annotations, but without face bounding boxes or landmarks,

which are required by all attribute recognition works. (3)

It also demonstrates that the high-level hidden neurons of

ANet automatically discover semantic concepts after pre-

training with massive face identities, and such concepts are

significantly enriched after fine-tuning with attribute tags.

Each attribute can be well explained with a sparse linear

combination of these concepts.

1. Introduction

Face attributes are beneficial for multiple applications

such as face verification [15, 2, 24], identification [20], and

retrieval. Predicting face attributes from images in the wild

is challenging, because of complex face variations such as

poses, lightings, and occlusions as shown in Fig.1.

Attribute recognition methods are generally categorized

into two groups: global and local methods. Global methods

extract features from the entire object, where accurate
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Figure 1. (a) Inaccurate localization and alignment lead to prediction

errors on attributes by existing methods (b) LNet localizes face regions by

averaging the response maps of attribute filters. ANet predicts attributes

without alignment (c) Face localization with the averaged response map

when LNet is trained with different numbers of attributes. (Best viewed in

color)

locations of object parts or landmarks are not required.

They are not robust to deformations of objects [23]. Recent

local models [15, 4, 5, 2, 19, 32] first detect object parts

and extract features from each part. These local features

are concatenated to train classifiers. For example, Kumar et

al. [15] predicted face attributes by extracting hand-crafted

features from ten face parts. Zhang et al. [32] recognized

human attributes by employing hundreds of poselets [4]

to align human body parts. These local methods may fail

when unconstrained face images with complex variations

are present, which makes face localization and alignment

difficult. As shown in Fig.1 (a), HOG+SVM fails because

the faces or landmarks are wrongly localized or misaligned.

Thus the features are extracted at wrong positions [25].

Recent research shows that face localization and alignment

are still not well solved problems, especially in the wild

condition, although much progress has been achieved in the

past decade. It is also proved by our experimental result.
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This work revisits global methods by proposing a novel

deep learning framework, which integrates two CNNs,

LNet and ANet, where LNet locates the entire face region

and ANet extracts high-level face representation from the

located region. The novelties are in three aspects. Firstly,

LNet is trained in a weakly supervised manner, i.e. only

image-level attribute tags of training images are provided,

making data preparation much easier. This is different from

training face and landmark detectors, where face bounding

boxes and landmark positions are required. LNet is pre-

trained by classifying massive general object categories,

such that its pre-trained features have good generalization

capability on handling large background clutters. LNet is

then fine-tuned by attributes tags. We demonstrate that fea-

tures learned in this way are effective for face localization

and also can distinguish subtle differences between human

faces and analogous patterns, such as a cat face.

Secondly, ANet extracts discriminative face represen-

tation, making attribute recognition from the entire face

region possible. ANet is pre-trained by classifying massive

face identities and is fine-tuned by attributes. We show that

the pre-training step enables ANet to account for complex

variations in the unconstrained face images.

Thirdly, within the rough locations of face regions

provided by LNet, averaging the predictions of multiple

patches can improve the performance. A simple way is

to evaluate the feed-forward pass for each single patch.

However, it is slow and has a lot of redundant computation.

A novel fast feed-forward scheme is proposed to replace

patch-by-patch evaluation. It evaluates images with arbi-

trary sizes with only one-pass feed-forward operation. It

becomes non-trivial if the filters are locally shared, while

studies [27, 26] showed that locally shared filters perform

better in face related tasks. This is solved by proposing an

interweaved operation.

Besides proposing new methods, our framework also

reveals valuable facts on learning face representation. They

not only motivate this work but also benefit future research

on face and deep learning. (1) It shows how pre-training

with massive object categories and massive identities can

improve feature learning for face localization and attribute

recognition, respectively. (2) It demonstrates that although

filters of LNet are fine-tuned by attribute tags, their response

maps over the entire image have strong indication of face

location. Good features for face localization should be able

to capture rich face variations, and more supervised infor-

mation on these variations improves the learning process.

The examples in Fig. 1 (a) show that as the number of

attributes decreases, the localization capability of learned

neurons gets reduced dramatically. (3) ANet is pre-trained

with massive face identities. It discloses that the pre-trained

high-level hidden neurons of ANet implicitly learn and

discover sematic concepts that are related to identity, such

as race, gender, and age. It indicates that when a deep

model is pre-trained for face recognition, it implicitly learns

attributes. The performance of attribute prediction drops

without this pre-training stage.

The main contributions are summarized as follows.

(1) We propose a novel deep learning framework, which

combines massive objects and massive identities to pre-train

two CNNs for face localization and attribute prediction,

respectively. It achieves state-of-the-art attribute classifi-

cation results on both the challenging CelebFaces [26] and

LFW [12] datasets, improving existing methods by 8 and

13 percent, respectively. (2) A novel fast feed-forward

algorithm for CNN with locally shared filters is devised. (3)

Our study reveals multiple valuable facts on leaning face

representation by deep models. (4) We also contribute a

large facial attribute database with more than eight million

attribute labels and it is 20 times larger than the largest

publicly available dataset.

1.1. Related Work

Extracting hand-crafted features at pre-defined land-

marks has become a standard step in attribute recognition

[9, 15, 4, 2]. Kumar et al. [15] extracted HOG-like features

on various face regions to tackle attribute classification

and face verification. To improve the discriminativeness

of hand-crafted features given a specific task, Bourdev et

al. [4] built a three-level SVM system to extract higher-

level information. Deep learning [18, 34, 23, 7, 19, 32,

31, 13, 33, 22, 3, 28] recently achieved great success in

attribute prediction, due to their ability to learn compact and

discriminative features. Razavian et al. [23] and Donahue

et al. [7] demonstrated that off-the-shelf features learned

by CNN of ImageNet [13] can be effectively adapted to

attribute classification. Zhang et al. [32] showed that

better performance can be achieved by ensembling learned

features of multiple pose-normalized CNNs. The main

drawback of these methods is that they rely on accurate

landmark detection and pose estimation in both training and

testing steps. Even though a recent work [31] can perform

automatic part localization during test, it still requires

landmark annotations of the training data.

2. Our Approach

Framework Overview Fig.2 illustrates our pipeline

where LNet locates the entire face region in a coarse-to-

fine manner as shown in (a) and (b), while ANet extracts

features for attribute recognition as shown in (c).

Different from existing works that rely on accurate face

and landmark annotations, LNet is trained in a weak-

ly supervised manner with only image-level annotations.

Specifically, it is pre-trained with one thousand object

categories of ImageNet [6] and fine-tuned by image-level

attribute tags. The former step accounts for background
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Figure 2. The proposed pipeline of attribute prediction (Best viewed in color)

clutters, while the latter step learns features robust to

complex face variations. Learning LNet in this way not only

significantly reduces data labeling, but also improves the

accuracy of face localization. Both LNeto and LNets have

network structures similar to AlexNet [13], whose hyper

parameters are specified in Fig.2 (a) and (b) respectively.

The fifth convolutional layer (C5) of LNeto indicates head-

shoulders while C5 of LNets indicates faces, with their

highly responsed regions in their averaged response maps.

Moreover, the input xo of LNeto is a m × n image, while

the input xs of LNets is the head-shoulder region, which is

localized by LNeto and resized to 227× 227.

As illustrated in Fig.2 (c), ANet is learned to predict

attributes y by providing the input face region xf , which is

detected by LNets and properly resized. Specifically, multi-

view versions [13] of xf are utilized to train ANet. Further-

more, ANet contains four convolutional layers, where the

filters of C1 and C2 are globally shared and the filters of C3

and C4 are locally shared. The effectiveness of local filters

have been demonstrated in many face related tasks [25, 27].

To handle complex face variations, ANet is pre-trained by

distinguishing massive face identities, which facilitates the

learning of discriminative features.

Fig.2 (d) outlines the procedure of attribute recognition.

ANet extracts a set of feature vectors (FCs) by cropping

overlapping patches on xf . An efficient feed-forward

algorithm is developed to reduce redundant computation

in the feature extraction stage. SVMs [8] are trained to

predict attribute values given each FC. The final prediction

is obtained by averaging all these values, to cope with small

misalignment of face localization.

2.1. Face Localization

The cascade of LNeto and LNets accurately localizes

face regions by being trained on image-level attribute tags.

Pre-training LNet Both LNeto and LNets are pre-

trained with 1, 000 general object categories from the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVR-

C) 2012 [6], containing 1.2 million training images and

50 thousands validation images. All the data is employed

for pre-training except one third of the validation data

for choosing hyper-parameters [13]. We augment data by

cropping ten patches from each image, including one patch

at the center and four at the corners, and their horizontal

flips. We adopt softmax for object classification, which

is optimized by stochastic gradient descent (SGD) with

back-propagation (BP) [16]. As shown in Fig.3 (a.2), the

averaged response map in C5 of LNeto already indicates lo-

cations of objects including human faces after pre-training.

Fine-tuning LNet Both LNeto and LNets are fine-tuned

with attribute tags. Additional output layers are added to

the LNets individually for fine-tuning and then removed for

evaluation. LNeto adopts the full image xo as input while

LNets uses the highly responsed region xs in the averaged

response map in C5 of LNeto as input, which roughly re-

spond to head-shoulders. The cross-entropy loss is used for

attribute classification, i.e. L =
∑

i=1 yi log p(yi|x)+(1−
yi) log

(

1 − p(yi|x)
)

, where p(yi = 1|x) = 1
1+exp(−f(x))

is the probability of the i-th attribute given image x. As

shown in Fig.3 (a.3), the response maps after fine-tuning

become much more clean and smooth, indicating that the

filters learned by attribute tags can detect face patterns with

complex variations. To appreciate the effectiveness of pre-

training, we also include the averaged response map in C5

of being directly trained from scratch with attribute tags but

without pre-training in Fig.3 (a.4). It cannot separate face

regions from background and other body parts well.

Thresholding and Proposing Windows We show that

the responses of C5 in LNet are discriminative enough

to separate faces and background by simply searching a

threshold, such that a window with response larger than

this threshold corresponding to face and otherwise is back-
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Figure 3. (a.1) Original image. (a.2)-(a.4) are averaged response maps

in C5 of LNeto after pre-training (a.2), fine-tuning (a.3) and directly

training from scratch with attribute tags but without pre-training (a.4). (b)

Determine threshold.

ground. To determine the threshold, we select 2000 images,

each of which contains a single face, and 2000 background

images from SUN dataset [29]. For each image, EdgeBox

[35] is adopted to propose 500 candidate windows, each of

which is measured by a score that sums over its response

values normalized by its window size. A larger score

indicates the localized pattern is more likely to be a face.

Each image is then represented by the maximum score over

all its windows. In Fig.3 (b), the histogram of the maximum

scores shows that these scores clearly separate face images

from background images. The threshold is chosen as the

decision boundary as shown in Fig.3 (b). More results

are given in Fig.6 (a), showing that the above strategy can

precisely localize face within a single test image. Since each

training image only contains one single face, we localize a

face region using the window with the largest score during

training.

To understand why rich attribute information enables

accurate face localization, one could consider the examples

in Fig.4. If only a single detector [17, 21] is used to

classify all the positive and negative samples in Fig.4 (a),

it is difficult to handle complex face variations. Therefore,

multi-view face detectors [30] were developed in Fig.4 (b),

i.e. face images in different views are handled by different

detectors. View labels were used in training detectors and

the whole training set is divided into subsets according to

views. If views are treated as one type of face attributes,

learning face representation by predicting attributes with

deep models actually extends this idea to extreme. As

shown in Fig.4 (c), a filter (or a group of filters) functions

as a detector of an attribute. When a subset of neurons

are activated, they indicate the existence of face images

with a particular attribute configuration. The neurons at

different layers can form many activation patterns, implying

that the whole set of face images can be divided into

many subsets based on attribute configurations, and each

activation pattern corresponds to one subset (e.g. ‘pointy

nose’, ‘rosy cheek’, and ‘smiling’). Therefore, it is not

surprising that filters learned by attributes lead to effective

representations for face localization.

...

(b) multi-view detector

...

...

(c) face localization by attributes (a) single detector

View NView 1 Attr Config 1

Brown Hair
Big Eyes
Smiling

LeftFrontal

Attr Config N

Male
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Figure 4. Face localization by attributes

2.2. Attribute Prediction

As shown in Fig.2 (c) and (d), ANet is learned to

extract features and SVM classifiers are used to predict

attributes. Specifically, in the pre-training stage, ANet is

trained by classifying massive face identities. In the fine-

tuning stage, we first extend the localized face region, which

is properly resized, with a small factor to incorporate more

context information. Then, multiple patches are cropped

from the enlarged face region and utilized as inputs of

ANet. ANet is fine-tuned by attributes to learn the high-

level feature FC. Furthermore, as shown in Fig.2 (d), each

feature vector is adopted to train SVM classifier for attribute

prediction. The above strategy is similar to the multi-

view data augmentation [13], increasing the robustness of

attribute recognition. In the testing stage, attributes are

predicted by averaging the SVM scores over all the patches.

Pre-training of ANet We introduce how to learn dis-

criminative features by pre-training ANet with a large num-

ber of identities. We select eight thousand face identities

from the CelebFaces [26] dataset, where each identity

has around twenty images. There are over 160 thousand

training images in total. A simple way to train ANet

is to classify eight thousand categories with the softmax

loss. However, it is challenging because the number of

samples of each identity is limited to maintain the intra-

class invariance. To improve intra-class invariance, we

employ the similarity loss similar to [26, 10]. It decreases

the distances between samples of the same identity. We

have L =
∑|D|

i=1,yi=yj
‖FCi −FCj‖

2
2, where FCi and FCj

denote the feature vectors of the i-th and j-th face images

respectively, and yi = yj indicates the identities of these

samples are the same. In summary, ANet is pre-trained by

combining the softmax loss and the similarity loss.

Efficient Feature Extractions In test, ANet is evaluated

on multiple patches of the face region as shown in Fig.2 (d),

leading to redundant convolutional computations because

of the large overlaps in these patches. When all the filters

are globally-shared, the computational cost can be reduced

by applying [11], which convolves the filters in the input

image and then obtains a feature vector for each patch by

pooling over the last convolutional layer. Given a simple

example with one convolutional layer as shown in Fig.5 (a),

the feature vector FC for each patch (e.g. rectangle in red)

can be extracted by pooling in the corresponding region of

the response map h(1), without evaluating convolutions in
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Figure 5. Detailed pipeline of efficient feature extractions in ANet.

the input image patch-by-patch. Therefore, it shares the

convolutions for every patch.

However, this scheme is not applicable when we have

more than two convolutional layers whose filters are

locally-shared. An example is illustrated in Fig.5 (b), where

each patch is equally divided into 3 × 3 = 9 cells and

we learn different filters for different cells. To reduce

computations in the first convolutional layer, each local

filter can be applied on the entire image, resulting in the

response map with nine channels, i.e. h
(1)
i and i = 1...9.

The final response map h(1) is obtained by cropping and

padding the regions (i.e. rectangles in black) in these 9

channels. As a result, each feature vector FC can be pooled

from h(1), without convolving the input image patch-

by-patch. Nevertheless, since h(1) is corresponded to a

patch of the input image, the succeeding local convolutions

have to be handled patch-by-patch, leading to redundant

computations.

To this end, we propose an interweaved operation, which

is a fast feed-forward method for CNN with locally-shared

filters. Suppose we have four local filters in the next locally

convolutional layer and each filter is applied on 2 × 2 cells

of h(1) as shown in (b). These cells are the receptive fields

of the filters, including {1, 2, 4, 5}, {2, 3, 5, 6}, {4, 5, 7, 8},

and {5, 6, 8, 9}. Instead of directly applying the local filters

on h1, the interweaved operation generates an interweaved

map I
(1)
i for each filter, where i = 1...4. Each local filter

is then apply on its corresponding interweaved map. Since

the interweaved map capturing the entire image, each local

filter is turned into a global filter such that its computation

can be shared across different patches.

Specifically, each interweaved map, e.g. I
(1)
1 , is achieved

by padding the cells of the corresponding channels in an

interweaved manner, e.g. h
(1)
i={1,2,4,5}, as shown in Fig.5

(d). All of the interweaved maps are illustrated in Fig.5

(c). After that, each of the four local filters is applied on its

corresponding interweaved map, leading to four response

maps h
(2)
i , where i = 1...4. As a result, the feature vector

FC is pooled and concatenated from the receptive fields of

the filters, which are the rectangles in black as shown in (c).

Intuitively, instead of padding cells according to the

receptive fields of all the local filters (e.g. h(1) in (b)),

which has to be performed in a patch-by-patch way, the

interweaved operation pads the cells with respect to the

receptive field of each local filter over the entire image. It

enables extracting multiple feature vectors with only one-

pass of feed-forward evaluation. This operation can be

repeated when more locally convolutional layers are added.

The proposed feature extraction scheme has achieved 6×
speedup empirically when compared with patch-by-patch

scanning. It is applicable to CNNs with local filters and

compatible to all existing CNN operations.

3. Experiments

Large-scale Data Collection We construct two face

attribute datasets, namely CelebA and LFWA, by labeling

images selected from two challenging face datasets, Celeb-

Faces [26] and LFW [12]. CelebA contains ten thousand

identities, each of which has twenty images. There are

two hundred thousand images in total. LFWA has 13, 233
images of 5, 749 identities. Each image in CelebA and

LFWA is annotated with forty face attributes and five key

points by a professional labeling company. CelebA and

LFWA have over eight million and five hundred thousand

attribute labels, respectively.

CelebA is partitioned into three parts. Images of the

first eight thousand identities (with 160 thousand images)

are used to pre-train and fine-tune ANet and LNet, and

the images of another one thousand identities (with twenty

thousand images) are employed to train SVM. The images

of the remaining one thousand identities (with twenty

thousand images) are used for testing. LFWA is partitioned

into half for training and half for testing. Specifically, 6, 263
images are adopted to train SVM and the remaining images

for test. When being evaluated on LFWA, LNet and ANet

are trained on CelebA.

Methods for Comparisons The proposed method is

compared with three competitive approaches, i.e. FaceTrac-

er [14], PANDA-w [32], and PANDA-l [32]. FaceTracer

extracts HOG and color histograms in several important

functional face regions and then trains SVM for attribute

classification. We extract these functional regions referring
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Figure 6. Averaged response maps of LNet, including (a) CelebA, (b) MobileFaces, (c) some failure cases.

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

False Positive Per Image

Tr
ue

 P
os

iti
ve

 R
at

es

 

 

LNet
DPM [21]
ACF Multi-view [29]
SURF Cascade [17]
Face++ [1]

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

False Positive Per Image

Tr
ue

 P
os

iti
ve

 R
at

es

 

 

LNet
DPM [21]
ACF Multi-view [29]
SURF Cascade [17]
Face++ [1]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap Ratio

R
ec

al
l R

at
es

 (F
PP

I =
 0

.1
)

 

 

LNet
DPM [21]
ACF Multi-view [29]
SURF Cascade [17]
LNet (w/o pre-training)

10 20 30 40

0.7

0.8

0.9

1

Number of Attributes

R
ec

al
l R

at
es

 (F
PP

I =
 0

.1
)

(a) (b)

(c) (d)

Figure 7. ROC curves on (a) CelebA (b) MobileFaces. (c) Recall rates

w.r.t. overlap ratio (FPPI = 0.1). (d) Recall rates w.r.t. number of

attributes (FPPI = 0.1)

to the ground truth landmark points. PANDA-w and

PANDA-l are based on PANDA [32], which was proposed

recently for human attribute recognition by ensembling

multiple CNNs, each of which extracts features from a well-

aligned human part. These features are concatenated to

train SVM for attribute recognition. It is straightforward

to adapt this method to face attributes, since face parts can

be well-aligned by landmark points. Here, we consider two

settings. PANDA-w obtains the face parts by applying the

state-of-the-art face detection [17] and alignment [25] on

wild images, while PANDA-l attains the face parts by using

ground truth landmark points. For fair comparison, all the

above methods are trained with the same data as ours.

3.1. Effectiveness of the Framework

This section demonstrates the effectiveness of the frame-

work. All experiments in this section are done on CelebA.

• LNet

Performance Comparison We compare LNet with four

state-of-the-art face detectors, including DPM [21], ACF

Multi-view [30], SURF Cascade [17], and Face++ [1].

We evaluate them by using ROC curves when IoU 1≥0.5.

As plotted in Fig.7(a), when FPPI = 0.01, the true

1IoU indicates Intersection over Union.

positive rates of Face++ and LNet are 85% and 93%;

when FPPI = 0.1, our method outperforms the other

three methods by 11, 9 and 22 percent respectively. We

also investigate how these methods perform with respect to

overlap ratio (IoU ), following [35, 21]. Fig.7(c) shows that

LNet generally provides more accurate face localization,

leading to good performance in the subsequent attribute

prediction.

Further Analysis LNet significantly outperforms LNet

(without pre-training) by 74 percent when the overlap

ratio equals to 0.5, which validates the effectiveness of

pre-training, as shown in Fig.7(c). We then explore

the influence of the number of attributes on localization.

Fig.7(d) illustrates rich attribute information facilitates face

localization.

To examine the generalization ability of LNet, we collect

another 3, 876 face images for testing, namely Mobile-

Faces, which comes from a different source2 and has a

different distribution from CelebA. Several examples of

MobileFaces are shown in Fig.6(b) and the corresponding

ROC curves are plotted in Fig.7(b). We observe that

LNet constantly performs better and still gains 7 percent

improvement (FPPI = 0.1) compared with other face

detectors. Despite some failure cases due to extreme poses

and large occlusions, LNet accurately localize faces in the

wild as demonstrated in Fig.6.

• ANet

Pre-training Discovers Semantic Concepts We show

that pre-training of ANet can implicity discover semantic

concepts related to face identity. Given a hidden neuron

at the FC layer of ANet as shown in Fig.2(c), we partition

the face images into three groups, including the face images

with high, medium, and low responses at this neuron. The

face images of each group are then averaged to obtain

the mean face. We visualize these mean faces for several

neurons in Fig.8(a). Interestingly, these mean face changes

smoothly from high response to low response, following a

high-level concept. Human can easily assign each neuron

with a semantic concept it measures (i.e. the text in yellow).

2MobileFaces was collected by users with mobile phones, while Cele-

bA and LFWA collected face images of celebrities taken by professional

photographers.
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Figure 8. Visualization of neurons in ANet (a) after pre-training (b) after fine-tuning (Best viewed in color)
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best

performing neurons analysis of ANet after fine-tuning. Best performing

neurons are different for different attributes. The proposed accuracies are

averaged over attributes which select their own subsets of best performing

neurons.

For example, the neurons in (a.1) and (a.4) correspond

to ‘gender’ and ‘race’, respectively. It reveals that the

high-level hidden neurons of ANet can implicitly learn

to discover semantic concepts, even though they are only

optimized for face recognition using identity information

and attribute labels are not used in pre-training. We also

observe that most of these concepts are intrinsic to face

identity, such as the shape of facial components, gender,

and race.

To better explain this phenomena, we compare the

accuracy of attribute prediction using features at different

layers of ANet right after pre-training. They are FC, C4,

and C3. The forty attributes are roughly separated into

two groups, which are identity-related attributes, such as

gender and race, and identity-non-related attributes, e.g.

attributes of expressions, wearing hat and sunglasses. We

select some representative attributes for each group and plot

the results in Fig.9(a), which shows that the performance of

FC outperforms C4 and C3 in the group of identity-related

attributes, but they are relatively weaker when dealing with

identity-non-related attributes. This is because the top layer

FC learns identity features, which are insensitive to intra-

personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to

more attribute types. Fig.8(b) visualizes the neurons in the

FC layer, which are ranked by their responses in descending

order with respect to several test images. Human can assign

semantic meaning to each of these neurons. We found that

a large number of new concepts can be observed. Remark-

ably, these neurons express diverse high-level meanings

and cooperate to explain the test images. The activations

of all the neurons are visualized in Fig.8(b), and they are

sparse. In some sense, attributes presented in each test

image are explained by a sparse linear combination of these

concepts. For instance, the first image is described as “a

lady with bangs, brown hair, pale skin, narrow eyes and high

cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons

influences attribute prediction accuracies. Best performing

neurons for each attribute are identified by sorting corre-

sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve

90% of the original performance of a particular attribute3.

In contrast, HOG+PCA does not have the sparse nature

and need more than 95% features Besides, the best single

performing neuron of ANet outperforms that of HOG+PCA

by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-

formance is reported in Table.1. On CelebA, the prediction

accuracies of FaceTracer [14], PANDA-w [32], PANDA-l

[32], and our LNets+ANet are 81, 79, 85, and 87 percent

respectively, while the corresponding accuracies on LFWA

are 74, 71, 81, and 84 percent. Our method outperforms

PANDA-w by nearly 10 percent. Remarkably, even when

PANDA-l is equipped with groundtruth bounding boxes

and landmark positions, our method still achieves 3 percent

gain. The strength of our method is illustrated not only

on global attributes, e.g. “Chubby” and “Young”, but also

on fine-grained facial traits, e.g. “Mastache” and “Pointy

Nose”. We also report performance on 19 extended at-

tributes and compare our result with [14] and [2]. The eval-

3Best performing neurons are different for different attributes.
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Table 1. Performance comparison of attribute prediction. (Note that FaceTracer and PANDA-l attains the face parts by using ground truth landmark points.)
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Table 2. Performance comparison on extended attributes. (Performance are measured by the average of true positive rates and true negative rates.)

uation protocol is the same as [2]. In Table 2, LNets+ANet

outperforms them by 10 and 7 percent respectively.

Further Analysis When compared with [17]+ANet,

LNets accounts for nearly 6 percentage improvement over

using an off-the-shelf face detector [17]. We also ex-

periment with the case of providing ANet with localized

face region by LNets, but without pre-training, denoted as

LNets+ANet(w/o). The average accuracies have dropped

4 and 5 percent on CelebA and LFWA, which indicate

pre-training with massive facial identities helps discover

semantic concepts. To further examine whether the pro-

posed approach can be generalized to unseen attributes, we

manually label 30 more attributes for the testing images on

LFWA. To test on these 30 attributes, we directly transfer

weights learned by deep models to extract features, and only

re-train SVMs using one third of the images. LNets+ANet

leads to 8, 10, and 3 percent average gains over the other

three approaches (FaceTracer, PANDA-w, and PANDA-l).

Time Complexity For a 300 ∗ 300 image, LNets takes

35ms to localize face region while ANet takes 14ms to

output extracted features on GPU. In contrast, a naı̈ve

patch-by-patch scanning needs nearly 80 ms to extract

features. Our framework has large potential in real-world

applications.

4. Conclusion

This paper has proposed a novel deep learning frame-

work for face attribute prediction in the wild. With carefully

designed pre-training strategies, our method is robust to

background clutters and face variations. We devise a new

fast feed-forward algorithm for locally shared filters to save

redundant computation, which enables evaluating image

with arbitrary size in realtime. It allows taking images of

arbitrary sizes as input without normalization. We have

also revealed multiple important facts about learning face

representation, which shed a light on new directions of face

localization and representation learning.
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