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Abstract

This paper proposes to learn a set of high-level feature

representations through deep learning, referred to as Deep

hidden IDentity features (DeepID), for face verification.

We argue that DeepID can be effectively learned through

challenging multi-class face identification tasks, whilst they

can be generalized to other tasks (such as verification) and

new identities unseen in the training set. Moreover, the

generalization capability of DeepID increases as more face

classes are to be predicted at training. DeepID features

are taken from the last hidden layer neuron activations of

deep convolutional networks (ConvNets). When learned

as classifiers to recognize about 10, 000 face identities in

the training set and configured to keep reducing the neuron

numbers along the feature extraction hierarchy, these deep

ConvNets gradually form compact identity-related features

in the top layers with only a small number of hidden

neurons. The proposed features are extracted from various

face regions to form complementary and over-complete

representations. Any state-of-the-art classifiers can be

learned based on these high-level representations for face

verification. 97.45% verification accuracy on LFW is

achieved with only weakly aligned faces.

1. Introduction

Face verification in unconstrained conditions has been

studied extensively in recent years [21, 15, 7, 34, 17, 26,

18, 8, 2, 9, 3, 29, 6] due to its practical applications

and the publishing of LFW [19], an extensively reported

dataset for face verification algorithms. The current best-

performing face verification algorithms typically represent

faces with over-complete low-level features, followed by

shallow models [9, 29, 6]. Recently, deep models such as

ConvNets [24] have been proved effective for extracting

high-level visual features [11, 20, 14] and are used for

face verification [18, 5, 31, 32, 36]. Huang et al. [18]

learned a generative deep model without supervision. Cai

Figure 1. An illustration of the feature extraction process. Arrows

indicate forward propagation directions. The number of neurons in

each layer of the multiple deep ConvNets are labeled beside each

layer. The DeepID features are taken from the last hidden layer

of each ConvNet, and predict a large number of identity classes.

Feature numbers continue to reduce along the feature extraction

cascade till the DeepID layer.

et al. [5] learned deep nonlinear metrics. In [31], the

deep models are supervised by the binary face verification

target. Differently, in this paper we propose to learn high-

level face identity features with deep models through face

identification, i.e. classifying a training image into one

of n identities (n ≈ 10, 000 in this work). This high-

dimensional prediction task is much more challenging than

face verification, however, it leads to good generalization

of the learned feature representations. Although learned

through identification, these features are shown to be

effective for face verification and new faces unseen in the

training set.

We propose an effective way to learn high-level over-

complete features with deep ConvNets. A high-level

illustration of our feature extraction process is shown in

Figure 1. The ConvNets are learned to classify all the

faces available for training by their identities, with the last

hidden layer neuron activations as features (referred to as
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Deep hidden IDentity features or DeepID). Each ConvNet

takes a face patch as input and extracts local low-level

features in the bottom layers. Feature numbers continue to

reduce along the feature extraction cascade while gradually

more global and high-level features are formed in the

top layers. Highly compact 160-dimensional DeepID is

acquired at the end of the cascade that contain rich identity

information and directly predict a much larger number (e.g.,

10, 000) of identity classes. Classifying all the identities

simultaneously instead of training binary classifiers as in

[21, 2, 3] is based on two considerations. First, it is

much more difficult to predict a training sample into one

of many classes than to perform binary classification. This

challenging task can make full use of the super learning

capacity of neural networks to extract effective features

for face recognition. Second, it implicitly adds a strong

regularization to ConvNets, which helps to form shared

hidden representations that can classify all the identities

well. Therefore, the learned high-level features have good

generalization ability and do not over-fit to a small subset

of training faces. We constrain DeepID to be significantly

fewer than the classes of identities they predict, which is

key to learning highly compact and discriminative features.

We further concatenate the DeepID extracted from various

face regions to form complementary and over-complete rep-

resentations. The learned features can be well generalized

to new identities in test, which are not seen in training,

and can be readily integrated with any state-of-the-art face

classifiers (e.g., Joint Bayesian [8]) for face verification.

Our method achieves 97.45% face verification accuracy

on LFW using only weakly aligned faces, which is almost

as good as human performance of 97.53%. We also observe

that as the number of training identities increases, the

verification performance steadily gets improved. Although

the prediction task at the training stage becomes more

challenging, the discrimination and generalization ability of

the learned features increases. It leaves the door wide open

for future improvement of accuracy with more training data.

2. Related work

Many face verification methods represent faces by high-

dimensional over-complete face descriptors, followed by

shallow models. Cao et al. [7] encoded each face image into

26K learning-based (LE) descriptors, and then calculated

the L2 distance between the LE descriptors after PCA. Chen

et al. [9] extracted 100K LBP descriptors at dense facial

landmarks with multiple scales and used Joint Bayesian [8]

for verification after PCA. Simonyan et al. [29] computed

1.7M SIFT descriptors densely in scale and space, encoded

the dense SIFT features into Fisher vectors, and learned lin-

ear projection for discriminative dimensionality reduction.

Huang et al. [17] combined 1.2M CMD [33] and SLBP

[1] descriptors, and learned sparse Mahalanobis metrics for

face verification.

Some previous studies have further learned identity-

related features based on low-level features. Kumar et al.

[21] trained attribute and simile classifiers to detect facial

attributes and measure face similarities to a set of reference

people. Berg and Belhumeur [2, 3] trained classifiers to

distinguish the faces from two different people. Features

are outputs of the learned classifiers. They used SVM

classifiers, which are shallow structures, and their learned

features are still relatively low-level. In contrast, we classify

all the identities from the training set simultaneously. More-

over, we use the last hidden layer activations as features

instead of the classifier outputs. In our ConvNets, the

neuron number of the last hidden layer is much smaller

than that of the output, which forces the last hidden layer

to learn shared hidden representations for faces of different

people in order to well classify all of them, resulting

in highly discriminative and compact features with good

generalization ability.

A few deep models have been used for face verification

or identification. Chopra et al. [10] used a Siamese network

[4] for deep metric learning. The Siamese network extracts

features separately from two compared inputs with two

identical sub-networks, taking the distance between the

outputs of the two sub-networks as dissimilarity. [10]

used deep ConvNets as the sub-networks. In contrast

to the Siamese network in which feature extraction and

recognition are jointly learned with the face verification

target, we conduct feature extraction and recognition in

two steps, with the first feature extraction step learned with

the target of face identification, which is a much stronger

supervision signal than verification. Huang et al. [18]

generatively learned features with CDBNs [25], then used

ITML [13] and linear SVM for face verification. Cai et al.

[5] also learned deep metrics under the Siamese network

framework as [10], but used a two-level ISA network [23]

as the sub-networks instead. Zhu et al. [35, 36] learned deep

neural networks to transform faces in arbitrary poses and

illumination to frontal faces with normal illumination, and

then used the last hidden layer features or the transformed

faces for face recognition. Sun et al. [31] used multiple deep

ConvNets to learn high-level face similarity features and

trained classification RBM [22] for face verification. Their

features are jointly extracted from a pair of faces instead of

from a single face.

3. Learning DeepID for face verification

3.1. Deep ConvNets

Our deep ConvNets contain four convolutional layers

(with max-pooling) to extract features hierarchically, fol-

lowed by the fully-connected DeepID layer and the softmax

output layer indicating identity classes. The input is 39 ×



Figure 2. ConvNet structure. The length, width, and height of

each cuboid denotes the map number and the dimension of each

map for all input, convolutional, and max-pooling layers. The

inside small cuboids and squares denote the 3D convolution kernel

sizes and the 2D pooling region sizes of convolutional and max-

pooling layers, respectively. Neuron numbers of the last two fully-

connected layers are marked beside each layer.

31 × k for rectangle patches, and 31 × 31 × k for square

patches, where k = 3 for color patches and k = 1 for

gray patches. Figure 2 shows the detailed structure of the

ConvNet which takes 39×31×1 input and predicts n (e.g.,

n = 10, 000) identity classes. When the input sizes change,

the height and width of maps in the following layers will

change accordingly. The dimension of the DeepID layer is

fixed to 160, while the dimension of the output layer varies

according to the number of classes it predicts. Feature

numbers continue to reduce along the feature extraction

hierarchy until the last hidden layer (the DeepID layer),

where highly compact and predictive features are formed,

which predict a much larger number of identity classes with

only a few features.

The convolution operation is expressed as

yj(r) = max

(

0, bj(r) +
∑

i

kij(r) ∗ xi(r)

)

, (1)

where xi and yj are the i-th input map and the j-th output

map, respectively. kij is the convolution kernel between

the i-th input map and the j-th output map. ∗ denotes

convolution. bj is the bias of the j-th output map. We use

ReLU nonlinearity (y = max (0, x)) for hidden neurons,

which is shown to have better fitting abilities than the

sigmoid function [20]. Weights in higher convolutional

layers of our ConvNets are locally shared to learn different

mid- or high-level features in different regions [18]. r

in Equation 1 indicates a local region where weights are

shared. In the third convolutional layer, weights are locally

shared in every 2 × 2 regions, while weights in the fourth

convolutional layer are totally unshared. Max-pooling is

formulated as

yij,k = max
0≤m,n<s

{

xi
j·s+m, k·s+n

}

, (2)

where each neuron in the i-th output map yi pools over an

s× s non-overlapping local region in the i-th input map xi.

Figure 3. Top: ten face regions of medium scales. The five regions

in the top left are global regions taken from the weakly aligned

faces, the other five in the top right are local regions centered

around the five facial landmarks (two eye centers, nose tip, and two

mouse corners). Bottom: three scales of two particular patches.

The last hidden layer of DeepID is fully connected to

both the third and fourth convolutional layers (after max-

pooling) such that it sees multi-scale features [28] (features

in the fourth convolutional layer are more global than

those in the third one). This is critical to feature learning

because after successive down-sampling along the cascade,

the fourth convolutional layer contains too few neurons

and becomes the bottleneck for information propagation.

Adding the bypassing connections between the third con-

volutional layer (referred to as the skipping layer) and the

last hidden layer reduces the possible information loss in

the fourth convolutional layer. The last hidden layer takes

the function

yj = max

(

0,
∑

i

x1
i · w

1
i,j +

∑

i

x2
i · w

2
i,j + bj

)

, (3)

where x1, w1, x2, w2 denote neurons and weights in the

third and fourth convolutional layers, respectively. It lin-

early combines features in the previous two convolutional

layers, followed by ReLU non-linearity.

The ConvNet output is an n-way softmax predicting the

probability distribution over n different identities.

yi =
exp(y′i)

∑n

j=1 exp(y
′
j)

, (4)

where y′j =
∑160

i=1 xi · wi,j + bj linearly combines the 160
DeepID features xi as the input of neuron j, and yj is its

output. The ConvNet is learned by minimizing − log yt,
with the t-th target class. Stochastic gradient descent is used

with gradients calculated by back-propagation.



3.2. Feature extraction

We detect five facial landmarks, including the two eye

centers, the nose tip, and the two mouth corners, with the

facial point detection method proposed by Sun et al. [30].

Faces are globally aligned by similarity transformation

according to the two eye centers and the mid-point of the

two mouth corners. Features are extracted from 60 face

patches with ten regions, three scales, and RGB or gray

channels. Figure 3 shows the ten face regions and the

three scales of two particular face regions. We trained

60 ConvNets, each of which extracts two 160-dimensional

DeepID vectors from a particular patch and its horizontally

flipped counterpart. A special case is patches around the

two eye centers and the two mouth corners, which are not

flipped themselves, but the patches symmetric with them

(for example, the flipped counterpart of the patch centered

on the left eye is derived by flipping the patch centered

on the right eye). The total length of DeepID is 19, 200
(160×2×60), which is ready for the final face verification.

3.3. Face verification

We use the Joint Bayesian [8] technique for face ver-

ification based on the DeepID. Joint Bayesian has been

highly successful for face verification [9, 6]. It represents

the extracted facial features x (after subtracting the mean)

by the sum of two independent Gaussian variables

x = µ+ ǫ , (5)

where µ ∼ N (0, Sµ) represents the face identity and

ǫ ∼ N (0, Sǫ) the intra-personal variations. Joint Bayesian

models the joint probability of two faces given the intra-

or extra-personal variation hypothesis, P (x1, x2 | HI) and

P (x1, x2 | HE). It is readily shown from Equation 5 that

these two probabilities are also Gaussian with variations

ΣI =

[

Sµ + Sǫ Sµ

Sµ Sµ + Sǫ

]

(6)

and

ΣE =

[

Sµ + Sǫ 0
0 Sµ + Sǫ

]

, (7)

respectively. Sµ and Sǫ can be learned from data with EM

algorithm. In test, it calculates the likelihood ratio

r (x1, x2) = log
P (x1, x2 | HI)

P (x1, x2 | HE)
, (8)

which has closed-form solutions and is efficient.

We also train a neural network for verification and com-

pare it to Joint Bayesian to see if other models can also learn

from the extracted features and how much the features and a

good face verification model contribute to the performance,

respectively. The neural network contains one input layer

Figure 4. The structure of the neural network used for face

verification. The layer type and dimension are labeled beside each

layer. The solid neurons form a subnetwork.

taking the DeepID, one locally-connected layer, one fully-

connected layer, and a single output neuron indicating

face similarities. The input features are divided into 60
groups, each of which contains 640 features extracted from

a particular patch pair with a particular ConvNet. Features

in the same group are highly correlated. Neurons in the

locally-connected layer only connect to a single group of

features to learn their local relations and reduce the feature

dimension at the same time. The second hidden layer is

fully-connected to the first hidden layer to learn global

relations. The single output neuron is fully connected to the

second hidden layer. The hidden neurons are ReLUs and

the output neuron is sigmoid. An illustration of the neural

network structure is shown in Figure 4. It has 38, 400 input

neurons with 19, 200 DeepID features from each patch, and

4, 800 neurons in the following two hidden layers, with

every 80 neurons in the first hidden layer locally connected

to one of the 60 groups of input neurons.

Dropout learning [16] is used for all the hidden neu-

rons. The input neurons cannot be dropped because the

learned features are compact and distributed representa-

tions (representing a large number of identities with very

few neurons) and have to collaborate with each other to

represent the identities well. On the other hand, learning

high-dimensional features without dropout is difficult due

to gradient diffusion. To solve this problem, we first train 60
subnetworks, each with features of a single group as input.

A particular subnetwork is illustrated in Figure 4. We then

use the first-layer weights of the subnetworks to initialize

those of the original network, and tune the second and third

layers of the original network with the first layer weights

clipped.

4. Experiments

We evaluate our algorithm on LFW, which reveals the

state-of-the-art of face verification in the wild. Though

LFW contains 5749 people, only 85 have more than 15
images, and 4069 people have only one image. It is

inadequate to train identity classifiers with so few images

per person. Instead, we trained our model on CelebFaces



[31] and tested on LFW (Section 4.1 - 4.3). CelebFaces

contains 87, 628 face images of 5436 celebrities from the

Internet, with approximately 16 images per person on

average. People in LFW and CelebFaces are mutually

exclusive.

We randomly choose 80% (4349) people from Celeb-

Faces to learn the DeepID, and use the remaining 20%
people to learn the face verification model (Joint Bayesian

or neural networks). For feature learning, ConvNets

are supervised to classify the 4349 people simultaneously

from a particular kind of face patches and their flipped

counterparts. We randomly select 10% images of each

training person to generate the validation data. After each

training epoch, we observe the top-1 validation set error

rates and select the model that provides the lowest one.

In face verification, our feature dimension is reduced

to 150 by PCA before learning the Joint Bayesian model.

Performance almost retains in a wide range of dimensions.

In test, each face pair is classified by comparing the Joint

Bayesian likelihood ratio to a threshold optimized in the

training data.

To evaluate the performance of our approach at an even

larger training scale in Section 4.4, we extend CelebFaces

to the CelebFaces+ dataset, which contains 202, 599 face

images of 10, 177 celebrities. Again, people in LFW

and CelebFaces+ are mutually exclusive. The ConvNet

structure and feature extraction process described in the

previous section remains unchanged.

4.1. Multi­scale ConvNets

We verify the effectiveness of directly connecting neu-

rons in the third convolutional layer (after max-pooling)

to the last hidden layer (the DeepID layer), such that it

sees both the third and fourth convolutional layer features,

forming the so-called multi-scale ConvNets. It also results

in reducing feature numbers from the convolutional layers

to the DeepID layer (shown in Figure 1), which helps the

latter to learn higher-level features in order to well represent

the face identities with fewer neurons. Figure 5 compares

the top-1 validation set error rates of the 60 ConvNets

learned to classify the 4349 classes of identities, either with

or without the skipping layer. The lower error rates indicate

the better hidden features learned. Allowing the DeepID to

pool over multi-scale features reduces validation errors by

an average of 4.72%. It actually also improves the final

face verification accuracy from 95.35% to 96.05% when

concatenating the DeepID from the 60 ConvNets and using

Joint Bayesian for face verification.

4.2. Learning effective features

Classifying a large number of identities simultaneously

is key to learning discriminative and compact hidden

features. To verify this, we increase the identity classes

Figure 5. Top-1 validation set error rates of the 60 ConvNets

trained on the 60 different patches. The blue and red markers show

error rates of the conventional ConvNets (without the skipping

layer) and the multi-scale ConvNets, respectively.

for training exponentially (and output neuron numbers

correspondingly) from 136 to 4349 while fixing the neuron

numbers in all previous layers (the DeepID is kept to be

160 dimensional). We observe the classification ability of

ConvNets (measured by the top-1 validation set error rates)

and the effectiveness of the learned hidden representations

for face verification (measured by the test set verification

accuracy) with the increasing identity classes. The input is a

single patch covering the whole face in this experiment. As

shown in Figure 6, both Joint Bayesian and neural network

improve linearly in verification accuracy when the identity

classes double. The improvement is significant. When

identity classes increase 32 times from 136 to 4349, the

accuracy increases by 10.13% and 8.42% for Joint Bayesian

and neural networks, respectively, or 2.03% and 1.68% on

average, respectively, whenever the identity classes double.

At the same time, the validation set error rates drop, even

when the predicted classes are tens of times more than

the last hidden layer neurons, as shown in Figure 7. This

phenomenon indicates that ConvNets can learn from classi-

fying each identity and form shared hidden representations

that can classify all the identities well. More identity

classes help to learn better hidden representations that can

distinguish more people (discriminative) without increasing

the feature length (compact). The linear increasing of

test accuracy with respect to the exponentially increasing

training data indicates that our features would be further

improved if even more identities are available. Examples of

the 160-dimensional DeepID learned from the 4349 training

identities and extracted from LFW test pairs are shown in

Figure 8. We find that faces of the same identity tend to

have more commonly activated neurons (positive features

being in the same position) than those of different identities.

So the learned features extract identity information.

We also test the 4349-dimensional classifier outputs as

features for face verification. Joint Bayesian only achieves

approximately 66% accuracy on these features, while the

neural network fails, where it accounts all the face pairs as



Figure 6. Face verification accuracy of Joint Bayesian (red line)

and neural network (blue line) learned from the DeepID, where

the ConvNets are trained with 136, 272, 544, 1087, 2175, and 4349

classes, respectively.

Figure 7. Top-1 validation set error rates of ConvNets learned to

classify 136, 272, 544, 1087, 2175, and 4349 classes, respectively.

positive or negative pairs. With so many classes and few

samples for each class, the classifier outputs are diverse and

unreliable, therefore cannot be used as features.

4.3. Over­complete representation

We evaluate how much combining features extracted

from various face patches would contribute to the perfor-

mance. We train the face verification model with features

from k patches (k = 1, 5, 15, 30, 60). It is impossible to

numerate all the possible combinations of patches, so we

select the most representative ones. We report the best-

performing single patch (k = 1), the global color patches

in a single scale (k = 5), all the global color patches

(k = 15), all the color patches (k = 30), and all the patches

(k = 60). As shown in Figure 9, adding more features from

various regions, scales, and color channels consistently

improves the performance. Combing 60 patches increases

the accuracy by 4.53% and 5.27% over best single patch

for Joint Bayesian and neural networks, respectively. We

achieve 96.05% and 94.32% accuracy using Joint Bayesian

and neural networks, respectively. The curves show that the

performance may be further improved if more features are

extracted.

Figure 8. Examples of the learned 160-dimensional DeepID. The

left column shows three test pairs in LFW. The first two pairs are

of the same identity, the third one is of different identities. The

corresponding features extracted from each patch are shown in the

right. The features are in one dimension. We rearrange them as

5 × 32 for the convenience of illustration. The feature values are

non-negative since they are taken from the ReLUs. Approximately

40% features have positive values. The brighter squares indicate

higher values.

Figure 9. Test accuracy of Joint Bayesian (red line) and neural

networks (blue line) using features extracted from 1, 5, 15, 30,

and 60 patches. Performance consistently improves with more

features. Joint Bayesian is approximately 1.8% better on average

than neural networks.

4.4. Method comparison

To show how our algorithm would benefit from more

training data, we enlarge the CelebFaces dataset to Celeb-

Faces+, which contains 202, 599 face images of 10, 177
celebrities. People in CelebFaces+ and LFW are mutually

exclusive. We randomly choose 8700 people from Celeb-

Faces+ to learn the DeepID, and use the remaining 1477
people to learn Joint Bayesian for face verification. Since

extracting DeepID from many different face patches also

helps, we increase the patch number to 100 by using five

different scales of patches instead of three. This results in



a 32, 000-dimensional DeepID feature vector, which is then

reduced to 150 dimensions by PCA. Joint Bayesian learned

on this 150-dimensional feature vector achieves 97.20%
test accuracy on LFW.

Due to the difference in data distributions, models well

fitted to CelebFaces+ may not have equal generalization

ability on LFW. To solve this problem, Cao et al. [6]

proposed a practical transfer learning algorithm to adapt the

Joint Bayesian model from the source domain to the target

domain. We implemented their algorithm by using the 1477
people from CelebFaces+ as the source domain data and

nine out of ten folders from LFW as the target domain

data for transfer learning Joint Bayesian, and conduct ten-

fold cross validation on LFW. The transfer learning Joint

Bayesian based on our DeepID features achieves 97.45%
test accuracy on LFW, which is on par with the human-level

performance of 97.53%.

We compare with the state-of-the-art face verification

methods on LFW. In the comparison, we report three

results. The first two are trained on CelebFaces and

CelebFaces+, respectively, without transfer learning, and

tested on LFW. The third one is trained on CelebFaces+

with transfer learning on LFW. Table 1 comprehensively

compares the accuracies, the number of facial points used

for alignment, the number of outside training images (if

applicable), and the final feature dimensions for each face

(if applicable). Low feature dimensions indicate efficient

face recognition systems. Figure 10 compares the ROC

curves. Our DeepID learning method achieves the best

performance on LFW. The first four best methods compared

used dense facial landmarks, while our faces are weakly

aligned with only five points. The deep learning work

(DeepFace) [32] independently developed by Facebook at

the same time of this paper achieved the second best

performance of 97.25% accuracy on LFW. It utilized 3D

alignment and pose transform as preprocessing, and more

than seven million outside training images plus training

images from LFW.

5. Conclusion and Discussion

This paper proposed to learn effective high-level features

revealing identities for face verification. The features are

built on top of the feature extraction hierarchy of deep

ConvNets and are summarized from multi-scale mid-level

features. By representing a large amount of different

identities with a small number of hidden variables, highly

compact and discriminative features are acquired. The

features extracted from different face regions are comple-

mentary and further boost the performance. It achieved

97.45% face verification accuracy on LFW, while only

requiring weakly aligned faces.

Even more compact and discriminative DeepID can be

learned if more identities are available to increase the

Figure 10. ROC comparison with the state-of-the-art face verifica-

tion methods on LFW. TL in our method means transfer learning

Joint Bayesian.

dimensionality of prediction at the training stage. We

look forward to larger training sets to further boost our

performance. A recent work [27] reported 98.52% accuracy

on LFW with Gaussian Processes and multi-source training

sets, achieving even higher than human performance. This

could be due to the fact that the nonparametric Bayesian

kernel method can adapt model complexity to data distri-

bution. Gaussian processes can also be modeled with deep

learning [12]. This could be another interesting direction to

be explored in the future.
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Method Accuracy (%) No. of points No. of images Feature dimension

Joint Bayesian [8] 92.42 (o) 5 99,773 2000 × 4

ConvNet-RBM [31] 92.52 (o) 3 87,628 N/A

CMD+SLBP [17] 92.58 (u) 3 N/A 2302

Fisher vector faces [29] 93.03 (u) 9 N/A 128 × 2

Tom-vs-Pete classifiers [2] 93.30 (o+r) 95 20,639 5000

High-dim LBP [9] 95.17 (o) 27 99,773 2000

TL Joint Bayesian [6] 96.33 (o+u) 27 99,773 2000

DeepFace [32] 97.25 (o+u) 6 + 67 4,400,000 + 3,000,000 4096 × 4
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Table 1. Comparison of state-of-the-art face verification methods on LFW. Column 2 compares accuracy. Letters in the parentheses denote

the training protocols used. r denotes the restricted training protocol, where the 6000 face pairs given by LFW are used for ten-fold cross-

validation. u denotes the unrestricted protocol, where additional training pairs can be generated from LFW using the identity information.

o denotes using outside training data, however, without using training data from LFW. o+r denotes using both outside data and LFW

data in the restricted protocol for training. (o+u) denotes using both outside data and LFW data in the unrestricted protocol for training.

Column 3 compares the number of facial points used for alignment. Column 4 compares the number of outside images used for training

(if applicable). The last column compares the final feature dimensions for each face (if applicable). DeepFace used six 2D points and 67

3D points for alignment. TL in our method means transfer learning Joint Bayesian.
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