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ABSTRACT

Deep Learning for Action Understanding in Video

Zheng Shou

Action understanding is key to automatically analyzing video content and thus is important for

many real-world applications such as autonomous driving car, robot-assisted care, etc. Therefore,

in the computer vision field, action understanding has been one of the fundamental research topics.

Most conventional methods for action understanding are based on hand-crafted features. Like the

recent advances seen in image classification, object detection, image captioning, etc, deep learning

has become a popular approach for action understanding in video. However, there remain several

important research challenges in developing deep learning based methods for understanding ac-

tions. This thesis focuses on the development of effective deep learning methods for solving three

major challenges.

Action detection at fine granularities in time: Previous work in deep learning based action

understanding mainly focuses on exploring various backbone networks that are designed for the

video-level action classification task. These did not explore the fine-grained temporal character-

istics and thus failed to produce temporally precise estimation of action boundaries. In order to

understand actions more comprehensively, it is important to detect actions at finer granularities

in time. In Part I, we study both segment-level action detection and frame-level action detec-



tion. Segment-level action detection is usually formulated as the temporal action localization task,

which requires not only recognizing action categories for the whole video but also localizing the

start time and end time of each action instance. To this end, we propose an effective multi-stage

framework called Segment-CNN consisting of three segment-based 3D ConvNets: (1) a proposal

network identifies candidate segments that may contain actions; (2) a classification network learns

one-vs-all action classification model to serve as initialization for the localization network; and (3)

a localization network fine-tunes the learned classification network to localize each action instance.

In another approach, frame-level action detection is effectively formulated as the per-frame action

labeling task. We combine two reverse operations (i.e. convolution and deconvolution) into a joint

Convolutional-De-Convolutional (CDC) filter, which simultaneously conducts downsampling in

space and upsampling in time to jointly model both high-level semantics and temporal dynamics.

We design a novel CDC network to predict actions at frame-level and the frame-level predictions

can be further used to detect precise segment boundary for the temporal action localization task.

Our method not only improves the state-of-the-art mean Average Precision (mAP) result on THU-

MOS’14 from 41.3% to 44.4% for the per-frame labeling task, but also improves mAP for the

temporal action localization task from 19.0% to 23.3% on THUMOS’14 and from 16.4% to 23.8%

on ActivityNet v1.3.

Action detection in the constrained scenarios: The usual training process of deep learning

models consists of supervision and data, which are not always available in reality. In Part II, we

consider the scenarios of incomplete supervision and incomplete data. For incomplete supervi-

sion, we focus on the weakly-supervised temporal action localization task and propose AutoLoc



which is the first framework that can directly predict the temporal boundary of each action instance

with only the video-level annotations available during training. To enable the training of such a

boundary prediction model, we design a novel Outer-Inner-Contrastive (OIC) loss to help discover

the segment-level supervision and we prove that the OIC loss is differentiable to the underlying

boundary prediction model. Our method significantly improves mAP on THUMOS14 from 13.7%

to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. For the scenario of incomplete data, we

formulate a novel task called Online Detection of Action Start (ODAS) in streaming videos to en-

able detecting the action start time on the fly when a live video action is just starting. ODAS is

important in many applications such as early alert generation to allow timely security or emergency

response. Specifically, we propose three novel methods to address the challenges in training ODAS

models: (1) hard negative samples generation based on Generative Adversarial Network (GAN) to

distinguish ambiguous background, (2) explicitly modeling the temporal consistency between data

around action start and data succeeding action start, and (3) adaptive sampling strategy to handle

the scarcity of training data.

Action understanding in the compressed domain: The mainstream action understanding

methods including the aforementioned techniques developed by us require first decoding the com-

pressed video into RGB image frames. This may result in significant cost in terms of storage

and computation. Recently, researchers started to investigate how to directly perform action un-

derstanding in the compressed domain in order to achieve high efficiency while maintaining the

state-of-the-art action detection accuracy. The key research challenge is developing effective back-

bone networks that can directly take data in the compressed domain as input. Our baseline is to



take models developed for action understanding in the decoded domain and adapt them to attack

the same tasks in the compressed domain. In Part III, we address two important issues in develop-

ing the backbone networks that exclusively operate in the compressed domain. First, compressed

videos may be produced by different encoders or encoding parameters, but it is impractical to train

a different compressed-domain action understanding model for each different format. We experi-

mentally analyze the effect of video encoder variation and develop a simple yet effective training

data preparation method to alleviate the sensitivity to encoder variation. Second, motion cues have

been shown to be important for action understanding, but the motion vectors in compressed video

are often very noisy and not discriminative enough for directly performing accurate action under-

standing. We develop a novel and highly efficient framework called DMC-Net that can learn to

predict discriminative motion cues based on noisy motion vectors and residual errors in the com-

pressed video streams. On three action recognition benchmarks, namely HMDB-51, UCF101 and

a subset of Kinetics, we demonstrate that our DMC-Net can significantly shorten the performance

gap between state-of-the-art compressed video based methods with and without optical flow, while

being two orders of magnitude faster than the methods that use optical flow.

By addressing the three major challenges mentioned above, we are able to develop more robust

models for video action understanding and improve performance in various dimensions, such as (1)

temporal precision, (2) required levels of supervision, (3) live video analysis ability, and finally (4)

efficiency in processing compressed video. Our research has contributed significantly to advancing

the state of the art of video action understanding and expanding the foundation for comprehensive

semantic understanding of video content.
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Chapter 1

Introduction

1.1 Motivation

In the current era of data explosion, large amounts of videos have been generated by various video

capturing devices and tremendous users on the Internet and social media. Therefore, there is an

urgent need to develop intelligent system that can automatically analyze video contents. To this

end, one key and unique technical challenge is understanding actions contained in video. For

example, YouTube needs to understand which sports actions contained in each Olympics video

to provide more accurate recommendations; autonomous driving car requires understanding of

actions performed by the surrounding cars and pedestrians.

Over the years, researchers in computer vision have developed a lot of hand-crafted features

for action understanding such as Space-Time Interest Points (STIP) [1], improved Dense Trajec-
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tory Feature (iDTF) [2], etc. Recently, deep learning has made a breakthrough in image under-

standing, achieving state-of-the-art performances in image classification, object detection, image

segmentation, etc. However, since actions in video characterize movements and usually span over

a sequence of frames, it remains unclear how to utilize deep neural networks to understand actions.

Therefore, we motivate this thesis by first identifying important research issues to be addressed for

comprehensively understanding actions in video.

Deep Learning for Action Understanding in Video

Input video

time

Decoded Video Based Methods

* Backbone Network  / 

Video-level Classification

* Segment-level Detection

(i.e. temporal localization)

* Frame-level Detection 

(i.e. per-frame labeling)

* Incomplete Supervision

(i.e. weakly-supervised detection)

* Incomplete Input Data

(i.e. online detection)

Video Decoder

Compressed Video Based Methods

* Backbone Network /

Video-level Classification:

1. Handle video encoding variance

2. Learn discriminative motion cues

Figure 1.1: The overview of research issues in developing deep learning methods for action under-

standing in video. * indicates issues addressed in previous work and * indicates where contribu-

tions are made in this thesis.
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As shown in Figure 1.1, each input video is effectively a collection of consecutive image

frames. In real applications, video usually is compressed for the sake of accelerating transmis-

sion and saving storage. To analyze the compressed video, there are two directions as discussed in

the following Section 1.1.1 and Section 1.1.2 respectively.

1.1.1 Decoded Video Based Methods

Prevalent action understanding methods first decode the compressed video into RGB image frames.

Based on the decoded frames, researchers have developed quite a few successful backbone net-

works specifically for analyzing video. To compare various backbone networks, evaluation is

usually based on the video-level classification task: given one input video, we need to detect

which action class contained in this whole video.

To comprehensively understand actions, it is important to go beyond video-level classification

and detect actions at finer granularities including (1) segment-level detection which aims at lo-

calizing temporal boundaries (start time and end time) of each action segment and (2) frame-level

detection which targets classifying every frame into background or specific action classes. With

the aforementioned backbone networks on hand, the unresolved technical challenge here is de-

signing new detection frameworks and architectures to handle the unique training supervision and

expected outputs in the segment-level detection and frame-level detection.

The input of deep learning models consists of supervision and data, which are not always

completely available in some realistic scenarios. (1) Incomplete supervision: annotating the start
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time and end time of each action instance is quite expensive and thus it is worthwhile researching

weakly-supervised detection methods that during training we only have videos with the video-

level action labels, but during testing we need to predict both the action class and the temporal

boundary of each action instance. (2) Incomplete data: many real applications requires contin-

uously monitoring the live video stream without seeing the future frames and therefore online

detection of action start: given a streaming video, we need to immediately process each newly

arrived frame to detect the occurrence and class of each newly started action in real time.

1.1.2 Compressed Video Based Methods

There is an emerging attention in directly analyzing video in the compressed domain without video

decoding because bypassing RGB frame extraction and optical flow computation can save consid-

erable running time during inference. When switching from the decoded domain to the compressed

domain, the main technical challenge for action understanding lies in the design of backbone net-

work. Once we have the backbone network ready in hand, it is not difficult to adapt methods de-

veloped based on decoded video to address various action understanding tasks in the compressed

domain. Regarding the backbone network for compressed video input, Wu et al. [3] recently pro-

posed a multiple-stream framework which processes i-frame image, motion vector and residual

respectively with individual networks and finally conducts late fusion. However, two important

research issues still remain unresolved: videos can be compressed by different video codecs with

different encoding configurations and thus we need to study how such video encoding variations
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would affect the performance of action understanding; motion vectors are usually noisy and have

low-resolution and therefore it is important to explore how to obtain more discriminative motion

cues from compressed video in order to perform more accurate action understanding.

1.2 Our Techniques and Contributions

1.2.1 Action Detection at Fine Granularities in Time

In Part I, we improve deep learning based action detection frameworks at two different granulari-

ties. In Chapter 3, we propose an effective multi-stage framework called Segment-CNN to detect

actions at segment-level (i.e. temporal action localization) in untrimmed, long videos. We exploit

the effectiveness of deep networks in temporal action localization via three segment-based 3D

ConvNets: (1) a proposal network identifies candidate segments in a long video that may contain

actions; (2) a classification network learns one-vs-all action classification model to serve as initial-

ization for the localization network; and (3) a localization network fine-tunes the learned classifica-

tion network to localize each action instance. We propose a novel loss function for the localization

network to explicitly consider temporal overlap and achieve high temporal localization accuracy.

In the end, only the proposal network and the localization network are used during prediction. Our

approach achieves significantly superior performances compared with other state-of-the-art sys-

tems: mAP increases from 1.7% to 7.4% on MEXaction2 and increases from 15.0% to 19.0% on

THUMOS’14. Our ablation studies confirm that the proposal network improves the efficiency by
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eliminating unlikely candidate segments and the localization network is key to temporal localiza-

tion accuracy boosting. In Chapter 4, we propose a novel Convolutional-De-Convolutional (CDC)

filter to simultaneously perform spatial downsampling (for spatio-temporal semantic abstraction)

and temporal upsampling (for precise temporal localization). Further, we design a CDC network to

detect actions at frame-level and we further leverage the per-frame detection results to achieve pre-

cise segment-level detection. Our method not only improves mAP on THUMOS’14 from 41.3% to

44.4% for the per-frame labeling task, but also improves mAP for the temporal action localization

task from 19.0% to 23.3% on THUMOS’14 and from 16.4% to 23.8% on ActivityNet v1.3.

1.2.2 Action Detection in the Constrained Scenarios

In Part II, we address action understanding in the constrained scenarios with incomplete supervi-

sion or incomplete input data. In Chapter 5, we develop a novel weakly-supervised temporal action

localization framework called AutoLoc to directly predict temporal boundary in a single-shot fash-

ion. In order to train the boundary prediction model with only the video-level labels, we propose

a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the segment-level supervi-

sion. With the direct boundary prediction technique and the discovered segment-level supervision,

our method significantly improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on Ac-

tivityNet from 7.4% to 27.3%. In Chapter 6, we formulate a novel Online Detection of Action

Start (ODAS) task in a practical setting involving streaming, untrimmed videos. We propose three

training methods to specifically improve the capability of ODAS models in detecting action timely
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and accurately: (1) hard negative samples generation based on Generative Adversarial Network

(GAN) to distinguish ambiguous background, (2) explicitly modeling the temporal consistency

between data around action start and data succeeding action start, and (3) adaptive sampling strat-

egy to handle the scarcity of training data. Our methods can be applied to any existing video

backbone network. During evaluations, our proposed methods significantly improve the state-of-

the-art methods including shot detection methods, per-frame labeling methods and segment-level

detection methods.

1.2.3 Action Understanding in the Compressed Domain

In Part III, we address important, unresolved research issues in designing the backbone networks

for action understanding in the compressed domain. In Chapter 7, we study the effects of video

encoding variations and experimentally benchmark several training data preparation methods. We

find that training a generic model using videos transcoded from a certain format such as small

macroblock size or large Group Of Pictures (GOP) size, can achieve performance comparable

to training individual models that each model corresponds to one specific format, indicating that

such a generic model is robust enough to handle the video encoding variations during testing.

In Chapter 8, in order to obtain motion representations that are semantically discriminative and

thus are suitable for understanding actions, we introduce a Discriminative Motion Cues Network

(DMC-Net) for generating discriminative motion cues directly from data in the compressed video.

We devise a highly efficient architecture for the generator network in DMC-Net. Since optical flow
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is a more accurate motion representation, we propose to train the generator to approximate flow

using a reconstruction loss and a generative adversarial loss, jointly with the downstream action

classification task. On three action recognition benchmarks, namely HMDB-51, UCF101 and a

subset of Kinetics, we demonstrate that our DMC-Net can significantly shorten the performance

gap between state-of-the-art compressed video based methods with and without optical flow, while

being two orders of magnitude faster than the methods that use optical flow.

1.3 Thesis Overview

We provide a brief overview of this thesis. In Chapter 2, we present a brief literature survey on

deep learning and then we review state-of-the-art work on video backbone network. The rest of

this thesis is divided into 3 main parts: Part I focuses on improving deep learning based action

detection frameworks at two different granularities, including Chapter 3 for segment-level detec-

tion and Chapter 4 for frame-level detection which can be further used to detect precise segment

boundary for segment-level detection; Part II is dedicated to detecting actions in the constrained

scenarios, containing Chapter 5 on weakly-supervised detection for incomplete supervision and

Chapter 6 on online detection of action start for incomplete input data. Part III addresses unique

challenges when directly performing action understanding in the compressed domain, containing

Chapter 7 for studying the effects of video encoding variations and Chapter 8 for generating dis-

criminative motion cues. These three parts are strongly correlated: all three parts are dedicated to

understanding actions in video; Part I and Part II correspond to the settings that model inputs are
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respectively complete and incomplete; the backbone network studied in Part III can be incorpo-

rated with frameworks and ideas proposed in Part I and Part II to address specific action detection

tasks in the compressed domain. Finally, Part IV (containing only Chapter 9) concludes the whole

thesis by summarizing our contributions and discussing open issues.
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Chapter 2

Background

2.1 Introduction

Recent years have witnessed the success of deep learning in computer vision, natural language pro-

cessing, speech recognition, etc. In the rest of this chapter, Section 2.2 reviews popular deep net-

work architectures with an emphasis on their applications in the video domain. Section 2.3 focuses

on the video-level action classification task, which is typically used for studying and evaluating

video backbone networks. In Section 2.3, we briefly review both the conventional models such as

hand-crafted features and also the deep learning based models. Detailed surveys can be found in [4;

5; 6; 7]. These video-level action classification models can be used for feature extraction in the

frameworks developed for various action detection tasks and scenarios as presented in Part I and

Part II.
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2.2 Deep Learning

2.2.1 Convolutional Neural Networks

In computer vision, Convolutional Neural Networks (CNN) have made a series of breakthroughs

for image classification [8], object detection [9], image segmentation [10], etc. Back then in

2012, Alex et al. [8] first demonstrated the effectiveness of CNN on the challenging ImageNet

dataset [11]. Then He et al. [12] proposed a residual learning framework called ResNet to ease

the training of very deep networks. Further, Huang et al. [13] introduced Dense Convolutional

Network (DenseNet) which connects each layer to every other layer in a feed-forward fashion.

In the video domain, Karpathy et al. [14] adopted 2D frame-level CNNs to address large-scale

video classification tasks. Tran et al. [15; 16] proposed to learn spatio-temporal features in video

with 3D Convolutional Networks.

2.2.2 Recurrent Neural Networks

In computer vision, Recurrent Neural Networks (RNN) have been adapted to address image cap-

tioning [17], video captioning [18], video action detection [19], etc. Karpathy et al. [17] used

Bidirectional Recurrent Neural Networks to model sentences in generating image descriptions.

Alahi et al. [20] utilized Long Short-Term Memory (LSTM) network to predict human trajectory

in crowded spaces.

In the video domain, Donahue et al. [18] adopted LSTM network to perform video-level action
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classification and video captioning. Ma et al. [19] used LSTM to model activity progression in

activity detection and early detection.

2.2.3 Adversarial Learning

Inspired by the seminal work of Goodfellow et al. [21] that demonstrated the power of adversarial

training for image synthesis, a large number of works have experimented with incorporating ad-

versarial loss for generative tasks like image-to-image translations [22; 23], super-resolution [24]

or inpainting [25].

In the video domain, adversarial losses have been mostly used for frame prediction [26; 27; 28].

Compared to the conventional generative methods based on L2 reconstruction loss, which tends

to produce blurry results, adversarial loss based methods can generate sharp and more realistic

results.

2.3 Video-level Action Classification

2.3.1 Conventional Methods

There are several hand-crafted features that were developed for analyzing appearance and motion

in video and are still used in some real applications nowadays. Laptev proposed the Space-Time

Interest Points (STIP) which provide compact and abstract representations of spatio-temporal pat-

terns in video [1]. Wang et al. [29] proposed extracting Histogram of Gradient (HOG), Histogram
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of Flow (HOF), Motion Boundary Histograms (MBH) features along dense trajectories, resulting

in the Dense Trajectory Feature (DTF). Later, Wang et al. [30] proposed the improved Dense Tra-

jectory Feature (iDTF) [2] to take camera motion into consideration and further incorporated iDTF

with Fisher Vector (FV) encoding [30; 31; 32].

2.3.2 Deep Learning Methods

Input video frames

time

Per-frame predictions

Video-level prediction

Avg 

over 

time

Directly adopt 2D CNN from image classification
time

Cricket Bowling: 0.8

Long Jump: 0.1

High Jump: 0.05

…

Figure 2.1: Illustration of directly adopting 2D CNN from image classification to process each

video frame individually. The video-level prediction is obtained by averaging the predictions of all

frames.

The mainstream deep learning methods for video-level action classification are based on the

decoded video frames. In addition to the methods mentioned in the above Section 2.2, quite a

few other deep learning based backbone models have been proposed to specifically address unique
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challenges in analyzing video. As shown in Figure 2.1, a simple yet popular approach is di-

rectly adopting 2D convolution developed for image classification to process each video frame

and finally averaging predictions over all frames to obtain the video-level prediction. In order to

comprehensively compare various forms of convolutions for action understanding, Tran et al. [33]

experimented 2D convolution, 3D convolution and their combinations on the standard action clas-

sification benchmarks and found that the form of 2D spatial convolution followed by 1D temporal

convolution, named as (2+1)D Convolution, yields significantly better accuracy than other forms.

As shown in Figure 2.2, (2+1)D Convolution has less parameters to be learned and thus is easier

to be optimized in practice compared to 3D convolution [33]. To model appearance and motion

jointly, Simonyan and Zisserman [34] designed a two-stream framework to process appearance

and motion separately with two individual networks as illustrated in Figure 2.3.

3D Conv (2+1)D Conv

Figure 2.2: Comparisons between 3D Convolution and (2+1)D Convolution. 3D Convolution op-

erates in space and time simultaneously. (2+1)D Convolution consists of a 2D spatial convolution

followed by 1D temporal convolution.

Recently, researchers started to explore deep learning methods in the compressed domain. Wu

et al. [3] proposed to directly process i-frame RGB image, motion vector and residual respec-
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Figure 2.3: Illustration of two-stream network for video action classification. The spatial stream

is for modeling appearance based on RGB data and the temporal stream is for modeling motion

based on optical flow data. The predictions from these two streams are fused at the end.

tively with individual networks and finally perform late fusion. Although promising results can be

achieved, there are important research issues that still remain unresolved for video-level classifica-

tion in the compressed domain and therefore we explore these issues in Part III of this thesis.
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Part I

Action Detection at Fine Granularities in

Time
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Chapter 3

Segment-level Action Detection

3.1 Introduction

Besides detecting action in manually trimmed short video via video-level classification, researchers

start to develop techniques for detecting actions in untrimmed long videos in the wild. This trend

motivates us to study another challenging task - Temporal Action Localization (TAL): given a

long, untrimmed video, “when does a specific action start and end?” This problem is important

because real applications usually involve untrimmed videos, which can be highly unconstrained

in space and time, and one video can contain multiple action instances plus background scenes or

other activities. Localizing actions in long videos, such as those in surveillance, can save tremen-

dous time and computational costs.

Most state-of-the-art methods rely on manually selected features, and their performances still
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require much improvement. For example, top performing approaches in THUMOS Challenge 2014

[35; 36; 37; 38] and 2015 [39; 40] both used improved Dense Trajectory (iDT) with Fisher Vector

(FV) [30; 41]. There have been some recent attempts at incorporating iDT features with appearance

features automatically extracted by frame-level deep networks [35; 36; 37]. Nevertheless, such

2D ConvNets do not capture motion information, which is important for modeling actions and

determining their temporal boundaries.

As an analogy in still images, object detection recently achieved large improvements by using

deep networks. Inspired by Region-based Convolutional Neural Networks (R-CNN) [42] and its

upgraded versions [43; 9; 44], we develop Segment-CNN, which is an effective deep network

framework for temporal action localization as outlined in Figure 3.1. We adopt 3D ConvNets [45;

46], which recently has been shown to be promising for capturing motion characteristics in videos,

and add a new multi-stage framework. First, multi-scale segments are generated as candidates for

three deep networks. The proposal network classifies each segment as either action or background

in order to eliminate background segment estimated to be unlikely to contain actions of interest.

The classification network trains typical one-vs-all classification model for all action categories

plus the background.

However, the classification network aims at finding key evidences to distinguish different cat-

egories, rather than localizing precise action presences in time. Sometimes, the scores from the

classification network can be high even when the segment has only a very small overlap with the

ground truth instance. This can be detrimental because subsequent post-processing steps, such as
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Non-Maximum Suppression (NMS), might remove segment of small score but large overlap with

ground truth. To explicitly take temporal overlap into consideration, we introduce the localization

network based on the same architecture, but this network uses a novel loss function, which rewards

segments with higher temporal overlap with the ground truths, and thus can generate confidence

scores more suitable for post-processing. Note that the classification network cannot be replaced

by the localization network. We will show later that using the trained classification network (with-

out considering temporal overlap) to initialize the localization network (take into account temporal

overlap) is important, and achieves better temporal localization accuracies.

In the rest of this chapter, we review the related work in Section 3.2, describe the network

architecture and the training and testing pipelines of the proposed Segment-CNN framework in

Section 3.3, present the experimental results in Section 3.4, and finally draw our summary in

Section 3.5.

3.2 Related Work

3.2.1 Temporal Action Localization

This topic has been studied in two directions. When training data only have video-level category

labels but no temporal annotations, researchers formulated this as weakly supervised problems or

multiple instance learning problems to learn the key evidences in untrimmed videos and temporally

localize actions by selecting key instances [47; 48]. Sun et al. [49] transferred knowledge from

19



web images to address temporal localization in untrimmed web videos.

Another line of work focuses on learning from data when the temporal boundaries have been

annotated for action instances in untrimmed videos, such as THUMOS. Most of these works pose

this as a classification problem and adopt a temporal sliding window approach, where each window

is considered as an action candidate subject to classification [41]. Recently, two directions lead the

state-of-the-art:

(1) Wang et al. [29] proposed extracting HOG, HOF, MBH features along dense trajectories,

and later on they took camera motion into consideration [30]. Further improvement can be achieved

by stacking features with multiple time skips [50]. Richard and Gall [51] proposed using statistical

length and language modeling to represent temporal and contextual structures. Heilbron et al. [52]

introduced a sparse learning framework for generating segment proposals of high recall.

(2) Inspired by the success of CNNs in recent works [8; 53], Karpathy et al. [14] evaluated

frame-level CNNs on large-scale video classification tasks. Simonyan and Zisserman [34] de-

signed two-stream CNNs to learn from still image and motion flow respectively. In [54], a latent

concept descriptor of convolutional feature map was proposed, and great results were achieved

on event detection with VLAD encoding. To learn spatio-temporal features together, the archi-

tecture of 3D ConvNets was explored in [45; 46], achieving competitive results. Oneata et al.

[55] proposed approximately normalized Fisher Vectors to reduce the high dimensionality of FV.

Stoian et al. [56] introduced a two-level cascade to allow fast search for action instances. In-

stead of precision, these methods focus on improving the efficiency of conventional methods. To
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specifically address the temporal precision of action detection, Gaidon et al. [57; 58] modeled the

structure of action sequence with atomic action units (actoms). The explicit modeling of action

units allows for matching more complete action unit sequences, rather than just partial content.

However, this requires manual annotations for actoms, which can be subjective and burdensome.

Our Segment-CNN here aims to solve the same problem of precise temporal localization, but with-

out requiring the difficult task of manual annotation for atomic action units. Meanwhile, RNN has

been widely used to model temporal state transitions over frames: Escorcia et al. [59] built a

temporal action proposal system based on Long-Short Term Memory (LSTM); Yeung et al. [60]

used REINFORCE to learn decision policies for a RNN-based agent; Yeung et al. [61] introduced

MultiTHUMOS dataset of multi-label annotations for every frame in THUMOS videos and de-

fined a LSTM network to model multiple input and output connections; Yuan et al. [62] proposed

a pyramid of score distribution feature at the center of each sliding window to capture the motion

information over multiple resolutions, and utilized RNN to improve inter-frame consistency. In ad-

dition, Lea et al. [63] used temporal 1D convolution to capture scene changes when actions were

being performed. Although RNN and temporal 1D convolution can model temporal dependencies

among frames and make frame-level predictions, they are usually placed on top of deep ConvNets,

which take a single frame as input, rather than directly modeling spatio-temporal characteristics in

raw videos.
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3.2.2 Spatio-temporal Action Localization

Spatio-temporal action localization requires localizing action in space and time simultaneously.

This problem is different from temporal localization because spatio-temporal localization requires

exhaustive annotations for objects of interest on every frame as training data. This makes it over-

whelmingly time-consuming particularly for long, untrimmed videos compared with the task of

simply labeling the start time and end time of an action depicted in the video, which is sufficient

to satisfy many applications.

3.2.3 Object Detection

Inspired by the success of deep learning approaches in object detection, we also review R-CNN

and its variations. R-CNN consists of selective search, CNN feature extraction, SVM classifica-

tion, and bounding box regression [42]. Fast R-CNN reshapes R-CNN into a single-stage using

multi-task loss, and also has a RoI pooling layer to share the computation of one image in ConvNets

[43]. Our work differs from R-CNN in the following aspects: (1) Temporal annotations in training

videos can be diverse: some are cleanly trimmed action instances cut out from long videos, such

as UCF101 [64], and some are untrimmed long videos but with temporal boundaries annotated for

action instances, such as THUMOS [38; 40]. We provide a paradigm that can handle such diverse

annotations. (2) As proven in Faster R-CNN [9] which proposes region proposal network, and

DeepBox [44] which detects objectness to re-rank the results of R-CNN, using deep networks for

learning objectness is effective and efficient. Therefore, we directly use deep network to classify
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background and action to obtain candidate segments. (3) We remove the regression stage because

learning regression for time shift and duration of video segment does not work well in our ex-

periments, probably because actions can be quite diverse, and therefore do not contain consistent

patterns for predicting start/end time. To achieve precise localization, we design the localization

network using a new loss function to explicitly consider temporal overlap. This can decrease the

score for the segment that has small overlap with the ground truth, and increase the segment of

larger overlap. This also benefits post-processing steps, such as NMS, to keep segment with higher

temporal localization accuracy.

3.3 Detailed Descriptions of Segment-CNN

3.3.1 Problem Setup

Problem definition. We denote a video as X = {xt}
T

t=1 where xt is the t-th frame in X , and

T is the total number of frames in X . Each video X is associated with a set of temporal action

annotations Ψ =
{(
ψm, ψ

′

m, km
)}M

m=1
, where M is the total number of action instances in X , and

km, ψm, ψ
′

m are, respectively, action category of the instance m and its starting time and ending

time (measured by frame ID). km ∈ {1, . . . , K}, where K is the number of categories. During

training, we have a set T of trimmed videos and a set U of untrimmed videos. Each trimmed video

X ∈ T has ψm = 1, ψ
′

m = T , and M = 1.
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Figure 3.1: Overview of our framework. (a) Multi-scale segment generation: given an untrimmed

video, we generate segments of varied lengths via sliding window; (b) Segment-CNN: the pro-

posal network identifies candidate segments, the classification network trains an action recog-

nition model to serve as initialization for the localization network, and the localization network

localizes action instances in time and outputs confidence scores; (c) Post-processing: using the

prediction scores from the localization network, we further remove redundancy by NMS to ob-

tain the final results. During training, the classification network is first learned and then used as

initialization for the localization network. During prediction, only the proposal and localization

networks are used.

Multi-scale segment generation. First, each frame is resized to 171 (width) × 128 (height) pixels.

For untrimmed videoX ∈ U , we conduct temporal sliding windows of varied lengths as 16, 32, 64,

128, 256, 512 frames with 75% overlap. For each window, we construct segment s by uniformly

sampling 16 frames. Consequently, for each untrimmed video X , we generate a set of candidates

Φ =
{(
sh, φh, φ

′

h

)}H

h=1
as input for the proposal network, where H is the total number of sliding

windows for X , and φm and φ
′

m are respectively starting time and ending time of the h-th segment

sh. For trimmed video X ∈ T , we directly sample a segment s of 16 frames from X in uniform.
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Network architecture. 3D ConvNets conducts 3D convolution/pooling which operates in spatial

and temporal dimensions simultaneously, and therefore can capture both appearance and motion

for action. Given the competitive performances on video classification tasks, our deep networks

use 3D ConvNets as the basic architecture in all stages and follow the network architecture of

[46]. All 3D pooling layers use max pooling and have kernel size of 2×2 in spatial with stride

2, while vary in temporal. All 3D convolutional filters have kernel size 3 and stride 1 in all

three dimensions. Using the notations conv(number of filters) for the 3D convolutional layer,

pool(temporal kernel size, temporal stride) for the 3D pooling layer, and fc(number of filters) for

the fully connected layer, the layout of these three types of layers in our architecture is as follows:

conv1a(64) - pool1(1,1) - conv2a(128) - pool2(2,2) - conv3a(256) - conv3b(256) - pool3(2,2)

- conv4a(512) - conv4b(512) - pool4(2,2) - conv5a(512) - conv5b(512) - pool5(2,2) - fc6(4096)

- fc7(4096) - fc8(K + 1). Each input for this deep network is a segment s of dimension

171 × 128 × 16. C3D is training this network on Sports-1M train split [46], and we use C3D

as the initialization for our proposal and classification networks.

3.3.2 Training Procedure

The proposal network: We train a CNN network Θpro as the background segment filter. Basi-

cally, fc8 has two nodes that correspondingly represent the background (rarely contains action of

interest) and being-action (has significant portion belongs to the actions of interest).
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We use the following strategy to construct training data Spro = {(sn, kn)}
N

n=1, where label

kn ∈ {0, 1}. For each segment of the trimmed video X ∈ T , we set its label as positive. For

candidate segments from an untrimmed video X ∈ U with temporal annotation Ψ, we assign

a label for each segment by evaluating its Intersection-over-Union (IoU) with each ground truth

instance in Ψ : (1) if the highest IoU is larger than 0.7, we assign a positive label; (2) if the highest

IoU is smaller than 0.3, we set it as the background. On the perspective of ground truth, if there

is no segment that overlaps with a ground truth instance with IoU larger than 0.7, then we assign

a positive label segment s if s has the largest IoU with this ground truth and its IoU is higher than

0.5. At last, we obtain Spro = {(sn, kn)}
Npro

n=1 which consists of all NT +NU positive segments and

Nb ≈ NT +NU randomly sampled background segments, where Npro = NT +NU +Nb.

In all experiments, we use a learning rate of 0.0001, with the exception of 0.01 for fc8, mo-

mentum of 0.9, weight decay factor of 0.0005, and drop the learning rate by a factor of 10 for every

10K iterations. The number of total iterations depends on the scale of dataset and will be clarified

in Section 3.4.

Note that, compared with the multi-class classification network, this proposal network is sim-

pler because the output layer only consists of two nodes (action or background).

The classification network: After substantial background segments are removed by the proposal

network, we train a classification model Θcls for K action categories as well as background.

Preparing the training data Scls follows a similar strategy for the proposal network. Except
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when assigning label for positive segment, the classification network explicitly indicates action

category km ∈ {1, . . . , K}. Moreover, in order to balance the number of training data for each

class, we reduce the number of background instances to Nb ≈
NT +NU

K
.

As for parameters in SGD, the learning rate is 0.0001, with the exception of 0.01 for fc8,

momentum is 0.9, weight decay factor is 0.0005, and the learning rate is divided by a factor of

2 for every 10K iterations, because the convergence shall be slower when the number of classes

increases.

The localization network: As illustrated in Figure 3.2, it is important to push up the prediction

score of the segment with larger overlap with the ground truth instance and decrease the scores

of the segment with smaller overlap, to make sure that the subsequent post-processing steps can

choose segments with higher overlap over those with small overlap. Therefore, we propose this

localization network Θloc with a new loss function, which takes IoU with ground truth instance

B: CliffDiving   0.90   Remove

Background CliffDiving Background

A: CliffDiving   0.95   Keep

C: CliffDiving   0.85   Keept1      t2

Figure 3.2: Typical case of bad localizations. Assume that the system outputs three predictions: A,

B, C. Probably due to that there are some evidences during [t1, t2], and A has the highest prediction

score. Therefore, the NMS will keep A, remove B, and then keep C. However, actually we hope to

remove A and C in NMS, and keep B because B has the largest IoU with the ground truth instance.
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into consideration.

Training data Sloc for the localization network are augmented from Scls by associating each

segment s with the measurement of overlap, v. In specific, we set v = 1 for s from trimmed video.

If s comes from untrimmed video and has positive label k, we set v equal to the overlap (measured

by IoU) of segment s with the associated ground truth instance. If s is a background segment,

as we can see later, its overlap measurement v will not affect our new loss function and gradient

computation in back-propagation, and thus we simply set its v as 1.

During each mini-batch, we have N training samples {(sn, kn, vn)}
N

n=1. For the n-th segment,

the output vector of fc8 is On and the prediction score vector after the softmax layer is Pn. Note

that for the i-th class, P
(i)
n = eO

(i)
n

∑N
j=1 e

O
(j)
n

. The new loss function is formed by combining Lsoftmax

and Loverlap :

L = Lsoftmax + λ · Loverlap, (3.1)

where λ balances the contribution from each part, and through empirical validation, we find that

λ = 1 works well in practice. Lsoftmax is the conventional softmax loss and is defined as

Lsoftmax =
1

N

∑

n

(
− log

(
P (kn)
n

))
, (3.2)

which is effective for training deep networks for classification. Loverlap is designed to jointly re-

duce the classification error and adjust the intensity of confidence score according to the extent of

overlap:

Loverlap =
1

N

∑

n





1

2
·






(

P
(kn)
n

)2

(vn)
α − 1




 · [kn > 0]




. (3.3)
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Here, [kn > 0] is equal to 1 when the true class label kn is positive, and it is equal to 0 when kn = 0,

which means the sn is a background training sample. Loverlap is intended to boost the detection

scores (P ) of segments that have high overlaps (v) with ground truth instances, and reduce the

scores of those with small overlaps. The hyper-parameter α controls the adjustment range for the

intensity of the confidence score. The sensitivity of α is explored in Section 3.4. In addition, the

total gradient w.r.t output of the i-th node in fc8 is as follows:

∂L

∂O
(i)
n

=
∂Lsoftmax

∂O
(i)
n

+ λ ·
∂Loverlap

∂O
(i)
n

, (3.4)

in which

∂Lsoftmax

∂O
(i)
n

=







1
N
·
(

P
(kn)
n − 1

)

if i = kn

1
N
· P

(i)
n if i 6= kn

(3.5)

and

∂Loverlap

∂O
(i)
n

=







1
N
·

(
(

P
(kn)
n

)2

(vn)
α ·

(

1− P
(kn)
n

)
)

· [kn > 0]

if i = kn

1
N
·

(
(

P
(kn)
n

)2

(vn)
α ·

(

−P
(i)
n

)
)

· [kn > 0]

if i 6= kn

. (3.6)

Given a training sample (sn, kn, vn), Figure 3.3 shows how Loverlap influences the original

softmax loss. It also provides more concrete insights about the design of this loss function. (1)

If the segment belongs to the background, Loverlap = 0 and L = Lsoftmax. (2) If the segment is

positive, L reachs the minimum at P
(kn)
n =

√

(vn)
α
, and therefore penalizes two cases: either P

(kn)
n

is too small due to misclassification, or P
(kn)
n explodes and exceeds the learning target

√

(vn)
α
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Figure 3.3: An illustration of how Loverlap works compared with Lsoftmax for each positive segment.

Here we use α = 1, λ = 1, and vary overlap v in Loverlap. The x-axis is the prediction score at the

node that corresponds to true label, and the y-axis is the loss.

which is proportional to overlap vn. Also note that L is designed to increase as vn decreases,

considering that the training segment with smaller overlap with ground truth instance is less reliable

because it may include considerable noise. (3) In particular, if this positive segment has overlap

vn = 1, the loss function becomes similar to the softmax loss, and L gradually decreases from +∞

to 1 as P
(kn)
n goes from 0 to 1.

During optimization, Θloc is fine-tuned on Θcls. Because doing classification is also one objec-

tive of the localization network, and a trained classification network can be good initialization. We

use the same learning rate, momentum, and weight decay factor as for the classification network.
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Other parameters depending on the dataset are indicated in Section 3.4.

3.3.3 Prediction and Post-processing

During prediction, we slide varied length temporal window to generate a set of segments and input

them into Θpro to obtain proposal scores Ppro. In this thesis, we keep segments with Ppro ≥ 0.7.

Then we evaluate the retained segments by Θloc to obtain action category predictions and confi-

dence scores Ploc. During post-processing, we remove all segments predicted as the background

and refine Ploc by multiplying with class-specific frequency of occurrence for each window length

in the training data to leverage window length distribution patterns. Finally, because redundant

detections are not allowed in evaluation, we conduct NMS based on Ploc to remove redundant de-

tections, and set the overlap threshold in NMS to a little bit smaller than the overlap threshold θ in

evaluation (θ − 0.1 in this thesis).

3.4 Experiments

3.4.1 Datasets and Setup

MEXaction2 [65]. This dataset contains two action classes: “BullChargeCape” and “HorseRid-

ing”. This dataset consists of three subsets: INA videos, YouTube clips, and UCF101 Horse

Riding clips. YouTube clips and UCF101 Horse Riding clips are trimmed, whereas INA videos are

untrimmed and are approximately 77 hours in total. With regard to action instances with temporal

31



0

10

20

30

40

50

A
v
e
ra

g
e
 P

re
s
ic

io
n
(%

)

 

7:BaseballP
itc

h

9:BasketballD
unk

12:Billia
rds

21:C
leanAndJerk

22:C
liff

Diving

23:C
ric

ketBowlin
g

24:C
ric

ketShot

26:D
iving

31:Fris
beeCatch

33:G
olfS

wing

36:H
ammerThrow

40:H
ighJump

45:Javelin
Throw

51:LongJump

68:PoleVault

79:Shotput

85:SoccerP
enalty

92:TennisSwing

93:ThrowDiscus

97:Volle
yballS

piking mAP

Karaman et al. Wang et al. Oneata et al. S−CNN

Figure 3.4: Histogram of average precision (%) for each class on THUMOS 2014 when the overlap

threshold is set to 0.5 during evaluation.

annotation, they are divided into train set (1336 instances), validation set (310 instances), and test

set (329 instances).

THUMOS 2014 [38]. The temporal action detection task in THUMOS Challenge 2014 is ded-

icated to localizing action instances in long untrimmed videos. The detection task involves 20

categories as indicated in Figure 3.4. The trimmed videos used for training are 2755 videos of

these 20 actions in UCF101. The validation set contains 1010 untrimmed videos with tempo-

ral annotations of 3007 instances in total. The test set contains 3358 action instances from 1574

untrimmed videos, whereas only 213 of them contain action instances of interest. We exclude the

remaining 1361 background videos in the test set.
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3.4.2 Comparison with state-of-the-art systems

Evaluation metrics. We follow the conventional metrics used in THUMOS Challenge to regard

temporal action localization as a retrieval problem, and evaluate average precision (AP). A predic-

tion is marked as correct only when it has the correct category prediction, and has IoU with ground

truth instance larger than the overlap threshold (measured by IoU). Note that redundant detections

are not allowed.

Results on MEXaction2. We build our system based on Caffe [66] and C3D [46]. We use the

train set in MEXaction2 for training. The number of training iterations is 30K for the proposal

network, 20K for the classification network, and 20K in the localization network with α = 0.25.

We denote our Segment-CNN using the above settings as S-CNN and compare with typical

dense trajectory features (DTF) with bag-of-visual-words representation. The results of DTF is

provided by [65] 1, which trains three SVM models with different set of negative samples and

averages AP overall. According to Table 3.1, our Segment-CNN achieves tremendous performance

gain for “BullChargeCape” action and competitive performance for “HorseRiding” action. Figure

3.5 displays our prediction results for “BullChargeCape” and “HorseRiding”, respectively.

Results on THUMOS 2014 The instances in train set and validation set are used for training.

1Note that the results reported in [65] use different evaluation metrics. To make them comparable, we re-evaluate

their prediction results according to standard criteria mentioned in Section 3.4.2.
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AP(%) BullChargeCape HorseRiding mAP

DTF 0.3 3.1 1.7

S-CNN 11.6 3.1 7.4

Table 3.1: Average precision on MEXaction2. The overlap threshold is set to 0.5 during evaluation.

The number of training iterations is 30K for all three networks. We again set α = 0.25 for the

localization network. We denote our Segment-CNN using the above settings as S-CNN.

θ 0.1 0.2 0.3 0.4 0.5

Karaman et al. [37] 1.5 0.9 0.5 0.3 0.2

Wang et al. [36] 19.2 17.8 14.6 12.1 8.5

Oneata et al. [35] 39.8 36.2 28.8 21.8 15.0

S-CNN 47.7 43.5 36.3 28.7 19.0

Table 3.2: Mean average precision on THUMOS 2014 as the overlap IoU threshold θ used in

evaluation varies.

As for comparisons, beyond DTF, several baseline systems incorporate frame-level deep net-

works and even utilize lots of other features: (1) Karaman et al. [37] used FV encoding of iDT

with weighted saliency based pooling, and conducted late fusion with frame-level CNN features.

(2) Wang et al. [36] built a system on iDT with FV representation and frame-level CNN features,

and performed post-processing to refine the detection results. (3) Oneata et al. [35] conducted lo-

calization using FV encoding of iDT on temporal sliding windows, and performed post-processing

following [41]. Finally, they conducted weighted fusion for the localization scores of temporal

windows and video-level scores generated by classifiers trained on iDT features, image features,

and audio features. The results are listed in Table 3.2. AP for each class can be found in Figure

3.4. Our Segment-CNN significantly outperforms other systems for 14 of 20 actions, and the av-
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erage performance improves from 15.0% to 19.0%. We also show two prediction results for the

THUMOS 2014 test set in Figure 3.6.

Efficiency analysis. Our approach is very efficient when compared with all other systems, which

typically fuse different features, and therefore can become quite cumbersome. Most segments gen-

erated from sliding windows are removed by the first proposal network, and thus the operations in

classification and localization are greatly reduced. For each batch, the speed is around 1 second,

and the number of segments can be processed during each batch depends on the GPU memory (ap-

proximately 25 for GeForce GTX 980 of 4G memory). The storage requirement is also extremely

small because our method does not need to cache intermediate high dimensional features, such as

FV to train SVM. All required by Segment-CNN is three deep network models, which occupy less

than 1 GB in total.

3.4.3 Impact of Individual Networks

To study the effects of each network individually, we compare four Segment-CNNs using different

settings: (1) S-CNN: keep all three networks and settings in Section 3.4.2, and Θloc is fine-tuned on

Θcls; (2) S-CNN (w/o proposal): remove the proposal network completely, and directly use Θloc

to do predictions on sliding windows; (3) S-CNN (w/o classification): remove the classification

network completely and thus do not have Θcls to serve as initialization for training Θloc; (4) S-

CNN (w/o localization): remove the localization network completely and instead use classification
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Figure 3.5: Prediction results for two action instances from MEXaction2 when the overlap thresh-

old is set to 0.5 during evaluation. For each ground truth instance, we show two prediction results:

A has the highest confidence score among the predictions associated with this ground truth, and B

is an incorrect prediction. BullChargeCape: A is correct, but B is incorrect because each ground

truth only allows one detection. HorseRiding: A is correct, but B is incorrect because each ground

truth only allows one detection. The numbers shown with # are frame IDs.
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Figure 3.6: Prediction results for two action instances from THUMOS 2014 test set when the

overlap threshold is set to 0.5 during evaluation. For each ground truth instance, we show two

prediction results: A has the highest confidence score among the predictions associated with this

ground truth, and B is an incorrect prediction. ClearAndJerk: A is correct, but B is incorrect

because its overlap IoU with ground truth is less than threshold 0.5. LongJump: A is correct, but

B is incorrect because it has the wrong action category prediction - PoleVault.

model Θcls to produce predictions.

The proposal network. We compare S-CNN (w/o proposal) and S-CNN, which includes the
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networks S-CNN (w/o proposal) S-CNN

mAP(%) 17.1 19.0

Table 3.3: mAP comparisons on THUMOS 2014 between removing the proposal network and

keeping the proposal network. The overlap threshold is set to 0.5 during evaluation.

proposal network as described above (two nodes in fc8). Because of the smaller network archi-

tecture than S-CNN (w/o proposal), S-CNN can reduce the number of operations conducted on

background segments, and therefore accelerate speed. In addition, the results listed in Table 3.3

demonstrate that keeping the proposal network can also improve precision because it is designed

for filtering out background segments that lack action of interests.

The classification network. Although Θcls is not used during prediction, the classification network

is still important because fine-tuning on Θcls results in better performance. During evaluation here,

we perform top-κ selection on the final prediction results to select κ segments with maximum

confidence scores. As shown in Figure 3.7, S-CNN fine-tuned on Θcls outperforms S-CNN (w/o

classification) consistently when κ varies, and consequently the classification network is necessary

during training.

The localization network. Figure 3.7 also proves the effectiveness of the localization network.

By adding the localization network, S-CNN can significantly improve performances compared

with the baseline S-CNN (w/o localization), which only contains the proposal and classification

networks. This is because the new loss function introduced in the localization network refines the
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evaluation.

scores in favoring segments of higher overlap with the ground truths, and therefore higher temporal

localization accuracy can be achieved.

In addition, we vary α in the overlap loss term Loverlap of the loss function to evaluate its

sensitivity. We find that our approach has stable performances over a range of α value (e.g., from

0.25 to 1.0).

3.5 Summary

In this chapter, we address temporal action localization in untrimmed long videos. This is im-

portant because videos in real applications are usually unconstrained and contain multiple action

instances plus video content of background scenes or other activities. To address this challenging

38



issue, we have exploited the effectiveness of deep networks in temporal action localization via

three segment-based 3D ConvNets: a proposal network, a classification network and a localization

network. Through the above ablation study for each network, we have validated the following

hypotheses: (1) instead of directly performing classification based on exhaustive scanning, the

proposal network can filter out unlikely segments and improve the final detection accuracy; (2)

it is beneficial to first train a classification network to provide good initialization for training the

localization network; (3) the new loss function used in the localization network is key to precisely

localizing action instances in time. Finally, when the overlap threshold used in evaluation is set to

0.5, our approach consisting of all three networks improves mAP on MEXaction2 from 1.7% to

7.4% and mAP on THUMOS 2014 from 15.0% to 19.0%.

39



Chapter 4

Precise Segment Boundary Detection and

Frame-level Action Detection

4.1 Introduction

The Temporal Action Localization (TAL) task involves two components: (1) determining whether

a video contains specific actions (such as diving, jump, etc.) and (2) identifying temporal bound-

aries (start time and end time) of each action instance. In Chapter 3, we have proposed an end-

to-end deep learning framework called Segment-CNN (S-CNN) [67] based on 3D ConvNets [46]

demonstrated superior performances both in efficiency and accuracy on standard benchmarks such

as THUMOS’14 [38]. S-CNN consists of a proposal network for generating candidate video seg-

ments and a localization network for predicting segment-level scores of action classes. Although
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the localization network can be optimized to select segments with high overlaps with ground truth

action instances, the detected action boundaries are still retained and thus are restricted to the

pre-determined boundaries of a fixed set of proposal segments.

As illustrated in Figure 4.1, our goal is to refine temporal boundaries from proposal segments

to precisely localize boundaries of action instances. This motivates us to move beyond existing

practices based on segment-level predictions, and explicitly focus on the frame-level detection

task of conducting fine-grained, dense predictions in time. To achieve this goal, some existing

techniques can be adapted: (1) Single-frame classifiers operate on each frame individually; (2)

Recurrent Neural Networks (RNN) further take into account temporal dependencies across frames.

But both of them fail to explicitly model the spatio-temporal information in raw videos.

3D CNN [46; 67] has been shown that it can learn spatio-temporal abstraction of high-level

semantics directly from raw videos but loses granularity in time, which is important for precise

localization, as mentioned above. For example, layers from conv1a to conv5b in the well-known

C3D architecture [46] reduce the temporal length of an input video by a factor of 8. In pixel-

level semantic segmentation, de-convolution proves to be an effective upsampling method in both

image [68; 69] and video [70] for producing output of the same resolution as the input. In our

temporal localization problem, the temporal length of the output should be the same as the input

video, but the spatial size should be reduced to 1x1. Therefore, we not only need to upsample in

time but also need to downsample in space. To this end, we propose a novel Convolutional-De-

Convolutional (CDC) filter, which performs convolution in space (for semantic abstraction) and
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Figure 4.1: Our framework of precise segment boundary detection for temporal action localiza-

tion. Given an input raw video, it is fed into our CDC localization network, which consists of

3D ConvNets for semantic abstraction and a novel CDC network for dense score prediction at the

frame-level. Such fine-granular score sequences are combined with segment proposals to detect

action instances with precise boundaries.

de-convolution in time (for frame-level resolution) simultaneously. It is unique in jointly modeling

the spatio-temporal interactions between summarizing high-level semantics in space and inferring
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fine-grained action dynamics in time. On top of 3D ConvNets, we stack multiple CDC layers to

form our CDC network, which can achieve the aforementioned goal of temporal upsampling and

spatial downsampling, and thereby can determine action categories and can refine boundaries of

proposal segments to precisely localize action instances.

In the rest of this chapter, we review the related work about de-convolution and semantic seg-

mentation in Section 4.2, describe the proposed Convolutional-De-Convolutional networks in Sec-

tion 4.3, present the experimental results in Section 4.4, and finally draw our summary in Sec-

tion 4.5.

4.2 Related Work

Zeiler et al. [71] originally proposed de-convolutional networks for image decomposition, and

later Zeiler and Fergus [72] re-purposed de-convolutional filter to map CNN activations back to

the input to visualize where the activations come from. Long et al. [68; 69] showed that deep learn-

ing based approaches can significantly boost performance in image semantic segmentation. They

proposed Fully Convolutional Networks (FCN) to output feature maps of reduced dimensions, and

then employed de-convolution for upsampling to make dense, pixel-level predictions. The fully

convolutional architecture and learnable upsampling method are efficient and effective, and thus

inspired many extensions [73; 74; 75; 76; 77; 78; 79; 10; 80]. Note that this de-convolutional filter

is effectively the transpose of convolution and thus is different from the conventional de-convoltion

in signal processing [81].

43



Recently, Tran et al. [70] extended de-convolution from 2D to 3D and achieved competitive

results on various voxel-level prediction tasks such as video semantic segmentation. This shows

that de-convolution is also effective in the video domain and has the potential to be adapted for

making dense predictions in time for our temporal action localization task. However, unlike the

problem of semantic segmentation, we need to upsample in time but maintain downsampling in

space. Instead of stacking a convolutional layer and a de-convolutional layer to conduct upsam-

pling and downsampling separately, our proposed CDC filter learns a joint model to perform these

two operations simultaneously, and proves to be more powerful and easier to train.

4.3 Convolutional-De-Convolutional networks

4.3.1 The need of downsampling and upsampling

C3D architecture, consisting of 3D ConvNets followed by three Fully Connected (FC) layers, has

achieved promising results in video analysis tasks such as recognition [46] and localization [67].

Further, Tran et al. [70] experimentally demonstrated the 3D ConvNets, ie. from conv1a to

conv5b, to be effective in summarizing spatio-temporal patterns from raw videos into high-level

semantics.

Therefore, we build our CDC network upon C3D. We adopt from conv1a to conv5b as the first

part of our CDC network. For the rest of layers in C3D, we keep pool5 to perform max pooling in

height and width by a factor of 2 but retain the temporal length. Following conventional settings
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[46; 67; 70], we set the height and width of the CDC network input to 112x112. Given an input

video segment of temporal length L, the output data shape of pool5 is (512, L/8, 4, 4) 1. Now in

order to predict the action class scores at the original temporal resolution (frame-level), we need to

upsample in time (from L/8 back to L), and downsample in space (from 4x4 to 1x1). To this end,

we propose the CDC filter and design a CDC network to adapt the FC layers from C3D to perform

the required upsample and downsample operations. Details are described in Sections 4.3.2 and

4.3.3.

4.3.2 CDC filter

In this section, we walk through a concrete example of adapting FC6 layer in C3D to perform

spatial downsampling by a factor of 4x4 and temporal upsampling by a factor of 2. For the sake of

clarity, we focus on how a filter operates within one input channel and one output channel.

As explained in [68; 69], the FC layer is a special case of a convolutional layer (when the

input data and the kernel have the same size and there is no striding and no padding). So we can

transform FC6 into conv6, which is shown in Figure 4.2 (a). Previously, a filter in FC6 takes a

4x4 feature map from pool5 as input and outputs a single value. Now, a filter in conv6 can slide

on L/8 feature maps of size 4x4 stacked in time and respectively output L/8 values in time. The

kernel size of conv6 is 4x4=16.

Although conv6 performs spatial downsampling, the temporal length remains unchanged. To

1We denote the shape of data in the networks using the form of (number of channels, temporal length, height,

width) and the size of feature map, kernel, stride, zero padding using (temporal length, height, width).
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Figure 4.2: Illustration of how a filter in conv6, deconv6, CDC6 operates on pool5 output feature

maps (grey rectangles) stacked in time. In each panel, dashed lines with the same color indicate

the same filter sliding over time. Nodes stand for outputs.

upsample in time, as shown in Figure 4.2 (b), a straightforward solution adds a de-convolutional

layer deconv6 after conv6 to double the temporal length while maintaining the spatial size. The
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kernel size of deconv6 is 2. Therefore, the total number of parameters for this solution (separated

conv6 and deconv6) is 4x4+2=18.

However, this solution conducts temporal upsampling and spatial downsampling in a separate

manner. Instead, we propose the CDC filter CDC6 to jointly perform these two operations. As

illustrated in Figure 4.2 (c), a CDC6 filter consists of two independent convolutional filters (the red

one and the green one) operating on the same input 4x4 feature map. Each of these convolutional

filters has the same kernel size as the filter in conv6 and separately outputs one single value. So

each 4x4 feature map results in 2 outputs in time. As the CDC filter slides on L/8 feature maps of

size 4x4 stacked in time, this input feature volume of temporal length L/8 is upsampled in time to

L/4, and its spatial size is reduced to 1x1. Consequently, in space this CDC filter is equivalent to

a 2D convolutional filter of kernel size 4x4; in time it has the same effect as a 1D de-convolutional

filter of kernel size 2, stride 2, padding 0. The kernel size of such a joint filter in CDC6 is 2x4x4=32,

which is larger than the separate convolution and de-convolution solution (18).

Therefore, a CDC filter is more powerful for jointly modeling high-level semantics and tem-

poral dynamics: each output in time comes from an independent convolutional kernel dedicated to

this output (the red/green node corresponds to the red/green kernel); however, in the separate con-

volution and de-convolution solution, different outputs in time share the same high-level semantics

(the blue node) outputted by one single convolutional kernel (the blue one).

Having more parameters makes the CDC filter harder to learn. To remedy this issue, we pro-

pose a method to adapt the pre-trained FC6 layer in C3D to initialize CDC6. After we convert FC6 to
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conv6, conv6 and CDC6 have the same number of channels (i.e. 4,096) and thus the same number

of filters. Each filter in conv6 can be used to initialize its corresponding filter in CDC6: the filter

in conv6 (the blue one) has the same kernel size as each of these two convolutional filters (the red

one and the green one) in the CDC6 filter and thus can serve as the initialization for them both.

Generally, assume that a CDC filter F of kernel size (kl, kh, kw) takes the input receptive field

X of height kh and width kw, and produces Y that consists of kl successive outputs in time. For the

example given in Figure 4.2 (c), we have kl = 2, kh = 4, kw = 4. Given the indices a ∈ {1, ..., kh}

and b ∈ {1, ..., kw} in height and width respectively for X and the index c ∈ {1, ..., kl} in time for

Y : during the forward pass, we can compute Y by

Y [c] =

kh∑

a=1

kw∑

b=1

F [c, a, b] ·X [a, b]; (4.1)

during the back-propagation, our CDC filter follows the chain rule and propagates gradients from

Y to X via

X [a, b] =

kl∑

c=1

F [c, a, b] ·Y [c] . (4.2)

A CDC filter F can be regarded as coupling a series of convolutional filters (each one has kernel

size kh in height and kw in width) in time with a shared input receptive field X , and at the same

time, F performs 1D de-convolution with kernel size kl in time. In addition, the cross-channel

mechanisms within a CDC layer and the way of adding biases to the outputs of the CDC filters

follow the conventional strategies used in convolutional and de-convolutional layers.
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Figure 4.3: Architecture of a typical CDC network. Following the notations indicated in the foot-

note 1, the top row lists the shape of output data at each layer. (1) A video segment is first fed into

3D ConvNets and the temporal length reduces from L to L/8. (2) CDC6 has kernel size (4, 4, 4),

stride (2, 1, 1), padding (1, 0, 0), and therefore reduces both height and width to 1 while increases

the temporal length from L/8 to L/4. Both CDC7 and CDC8 have kernel size (4, 1, 1), stride (2,

1, 1), padding (1, 0, 0), and hence both CDC7 and CDC8 further perform upsampling in time by a

factor of 2, and thus the temporal length is back to L. (3) A frame-wise softmax layer is added on

top of CDC8 to obtain confidence scores for every frame. Each channel stands for one class.

4.3.3 Design of CDC network architecture

In Figure 4.3, we illustrate our CDC network for labeling every frame of a video. The final output

shape of the CDC network is (K+1, L, 1, 1), where K+1 stands for K action categories plus the

background class. As described in Section 4.3.1, from conv1a to pool5, the temporal length of

an input segment has been reduced from L to L/8. On top of pool5, in order to make per-frame

predictions, we adapt FC layers in C3D as CDC layers to perform temporal upsampling and spatial

downsampling operations. Following previous de-convolution works [70; 68; 69], we upsample in

time by a factor of 2 in each CDC layer, to gradually increase temporal length from L/8 back to L.

In the previous Section 4.3.2, we provide an example of how to adapt FC6 as CDC6, performing

temporal 1D de-convolution of kernel size 2, stride 2, padding 0. For CDC6 in the CDC network,

we construct a CDC filter with 4 convolutional filters instead of 2, and thus its temporal kernel size
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in time increases from 2 to 4. We set the corresponding stride to 2 and padding to 1. Now each

4x4 feature map produces 4 output nodes, and every two consecutive feature maps have 2 nodes

overlapping in time. Consequently, the temporal length of input is still upsampled by CDC6 from

L/8 to L/4, but each output node sums contributions from two consecutive input feature maps,

allowing temporal dynamics in input to be taken into account.

Likewise, we can adapt FC7 as CDC7, as indicated in Figure 4.3. Additionally, we retain the

Relu layers and the Dropout layers with 0.5 dropout ratio from C3D to attach to both CDC6 and

CDC7. CDC8 corresponds to FC8 but cannot be directly adapted from FC8 because the classes in

FC8 and CDC8 are different. Since each channel stands for one class, CDC8 has K+1 channels.

Finally, the CDC8 output is fed into a frame-wise softmax layer Softmax to produce per-frame

scores. During each mini-batch with N training segments, for the n-th segment, the CDC8 output

On has the shape (K+1, L, 1 ,1). For each frame, performing the conventional softmax operation

and computing the softmax loss and gradient are independent of other frames. Corresponding to

the t-th frame, the CDC8 output On [t] and Softmax output Pn [t] both are vectors of K+1 values.

Note that for the i-th class, P
(i)
n [t] = eO

(i)
n [t]

∑K+1
j=1 eO

(j)
n [t]

. The total loss L is defined as:

L =
1

N

N∑

n=1

L∑

t=1

(
− log

(
P (zn)
n [t]

))
, (4.3)

where zn stands for the ground truth class label for the n-th segment. The total gradient w.r.t the

output of i-th channel/class and t-th frame in CDC8 is the summation over all N training segments

50



of:

∂L

∂O
(i)
n [t]

=







1
N
·
(

P
(zn)
n [t]− 1

)

if i = zn

1
N
· P

(i)
n [t] if i 6= zn

. (4.4)

4.3.4 Training and prediction

Training data construction. In theory, because both the convolutional filter and the CDC filter

slide over the input, they can be applied to input of arbitrary size. Therefore, our CDC network

can operate on videos of variable lengths. Due to GPU memory limitations, in practice we slide

a temporal window of 32 frames without overlap on the video and feed each window individually

into the CDC network to obtain dense predictions in time. From the temporal boundary annota-

tions, we know the label of every frame. Frames in the same window can have different labels. To

prevent including too many background frames for training, we only keep windows that have at

least one frame belonging to actions. Therefore, given a set of training videos, we obtain a training

collection of windows with frame-level labels.

Optimization. We use stochastic gradient descent to train the CDC network with the aforemen-

tioned frame-wise softmax loss. Our implementation is based on Caffe [66] and C3D [46]. The

learning rate is set to 0.00001 for all layers except for CDC8 layer where the learning rate is 0.0001

since CDC8 is randomly initialized. Following conventional settings [46; 67], we set momentum to

0.9 and weight decay to 0.005.

C3D [46] is trained on Sports-1M [14] and can be used to directly initialize conv1a to conv5b.

51



CDC6 and CDC7 are initialized by FC6 and FC7 respectively using the strategy described in the

Section 4.3.2. In addition, since FC8 in C3D and CDC8 in the CDC network have the different

number of channels, we randomly initialize CDC8. With such initialization, our CDC network

turns out to be very easy to train and converges quickly, i.e. 4 training epochs (within half a day)

on THUMOS’14 .

Fine-grained prediction and precise localization. During testing, after applying the CDC net-

work on the whole video, we can make predictions for every frame of the video. Through thresh-

olding on confidence scores and grouping adjacent frames of the same label, it is possible to cut

the video into segments and produce localization results. But this method is not robust to noise,

and designing temporal smoothing strategies turns out to be ad hoc and non-trivial. Recently, re-

searchers developed some efficient segment proposal methods [67; 59] to generate a small set of

candidate segments of high recall. Utilizing these proposals for our localization model not only

bypasses the challenge of grouping adjacent frames, but also achieves considerable speedup during

testing, because we only need to apply the CDC network on the proposal segments instead of the

whole video.

Since these proposal segments only have coarse boundaries, we propose using fine-grained

predictions from the CDC network to localize precise boundaries. First, to look at a wider interval,

we extend each proposal segment’s boundaries on both sides by the percentage α of the original

segment length. We set α to 1/8 for all experiments. Then, similar to preparing training segments,
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we slide temporal windows without overlap on the test videos. We only need to keep test windows

that overlap with at least one extended proposal segment. We feed these windows into our CDC

network and generate per-frame action classes scores.

The category of each proposal segment is set to the class with the maximum average confidence

score over all frames in the segment. If a proposal segment does not belong to the background

class, we keep it and further refine its boundaries. Given the score sequence of the predicted class

in the segment, we perform Gaussian kernel density estimation and obtain its mean µ and standard

deviation σ. Starting from the boundary frame at each side of the extended segment and moving

towards its middle, we shrink its temporal boundaries until we reach a frame with the confidence

score no lower than µ - σ. Finally, we set the prediction score of the segment to the average

confidence score of the predicted class over frames in the refined segment of boundaries.

4.4 Experiments

4.4.1 Per-frame labeling

We first demonstrate the effectiveness of our model in predicting accurate labels for every frame.

Note that this task can accept an input of multiple frames to take into account temporal information.

We denote our model as CDC.

THUMOS’14 [38]. The temporal action localization task in THUMOS Challenge 2014 involves
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methods mAP

Single-frame CNN [53] 34.7

Two-stream CNN [34] 36.2

LSTM [18] 39.3

MultiLSTM [61] 41.3

C3D + LinearInterp 37.0

Conv & De-conv 41.7

CDC (fix 3D ConvNets) 37.4

CDC 44.4

Table 4.1: Per-frame labeling mAP on THUMOS’14 .

20 actions. We use 2,755 trimmed training videos and 1,010 untrimmed validation videos (3,007

action instances) to train our model. For testing, we use all 213 test videos (3,358 action instances)

which are not entirely background videos.

Evaluation metrics. Following conventional metrics [61], we treat the per-frame labeling task as

a retrieval problem. For each action class, we rank all frames in the test set by their confidence

scores for that class and compute Average Precision (AP). Then we average over all classes to

obtain mean AP (mAP).

Comparisons. In Table 4.1, we first compare our CDC network (denoted by CDC) with some

state-of-the-art models (results are quoted from [61]): (1) Single-frame CNN: the frame-level 16-

layer VGG CNN model [53]; (2) Two-stream CNN: the frame-level two-stream CNN model pro-

posed in [34], which has one stream for pixel and one stream for optical flow; (3) LSTM: the basic

per-frame labeling LSTM model of 512 hidden units [18] on the top of VGG CNN FC7 layer;
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(4) MultiLSTM: a LSTM model developed by Yeung et al. [61] to process multiple input frames

together with temporal attention mechanism and output predictions for multiple frames. Single-

frame CNN only takes into account appearance information. Two-stream CNN models appearance

and motion information separately. LSTM based models can capture temporal dependencies across

frames but do not model motion explicitly. Our CDC model is based on 3D convolutional layers

and CDC layers, which can operate on spatial and temporal dimensions simultaneously, achieving

the best performance.

In addition, we compare CDC with other C3D based approaches that use different upsampling

methods. (1) C3D + LinearInterp: we train a segment-level C3D using the same set of training

segments whose segment-level labels are determined by the majority vote. During testing we

perform linear interpolation to upsample segment-level predictions as frame-level. (2) Conv &

De-conv: CDC7 and CDC8 in our CDC network keep the spatial data shape unchanged and therefore

can be also regarded as de-convolutional layers. For CDC6, we replace it with a convolutional

layer conv6 and a separate de-convolutional layer deconv6 as shown in Figure 4.2 (b). The CDC

model outperforms these baselines because the CDC filter can simultaneously model high-level

semantics and temporal action dynamics. We also evaluate the CDC network with fixed weights in

3D ConvNets and only fine-tune CDC layers, resulting in a minor performance drop. This implies

that it is helpful to train CDC networks in an end-to-end manner so that the 3D ConvNets part can

be trained to summarize more discriminative information for CDC layers to infer more accurate

temporal dynamics.
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IoU threshold 0.3 0.4 0.5 0.6 0.7

Karaman et al. [37] 0.5 0.3 0.2 0.2 0.1

Wang et al. [36] 14.6 12.1 8.5 4.7 1.5

Heilbron et al. [52] - - 13.5 - -

Escorcia et al. [59] - - 13.9 - -

Oneata et al. [35] 28.8 21.8 15.0 8.5 3.2

Richard and Gall [51] 30.0 23.2 15.2 - -

Yeung et al. [60] - - 17.1 - -

Yuan et al. [62] 33.6 26.1 18.8 - -

S-CNN [67] 36.3 28.7 19.0 10.3 5.3

C3D + LinearInterp 36.0 26.4 19.6 11.1 6.6

Conv & De-conv 38.6 28.2 22.4 12.0 7.5

CDC (fix 3D ConvNets) 36.9 26.2 20.4 11.3 6.8

CDC 40.1 29.4 23.3 13.1 7.9

Table 4.2: Temporal action localization mAP on THUMOS’14 as the overlap IoU threshold used

in evaluation varies from 0.3 to 0.7. - indicates that results are unavailable in the corresponding

papers.

4.4.2 Temporal action localization

Given per-frame labeling results from the CDC network, we generate proposals, determine class

category, and predict precise boundaries following Section 4.3.4. Our approach is applicable to

any segment proposal method. Here we conduct experiments on THUMOS’14, and thus employ

the publicly available proposals generated by the S-CNN proposal network [67], which achieves

high recall on THUMOS’14 . Finally, we follow [61; 67] to perform standard post-processing

steps such as non-maximum suppression.

Evaluation metrics. Localization performance is also evaluated by mAP. Each item in the rank list

is a predicted segment. The prediction is correct when it has the correct category and its temporal
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overlap IoU with the ground truth is larger than the threshold. Redundant detections for the same

ground truth instance are not allowed.

Comparisons. As shown in Table 4.2, CDC achieves much better results than all the other state-

of-the-art methods. Compared to the proposed CDC model: the typical approach of extracting a

set of features to train SVM classifiers and then applying the trained classifiers on sliding windows

or segment proposals (Karaman et al. [37], Wang et al. [36], Oneata et al. [35], Escorcia et al.

[59]) does not directly address the temporal localization problem. Systems encoding iDTF with

FV (Heilbron et al. [52], Richard and Gall [51]) cannot learn spatio-temporal patterns directly

from raw videos to make predictions. RNN/LSTM based methods (Yeung et al. [60], Yuan et al.

[62]) are unable to explicitly capture motion information beyond temporal dependencies. S-CNN

can effectively capture spatio-temporal patterns from raw videos but lacks the ability of adjusting

boundaries from proposal candidates. With the proposed CDC filter, the CDC network can deter-

mine confidence scores at a fine granularity, beyond segment-level prediction, and hence precisely

localize temporal boundaries. In addition, we employ per-frame predictions of other methods in-

dicated in Table 4.1 (C3D + LinearInterp, Conv & De-conv, CDC with fixed 3D ConvNets ) to

perform temporal localization based on S-CNN proposal segments. As shown in Table 4.2, the

performance of the CDC network is still better, because more accurate predictions at the same

temporal granularity can be used to predict more accurate label and more precise boundaries for

the same input proposal segment. In Figure 4.4, we illustrate how our model refines boundaries
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from segment proposal to precisely localize action instance in time.

76.9s CDC 79s

75.9s Proposal-extended

77s 79sGround truth

CliffDivingBackground Background

79s

76.2s Proposal 78.7s

Figure 4.4: Visualization of the process of refining temporal boundaries for a proposal segment.

Horizontal axis stands for time. From the top to the bottom: (1) frame-level ground truths for

a CliffDiving instance in an input video with some representative frames; (2) a corresponding

proposal segment; (3) the proposal segment after extension; (4) the per-frame score of detecting

CliffDiving predicted by the CDC network; (5) the predicted action instance after the refinement

using CDC.

4.4.3 Discussions

The necessity of predicting at a fine granularity in time. In Figure 4.5, we compare CDC

networks predicting action scores at different temporal granularities. When the temporal granu-

larity increases, mAP increases accordingly. This demonstrates the importance of predicting at a

fine-granularity for achieving precise localization.

Efficiency analysis. The CDC network is compact and demands little storage, because it can be

trained from raw videos directly to make fine-grained predictions in an end-to-end manner without
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Figure 4.5: mAP gradually increases when the temporal granularity of CDC network prediction

increases from x1 (one label for every 8 frames) to x8 (one label per frame). Each point corresponds

to x total upscaling factor (x CDC6 upscaling factor x CDC7 upscaling factor x CDC8 upscaling

factor) in time. We conduct the evaluation on THUMOS’14 with IoU 0.5.

the need to cache intermediate features. A typical CDC network such as the example in Figure 4.3

only requires around 1GB storage.

Our approach is also fast. Compared with segment-level prediction methods such as S-CNN

localization network [67], CDC has to perform more operations due to the need of making predic-

tions at every frame. Therefore, when the proposal segment is long, CDC is less efficient for the

sake of achieving more accurate boundaries. But in the case of short proposal segments, since these

proposals usually are densely overlapped, segment-level methods have to process a large number

of segments one by one. However, CDC networks only need to process each frame once, and thus

it can avoid redundant computations. On a NVIDIA Titan X GPU of 12GB memory, the speed of

a CDC network is around 500 Frames Per Second (FPS), which means it can process a 20s long

video clip of 25 FPS within one second.
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mAP 0.5 0.75 0.95 Average-mAP

before 45.1 4.1 0.0 16.4

after 45.3 26.0 0.2 23.8

Table 4.3: Temporal localization mAP on ActivityNet Challenge 2016 before and after the refine-

ment step using our CDC network. We follow the official metrics to evaluate the average mAP.

Temporal activity localization. Furthermore, we found that our approach is also useful for lo-

calizing activities of high-level semantics and complex components. We conduct experiments on

ActivityNet Challenge 2016 dataset [82; 83], which involves 200 activities, and contains around

10K training videos (15K instances) and 5K validation videos (7.6K instances). Each video has an

average of 1.65 instances with temporal annotations. We train on the training videos and test on

the validation videos. Since no activity proposal results of high quality exist, we apply the trained

CDC network to the results of the first place winner [84] in this Challenge to localize more precise

boundaries. As shown in Table 4.3, they achieve high mAP when the IoU in evaluation is set to 0.5,

but mAP drops rapidly when the evaluation IoU increases. After using the per-frame predictions

of our CDC network to refine temporal boundaries of their predicted segments, we gain significant

improvements particularly when the evaluation IoU is high (i.e 0.75). This means that after the re-

finement, these segments have more precise boundaries and have larger overlap with ground truth

instances.
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4.5 Summary

Temporal action localization is an important yet challenging problem. Given a long, untrimmed

video consisting of multiple action instances and complex background contents, we need not only

to recognize their action categories, but also to localize the start time and end time of each instance.

Many state-of-the-art systems use segment-level classifiers to select and rank proposal segments

of pre-determined boundaries. However, we propose that a desirable model should move beyond

segment-level and make dense predictions at a fine granularity in time to determine precise tempo-

ral boundaries. In order to detect at a fine granularity in time, we hypothesize that jointly modeling

action semantics in space-time and fine-grained temporal dynamics can more accurately predict

actions at frame-level. Thus we design a novel Convolutional-De-Convolutional (CDC) filter to

perform the required temporal upsampling and spatial downsampling operations simultaneously.

Our method not only improves the state-of-the-art mean Average Precision (mAP) result on THU-

MOS’14 from 41.3% to 44.4% for the per-frame labeling task, but also improves the state-of-the-

art mAP for the temporal action localization task from 19.0% to 23.3% on THUMOS’14 and from

16.4% to 23.8% on ActivityNet v1.3. These results not only confirms the need of joint modeling

in both space and time but also confirms the effectiveness of detecting at a fine granularity in time

to determine precise temporal boundaries.
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Part II

Action Detection in the Constrained

Scenarios
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Chapter 5

Weakly-supervised Action Detection

5.1 Introduction

Methods developed in Part I can be used to address the Temporal Action Localization (TAL) task

in untrimmed videos. But these methods are proposed for the fully-supervised setting: the model

training requires the full annotation of the ground truth temporal boundary (start time and end

time) for each action instance. However, untrimmed videos are usually very long with substantial

background content in time. Therefore, manually annotating temporal boundaries for a new large-

scale dataset is very expensive and time-consuming [85], and thus might prohibit applying the

fully-supervised methods to the new domains that lack enough training data with full annotations.

This motivates us to develop TAL methods that require significantly fewer ground truth anno-

tations for training. As illustrated in Fig. 5.1, in this chapter we focus on the following scenario:
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Supervision

Minimize OIC loss

(Outer-Inner-Contrastive) = 

avg(outer) – avg(inner)

Training

videos

time

Testing

videos

time

Weakly-supervised 

Temporal Action 

Localization Model

Video-level label only: CliffDiving Action classification 

over time
Predict both (1) action 

class and (2) boundary 

(start time and end time)
Class Activation Sequence (CAS): 

CliffDiving

Figure 5.1: We study the weakly-supervised temporal action localization task: during training we

only have videos with the video-level labels, but during testing we need to predict both (1) the

action class and (2) the temporal boundary of each action instance. In order to obtain the segment-

level supervision for training the action localization model to predict the boundary directly, we de-

sign a novel Outer-Inner-Contrastive (OIC) loss based on the action Class Activation Sequence.

We denote the predicted action segment boundary as the inner boundary. The outer boundary is

obtained by extending the inner boundary to include its surrounding area. A desirable boundary

prediction should have high activations in the inner green area but low activations in the outer red

area. Consequently, the OIC loss can be used to approximately determine the needed segment-level

supervision for training the localization model

during training, we only have the video-level labels, which are much easier to collect , compared

to the boundary annotations; during testing, we still aim to predict both (1) the action class and (2)

the temporal boundary (i.e. start time and end time) of each action instance. We refer this scenario

as the weakly-supervised setting that this chapter works on.

Recently, a few methods have been proposed to tackle TAL in such a weakly-supervised set-

ting. UntrimmedNet [86] and Hide-and-Seek [87] achieve the state-of-the-art performances and

carry out the localization in a similar manner. Given a training video, several segments are ran-

domly sampled and are fed into a network together to yield a video-level class prediction. During

testing, the trained network is slided over time to produce the classification score sequence of being

each action over time. The score sequence is similar to the Class Activation Map in [88] but just
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has one dimension, and thus we refer it as Class Activation Sequence (CAS). Finally a simple

thresholding method is applied on the CAS to localize each action instance in terms of the start

time and the end time.

However, performing localization via thresholding in general may not be robust to noises in

CAS: sometimes there are a few dips of low activations within an interval of high activations,

using a large threshold might over-segment one action instance into several segments; but using

a small threshold might include too many irrelevant backgrounds preceding and succeeding the

action instance. One possible solution is improving the quality of CAS. Alternatively, instead

of thresholding, many fully-supervised TAL methods detect action instances at the segment-level

directly [67; 89]. Some works further employ boundary regression models to learn to predict

more accurate boundaries [90; 91; 92; 93]. Thus, we design a framework called AutoLoc which

can conduct direct boundary prediction via predicting the center location and the duration of each

action instance.

But how to train the boundary prediction model without ground truth boundary annotations still

remains unsolved. To address this challenge, we propose a novel Outer-Inner-Contrastive (OIC)

loss to provide the needed segment-level supervision for training the boundary prediction model.

Given the CAS of being the ground truth action, we denote the inner boundary as the boundary of

a predicted action instance and we inflate the inner boundary slightly to obtain the outer boundary.

As illustrated in Fig. 5.1, we propose an OIC loss as the average activation in the outer red area

minus the average activation in the inner green area. By minimizing the OIC loss to find the area

65



of high inner activations but low outer activations, we can make desirable localization of the salient

interval on CAS, which is likely to be well-aligned with the ground truth segment. Equipped with

the OIC loss, AutoLoc can automatically discover the segment-level supervision from the video-

level annotations for training the boundary prediction model. In Sec. 5.5, we will experimentally

compare with the state-of-the-art methods and also study several variants of our model.

In the rest of this chapter, we review the related work in Section 5.2, describe the network

architecture and the training and testing pipelines of the proposed Segment-CNN framework in

Section 5.3, present the experimental results in Section 5.5, and finally draw our summary in

Section 5.6.

5.2 Related Work

5.2.1 Temporal Action Localization with Weak Supervision

Several large-scale video datasets have been created for TAL such as Charades [94; 95], Activi-

tyNet [82], THUMOS [38; 40]. In order to obtain the ground truth temporal boundaries to provide

full supervision for training the fully-supervised TAL models, substantial efforts are required for

annotating each of such large-scale datasets. Therefore, it is useful and important to develop TAL

models that can be trained with weak supervision only.

Video-level annotation is one kind of weak supervision that can be more easily collected and

thus is quite interesting to the community. Sun et al. [49] was the first to consider TAL with
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only the video-level annotations available during training and the authors discovered the additional

supervision from web images. Recently, Singh et al. designed Hide-and-Seek [87] to address the

challenge that weakly-supervised detection methods usually focus on the most discriminative parts

while neglect other relevant parts of the target instance. Wang et al. [86] proposed a framework

called UntrimmedNet consisting of a classification module to perform action classification and

a selection module to detect important temporal segments. These recent methods are effectively

learning an action classification model during training in order to generate reasonably good Class

Activation Sequence (CAS) over time. But in order to detect temporal boundaries, a simple thresh-

olding is applied on the CAS during testing. Therefore, although these methods can excel at the

video-level action recognition, the performance of temporal localization still has large room for

improvement.

However, the fully-supervised TAL methods (boundary annotations available during train-

ing) have gone beyond the simple thresholding method. First, some researchers performed lo-

calization at segment-level: they first generated the candidate segments via sliding window or

proposal methods, and then they classified each segment into certain actions [67; 91; 92; 93;

96]. Motivated by the success of single-shot object detection method [97; 98; 99], Lin et al.

[90] removed the proposal stage and directly conducted TAL in a single-shot fashion to simul-

taneously predict temporal boundary and action class. Second, direct boundary prediction via

anchor generation and boundary regression has been adapted from object detection [97; 98; 99; 9;

43] to fully-supervised TAL recently and proven to be quite effective in detecting more accurate
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boundaries [90; 100; 91; 92; 93]. This motivates us to generalize segment-level localization and

direct boundary prediction to weakly-supervised TAL: we develop AutoLoc to first generate an-

chor segments and then regress their boundaries to obtain the predicted segments; in order to train

the boundary regressors, we propose the OIC loss to provide the segment-level supervision.

5.2.2 Weakly-supervised Deep Learning Methods

Other types of weak supervision for action detection have also been explored in the past. For

instance, Huang et al. [101] and Richard et al. [102] both utilized the order of actions as the su-

pervision used during training. Mettes et al. [103] worked on the spatio-temporal action detection

using only the point-level supervision for training.

Weakly-supervised deep learning methods have been also widely studied in other vision tasks

such as object detection [88; 104; 105; 106; 107; 108; 109; 110; 111; 112; 113; 114], semantic

segmentation [115; 116; 117; 118], video captioning [119], visual relation detection [120], etc. As

a counterpart of the weakly-supervised video TAL, the weakly-supervised image object detection

has been significantly improved via combining Multiple Instance Learning (MIL) [121] and deep

networks [105; 107; 109; 112; 113]: built upon Fast-RCNN [43], these methods first generated

candidate proposals beforehand; then they employed deep networks to classify each proposal and

the scores from all proposals were fused together to obtain one label prediction for the whole image

to be compared with the image-level label. One of such MIL-based deep networks is ContextLoc-

Net [113], which further inflated the prediction box to obtain its outer box to take into account the
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contextual information. Our work bypasses the costly proposal generation and predicts the bound-

aries from raw input videos in a single-shot fashion. Although we focus on video TAL in this

chapter, it would be also interesting to adapt our method for image object detection in the future.

5.3 Outer-Inner-Contrastive Loss

In this Section, we formulate how to compute the proposed OIC loss during the network forward

pass of AutoLoc and prove that the OIC loss is differentiable to the underlying boundary prediction

model during the backward pass. The whole pipeline and details of AutoLoc will be presented in

Sec. 5.4.

5.3.1 Forward

As illustrated by the bottom-right part in Fig. 5.2, for each predicted segment φ, we can compute its

OIC loss. Each predicted segment φ consists of the action/inner boundary [x1, x2], the inflated outer

boundary [X1, X2], and the action class k. These boundaries are at the snippet-level granularity

(for example, boundary x = 1 corresponds to the location of the 1-st snippet). In order to fetch the

corresponding snippet-level activation on the CAS, we round each boundary of continuous value

to its nearest integer (i.e. the location of the nearest snippet). We denote the class activation at the

x-th snippet on the CAS of action k as fk (x). The OIC loss of the prediction φ is defined as the
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Figure 5.2: The network architecture of AutoLoc. Given an input video during training, the video

is chunked into T 15-frames-long snippets without overlap. We extract a feature vector of D di-

mension for each snippet. On top of the features, AutoLoc slides two separate branches over time:

one classification branch for predicting the action scores of each snippet to obtain the Class Acti-

vation Sequence (CAS); one localization branch for directly predicting the true action boundary

which is denoted as the inner boundary and is inflated to obtain the outer boundary. Based on the

CAS of the ground truth video-level action, we can compute the Outer-Inner-Contrastive loss (the

average activation in the outer red area minus the average activation in the inner green area) to

provide the needed segment-level supervision for training the boundary predictor

average activation Ao (φ) in the outer area minus the average activation Ai (φ) in the inner area:

LOIC (φ) = Ao (φ)− Ai (φ) =

X2∫

X1

fk (u) du−
x2∫

x1

fk (u) du

(X2 −X1 + 1)− (x2 − x1 + 1)
︸ ︷︷ ︸

Ao(φ)

−

x2∫

x1

fk (u) du

(x2 − x1 + 1)
︸ ︷︷ ︸

Ai(φ)

. (5.1)

During training, we set k to the ground truth action and we minimize LOIC (φ) to encourage high

activations inside and penalize high activations outside.
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5.3.2 Backward

We prove that the OIC loss is differentiable to the inner and outer boundaries. Therefore, the

supervision discovered by the OIC loss can be back-propagated to the underlying boundary pre-

diction model. Detailed derivation can be found in the supplementary material. The gradients

corresponding to the predicted segment φ w.r.t its inner boundary [x1, x2] are as follows:

∂LOIC (φ)

∂x1
=

fk (x1)− Ao (φ)

(X2 −X1 + 1)− (x2 − x1 + 1)
︸ ︷︷ ︸

∂Ao(φ)
∂x1

−
Ai (φ)− fk (x1)

(x2 − x1 + 1)
︸ ︷︷ ︸

∂Ai(φ)

∂x1

; (5.2)

∂LOIC (φ)

∂x2
=

Ao (φ)− fk (x2)

(X2 −X1 + 1)− (x2 − x1 + 1)
︸ ︷︷ ︸

∂Ao(φ)
∂x2

−
fk (x2)− Ai (φ)

(x2 − x1 + 1)
︸ ︷︷ ︸

∂Ai(φ)

∂x2

. (5.3)

The gradients corresponding to the predicted segment φ w.r.t its outer boundary [X1, X2] are as

follows:

∂LOIC (φ)

∂X1

=
∂Ao (φ)

∂X1

=
Ao (φ)− fk (X1)

(X2 −X1 + 1)− (x2 − x1 + 1)
; (5.4)

∂LOIC (φ)

∂X2

=
∂Ao (φ)

∂X2

=
fk (X2)− Ao (φ)

(X2 −X1 + 1)− (x2 − x1 + 1)
. (5.5)

Note that these gradients indeed have the physical meanings about how to adjust the bound-

aries. For example, in Equation 5.2,
∂Ai(φ)
∂x1

represents how much the average inner activation

Ai (φ) is higher than the activation fk (x1) at the inner left boundary x1. If the average inner ac-

tivation is much higher than the activation at the inner left boundary x1, x1 is likely to belong to

the background and thus we would like to move x1 in the positive (right) direction. Similarly,

∂Ao(φ)
∂x1

represents how much the activation at the inner left boundary x1 is higher than the average
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outer activation.
∂LOIC(φ)

∂x1
is the adversarial outcome of

∂Ao(φ)
∂x1

and
∂Ai(φ)
∂x1

. Consequently,
∂LOIC(φ)

∂x1

indicates how the model wants to adjust the inner left boundary x1 eventually: if
∂LOIC(φ)

∂x1
< 0, x1

moves in the positive (right) direction; if
∂LOIC(φ)

∂x1
> 0, x1 moves in the negative (left) direction.

5.4 AutoLoc

In this Section, we walk through the pipeline of AutoLoc as illustrated in Fig. 5.2. The training

and testing pipelines are very similar in AutoLoc. So we only explicitly distinguish the training

and testing pipelines when any difference appears.

5.4.1 Input Data Preparation and Feature Extraction

Each input data sample fed into AutoLoc is one single untrimmed video. Following UntrimmedNet

[86], for each input video, we first divide it into 15-frames-long snippets without overlap and

extract feature for each snippet individually.

In particular, Temporal Segment Network (TSN) [122] is a state-of-the-art two-stream network

for video analysis. UntrimmedNet [86] has been proven to be effective in training TSN classifier

with only the video-level labels. Therefore, we first train an UntrimmedNet network (the soft

version) in advance and then use the trained network as our backbone for feature extraction.

This backbone network consists of one spatial stream accepting RGB input and one temporal

stream accepting Optical Flow input. For each stream, we employ the Inception network architec-
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ture with Batch Normalization [123] and extract the 1024-dimensional feature at the global pool

layer. Finally, for each snippet, we concatenate the extracted spatial feature and temporal feature

into one feature vector of 2048 dimensions. For each input video of T snippets in total, we obtain

a feature map of shape 2048 (channels) by T (snippets).

5.4.2 Classification Branch

The goal of the classification branch is to obtain the Class Activation Sequence (CAS). We build

our Activation Generator S based on UntrimmedNet. On top of the global pool layer, Untrimmed-

Net attaches one Fully Connected (FC) layer of K nodes to classify each snippet into K action

categories and also attaches another Fully Connected (FC) layer of just 1 node to predict the atten-

tion score (importance) for each snippet. The corresponding scores from the spatial stream and the

temporal stream are averaged to obtain the final score. For each video, we use these two FC layers

in the UntrimmedNet that are trained beforehand to respectively extract a classification score se-

quence of shape K (actions) by T (snippets) and an attention score sequence of T dimensions. For

each snippet, we set its classification scores of all classes to 0 when its attention score is lower than

the threshold (7 is chosen via grid search on the THUMOS’14 training set and also works well

on ActivityNet); then we regard such a gated classification score as the activation, which ranges

within [0, 1]. Finally, for each video, we obtain its CAS of shape K (actions) by T (snippets).
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5.4.3 Localization Branch

5.4.3.1 Overview

The goal of the localization branch is to learn a parametric model for predicting the segment

boundary directly. Recent fully-supervised TAL methods [90; 100; 91; 92; 93] have shown the

effectiveness of regressing anchors for direct boundary prediction: the anchor is a hypothesis of

the possible segment; the predicted boundary is obtained by respectively regressing (1) the center

location and (2) the temporal length of the anchor segment; multi-anchor mechanism is used to

cover the possible segments of different temporal scales. Therefore, we design a localization net-

work B to look at each temporal position on the feature map and output the needed two boundary

regression values for each anchor. Then we regress the anchors using these regression values to

obtain the predicted action boundaries (inner boundaries) and inflate the inner boundaries to obtain

the outer boundaries. Finally, based on the CAS, we introduce an OIC layer equipped with the

OIC loss to generate the final segment predictions.

5.4.3.2 Network Architecture of the Localization Network B

Given an input video, its feature map of shape 2048 channels by T snippets is fed into B. B first

stacks 3 same temporal convolutional layers, which slide convolutional filters over time. Each

temporal convolutional layer has 128 filters, which all have kernel size 3 in time with stride 1 and

padding 1. Each temporal convolutional layer is followed by one Batch Normalization layer and

one ReLU layer.
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Finally, B adds one more temporal convolutional layer pred to output the boundary regression

values. Filters in pred have kernel size 3 in time with stride 1 and padding 1. Similar to YOLO [98;

99], the boundary predicted by B is designed to be class-agnostic. This allows us to learn a generic

boundary predictor, which may be used for generating action proposals for unseen actions in the

future. Consequently, the total number of filters in pred is 2M , where M is the number of anchor

scales. For each anchor, B predicts two boundary regression values: (1) tx indicating how to shift

the center location of the anchor and (2) tw indicating how to scale the length of the anchor.

5.4.3.3 Details of the Boundary Transformation

Since each temporal position on the feature map and each temporal position on the CAS both

correspond to the same location of an input snippet, we make boundary predictions at the snippet-

level granularity. We outline the boundary prediction procedure in Fig. 5.3.

(b) Boundary regression

xs

aw

xc

w1
x

2
x

a xw t

(a) Anchor generation (c) Boundary inflation

xc

1
X

2
X

Figure 5.3: Illustration of the boundary prediction procedure which consists of three steps sequen-

tially: (1) anchor generation to obtain the boundary hypothesis; (2) boundary regression to

obtain the predicted boundary of the action segment (denoted as the inner boundary); (3) bound-

ary inflation to obtain the outer boundary. The score sequence is CAS and the orange score bar

indicates the temporal position that the boundary predictor currently looks at

Anchor generation. At the temporal position sx on the feature map, we generate a hypothesized

segment (anchor) of length wa. In practice, we use multi-scale anchors. We determine their scales
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according to the time duration range of the ground truth segments in the training set.

Boundary regression. As aforementioned, for each anchor at the temporal position sx, B pre-

dicts two boundary regression values tx and tw. We can obtain the predicted segment via regressing

the center location cx = sx+wa·tx and the temporal lengthw = wa·exp (tw). We denote the bound-

ary of this predicted segment as the inner boundary, which can be computed by x1 = cx−w/2 and

x2 = cx + w/2. Furthermore, we clip the predicted boundary x1 and x2 to fit into the range of the

whole video.

Boundary inflation. A ground truth segment usually exhibits relatively higher activations on

CAS within the inner area [x1, x2] compared to the contextual area preceding x1 and succeeding x2.

Therefore, we inflate the inner boundary by a ratio α to obtain the corresponding outer boundary

X1 = x1 − w · α and X2 = x2 + w · α. We experimentally find that setting α to 0.25 is a good

choice.

5.4.3.4 The OIC layer for Obtaining the Final Predictions

Finally, we introduce an OIC layer which uses the OIC loss to measure how likely each segment

contains actions and then removes the segments that are not likely to contain actions. During

testing, this OIC layer outputs a set of predicted segments. During training, this OIC layer fur-

ther computes the total OIC loss and back-propagates the gradients to the underlying boundary

prediction model.

Concretely, given an input video, the classification branch generates its CAS and the localiza-
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tion branch predicts the candidate class-agnostic segments. Note that since all temporal convo-

lutional layers in B slide over time with stride 1, the set of segments predicted at each temporal

position on the feature map and the activations at each temporal position on the CAS are paired,

corresponding to the same input snippet. Thus at the temporal position of each snippet, B has

predicted M class-agnostic anchor segments. Then for each action, we iteratively go through the

following steps on the CAS to obtain the final class-specific segment predictions. Note that during

training we consider only the ground truth actions while during testing we consider all actions. If

a temporal position has the activation lower than 0.1 on the CAS, we discard all the predictions

corresponding to this temporal position. For each of the remaining positions, among its M anchor

segment predictions, we only keep the one with the lowest OIC loss which means selecting the an-

chor of the most likely scale. Finally, for all the kept segment predictions, we remove the segment

predictions with the OIC loss higher than -0.3. We perform Non-Maximum Suppression (NMS)

over all segment predictions with overlap IoU threshold 0.4. All these thresholds are chosen by

grid search on the THUMOS’14 training set and also work well on ActivityNet.

During training, the total loss is the summation of the OIC loss generated by each kept segment

predictions. We can compute the gradients triggered by each kept segment prediction according

to Sec. 5.3.2 and then accumulate them together to update the underlying boundary predictor B.

During testing, all the kept segment predictions are outputted as our final segment predictions.

Each segment prediction consists of (1) the predicted action class, (2) the confidence score which

is set to 1 minus its OIC loss, and (3) the start time and the end time obtained by converting the
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inner boundary [x1, x2] from the snippet-level granularity (continuous value before rounding to its

nearest integer) to time.

5.5 Experiments

In this section, we first introduce two standard benchmarks and the corresponding evaluation met-

rics. Note that during training, we only use the video-level labels; during testing, we use the ground

truth segments with boundary annotations for evaluating the performance of temporal action local-

ization. We compare our method with the state-of-the-art methods and then conduct some ablation

studies to investigate different variants of our method.

5.5.1 Datasets and Evaluation

5.5.1.1 THUMOS’14

The temporal action localization task in THUMOS’14 [38] contains 20 actions. Its validation set

has 200 untrimmed videos. Each video contains at least one action. We use these 200 videos in the

validation set for training. The trained model is tested on the test set which contains 213 videos.

5.5.1.2 ActivityNet v1.2

To facilitate comparisons, we follow Wang et al. [86] to use the ActivityNet [82] release version

1.2 which covers 100 activity classes. The training set has 4,819 videos and the validation set has
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2,383 videos. We train on the training set and test on the validation set.

5.5.1.3 Evaluation Metrics

Given the testing videos, the system outputs a rank list of action segment predictions. Each predic-

tion contains the action class, the starting time and the ending time, and the confidence score. We

follow the conventions [38; 83] to evaluate mean Average Precision (mAP). Each prediction is re-

garded as correct only when (1) the predicted class is correct and (2) its temporal overlap IoU with

the ground truth segment exceeds the evaluation threshold. We do not allow duplicate detections

for the same ground truth segment.

5.5.2 Implementation Details

We implement our AutoLoc using Caffe [66]. We use the stochastic gradient descent algorithm to

train AutoLoc. Through the experimental studies, we find that the training process can converge

quickly on both THUMOS’14 and ActivityNet datasets after 1 training epoch. Following Faster

R-CNN [9], during each mini-batch, we process one whole untrimmed video. The learning rate

is initially set to 0.001 and is reduced by one order of magnitude for every 200 iterations. We set

the weight decay to 0.0005. We choose anchors of the snippet-level length 1, 2, 4, 8, 16, 32 for

THUMOS’14 and 16, 32, 64, 128, 256, 512 for ActivityNet. We use CUDA 8.0 and cuDNN v5.

We use one single NVIDIA GeForce GTX TITAN X GPU.
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Table 5.1: Comparisons with the state-of-the-art methods in terms of temporal localization mAP

(%) under different IoU thresholds on THUMOS’14 test set. Weak supervision means training with

the video-level labels only. Full supervision indicates that the segment-level boundary annotations

are used during training

Supervision IoU threshold 0.3 0.4 0.5 0.6 0.7

Full Karaman et al. [37] 0.5 0.3 0.2 0.2 0.1

Full Wang et al. [36] 14.6 12.1 8.5 4.7 1.5

Full Heilbron et al. [52] - - 13.5 - -

Full Escorcia et al. [59] - - 13.9 - -

Full Oneata et al. [35] 28.8 21.8 15.0 8.5 3.2

Full Richard and Gall [51] 30.0 23.2 15.2 - -

Full Yeung et al. [60] 36.0 26.4 17.1 - -

Full Yuan et al. [62] 33.6 26.1 18.8 - -

Full Yuan et al. [124] 36.5 27.8 17.8 - -

Full S-CNN [67] 36.3 28.7 19.0 10.3 5.3

Full SST [96] 37.8 - 23.0 - -

Full CDC [125] 40.1 29.4 23.3 13.1 7.9

Full Dai et al. [126] - 33.3 25.6 15.9 9.0

Full SSAD [90] 43.0 35.0 24.6 - -

Full TURN TAP [91] 44.1 34.9 25.6 - -

Full R-C3D [92] 44.7 35.6 28.9 - -

Full SS-TAD [89] 45.7 - 29.2 - 9.6

Full Gao et al. [93] 50.1 41.3 31.0 19.1 9.9

Full SSN [100] 51.9 41.0 29.8 19.6 10.7

Weak Sun et al. [49] 8.5 5.2 4.4 - -

Weak Hide-and-Seek [87] 19.5 12.7 6.8 - -

Weak Wang et al. [86] 28.2 21.1 13.7 - -

Weak Ours - AutoLoc 35.8 29.0 21.2 13.4 5.8

5.5.3 Comparisons with the State-of-the-art

The results on THUMOS’14 are shown in Table 5.1. Our method significantly outperforms the

state-of-the-art weakly-supervised TAL methods that are trained with the video-level labels only.

Regarding to the recent weakly-supervised TAL methods (i.e. Hide-and-Seek [87] and Wang et
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Table 5.2: Comparisons with the state-of-the-art methods in terms of temporal localization mAP

(%) under different IoU thresholds on ActivityNet v1.2 validation set. Weak supervision means

training with the video-level labels only. Full supervision indicates that the segment-level boundary

annotations are used during training

Supervision IoU threshold 0.5 0.55 0.6 0.65 0.7

Full SSN [100] 41.3 38.8 35.9 32.9 30.4

Weak Wang et al. [86] 7.4 6.1 5.2 4.5 3.9

Weak Ours - AutoLoc 27.3 24.9 22.5 19.9 17.5

Supervision IoU threshold 0.75 0.8 0.85 0.9 0.95 Avg

Full SSN [100] 27.0 22.2 18.2 13.2 6.1 26.6

Weak Wang et al. [86] 3.2 2.5 1.8 1.2 0.7 3.6

Weak Ours - AutoLoc 15.1 13.0 10.0 6.8 3.3 16.0

al. [86]), although they can generate reasonably good CAS, TAL is done by applying simple

thresholding on the CAS which might not robust be to noises in CAS. Our method directly predicts

the segment boundary with the contextual information taken into account. Our method can even

achieve better or comparable results to some fully-supervised methods (e.g. S-CNN [67]) that are

trained with the segment-level boundary annotations. The results of SSN [100] correspond to the

model of the same backbone network architecture as ours.

The results on ActivityNet v1.2 are shown in Table 5.2 and our method can achieve substantial

improvements again. Wang et al. [86] did not report temporal localization results on ActivityNet

in their paper. But their trained models and source codes have been released online publicly and

thus we can evaluate their results on ActivityNet as well.
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5.5.4 Discussions

In this Section, we address several questions quantitatively to analyze our model.

5.5.4.1 Q1: How Effective is the Proposed OIC Loss?

In order to evaluate the effectiveness of the proposed OIC loss, we enumerate all candidate seg-

ments at the snippet-level granularity (for example, a segment starting at the location of the 2-nd

snippet and ending at the location of the 6-th snippet). We leverage the OIC loss to measure how

likely each segment contains actions and then select the most likely ones. Concretely, for each

segment, we compute its OIC loss of being each action. Then we follow Sec. 5.4.3.4 to remove

segments with high OIC loss and remove duplicate predictions via NMS. We denote this approach

as OIC Selection. As shown in Table 5.3, although not as good as AutoLoc, OIC Selection still

significantly improves the state-of-the-art results [86]. Because the OIC loss explicitly favors the

segment which has high activations inside and low activations outside, and also such a segment of

low OIC loss is usually well aligned to the ground truth segment. This confirms the effectiveness

of the proposed OIC loss.

5.5.4.2 Q2: How Important is Looking into the Contrast Between the Inner Area and the

Outer Area?

The core idea of the OIC loss is encouraging high activations in the inner area while penalizing

high activations in the outer area. We consider another variant that can also discover the segment-
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level supervision but does not model the contrast between inner and outer. Specifically, we change

the OIC loss in AutoLoc to Inner Only Loss, which only encourages high activations inside the

segment but does not look into the contextual area. As shown in Table 5.3, the performances drop a

lot. Consequently, when designing the loss for training the boundary predictor, it is very important

and effective to take into account the contrast between the inner area and the outer area.

Notably, the idea of looking into the contrast between inner and outer is related to the usage

of Laplacian of Gaussian (LoG) filter for blob detection [127]. The operation of computing the

OIC loss is effectively convolving the CAS with a step function as shown in Fig. 5.4, which can

be regarded as a variant of the LoG filter for the sake of easing the network training. The integral

of the LoG filter and the integral of the step function are both zero on the range (−Inf,+Inf).

Further, we approach the scale selection in blob detection by the multi-anchor mechanism and

the boundary regression method. Despite the simplicity of the OIC loss, it turns out to be quite

effective in practice for localizing likely action segments.

Laplacian of Gaussian (LoG) filter The step function implicated in Our Outer-Inner-Contrastive loss (inflation ratio 0.25)

Figure 5.4: Illustration of the LoG filter and our OIC loss, which in effect is a step function
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Table 5.3: Temporal localization mAP (%) under different IoU thresholds on ActivityNet v1.2

validation set. All approaches are trained with weak supervision

IoU threshold 0.5 0.55 0.6 0.65 0.7

Wang et al. [86] 7.4 6.1 5.2 4.5 3.9

Ours - AutoLoc 27.3 24.9 22.5 19.9 17.5

Q1: OIC Selection 15.8 13.7 11.9 10.3 8.8

Q2: Inner Only Loss 4.6 3.7 2.7 1.9 1.3

Q3: Direct Optimization 21.8 19.6 17.8 15.8 13.8

IoU threshold 0.75 0.8 0.85 0.9 0.95 Avg

Wang et al. [86] 3.2 2.5 1.8 1.2 0.7 3.6

Ours - AutoLoc 15.1 13.0 10.0 6.8 3.3 16.0

Q1: OIC Selection 7.5 6.4 5.1 3.6 2.2 8.5

Q2: Inner Only Loss 0.9 0.5 0.2 0.1 0.0 1.6

Q3: Direct Optimization 11.7 9.8 7.8 5.5 2.7 12.6

5.5.4.3 Q3: What is the Advantage of Learning a Model on the Training Videos Compared

to Directly Optimizing the Boundaries on the Testing Videos?

AutoLoc trains a model on the training videos and then applies the trained model to perform infer-

ence on the testing videos. Alternatively, without training the boundary predictor B on the training

videos, we can directly train/optimize B from scratch on each testing video individually: we fol-

low the testing pipeline as described in Sec. 5.4.3.4 while we also conduct the back-propagation to

update B to iteratively find likely segments on each testing video. We refer this approach as Direct

Optimization. As shown in Table 5.3, its performance is not bad, which confirms the effective-

ness of the OIC loss again. But it is still not as good as AutoLoc. Because Direct Optimization

optimizes the predicted boundaries according to the testing video’s CAS, which may not be very

accurate. Eventually Direct Optimization overfits such an inaccurate CAS and thus results into
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imperfect boundary predictions. In AutoLoc, B has been trained on multiple training videos and

thus is robust to the noises in CAS. Consequently, AutoLoc may still predicts good boundary even

when the testing video’s CAS is not perfect. Furthermore, Direct Optimization requires optimiz-

ing the boundary predictions on the testing video until convergence and thus its testing speed is

much slower than AutoLoc. For example, on ActivityNet, Direct Optimization converges after

25 training iterations (25 forward passes and 25 backward passes). However, AutoLoc directly

applies the trained model to do inference on the testing video and thus requires only one forward

pass during testing.

5.6 Summary

Temporal Action Localization (TAL) in untrimmed video is important for many applications. But

it is very expensive to annotate the segment-level ground truth (action class and temporal bound-

ary). This raises the interest of addressing TAL with weak supervision, namely only video-level

annotations are available during training). However, the state-of-the-art weakly-supervised TAL

methods only focus on generating good Class Activation Sequence (CAS) over time but conduct

simple thresholding on CAS to localize actions.

In this chapter, we argue that the thresholding method is ad-hoc and the right way is to directly

predict the temporal boundary of each action instance. Therefore, we develop a novel weakly-

supervised TAL framework called AutoLoc to predict segment boundary via regression. In order

to obtain the segment-level supervision needed for training such a boundary predictor, we pro-
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pose a novel Outer-Inner-Contrastive (OIC) loss to encourage the predicted segment to have high

activations inside and low activations in its contextual area. Our method achieves dramatically

improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS’14

from 13.7% to 21.2% and mAP on ActivityNet v1.2 from 7.4% to 27.3%, confirming our hy-

pothesis regarding the need of direct boundary prediction. Our ablation studies also confirm the

effectiveness of our design choices for the proposed OIC loss.
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Chapter 6

Online Detection of Action Start

6.1 Introduction

In this chapter, we formulate a new action detection task called Online Detection of Action Start

(ODAS) to investigate action understanding in a novel scenario with incomplete input data:

i. Online detection requires continuously monitoring the live video stream in real time. When

a new video frame arrives, online detection system processes it immediately, without any side

information or access to the future frames.

ii. We refer the start/onset of an action instance as its Action Start (AS), which is a time point

and is associated with one action instance.

iii. Following recent online detection works [128; 129], we target untrimmed, long, uncon-

strained videos with large amounts of complex background streams. ODAS differs from prior
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Online Detection of Action Start (ODAS)

ODAS model:

detects (1) whether the 

action starts at tcurrent  

and (2) which action

Input
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time
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Confidence score of being Action Start

A predicted action instance segment

Figure 6.1: Left: Illustration of the novel Online Detection of Action Start (ODAS) task; Right:

comparisons with the conventional action detection tasks

works on early event detection such as [130; 131], which targeted relatively simple videos and

assumed that each video contained only one action instance and which the action class is going to

happen is known beforehand. ODAS targets the more practical setting that each video can contain

multiple action instances and the action class in the testing video is not known in advance.

As illustrated in Fig. 6.1 left, ODAS aims to detect the occurrence and class of AS as soon as

the action happens. ODAS is very important in many practical application scenarios, such as early

alert generation. For example, the surveillance camera monitoring system needs to detect AS and

then issue an alert as soon as possible to allow timely security response; autonomous driving car

needs to detect AS of accidents happening in front of it as soon as possible so that the car can slow

down or change course timely to avoid collision; robot looking after walking-impaired people shall

detect AS of falling as soon as possible to provide assistance before the person has fallen down

already. Consequently, in each of such scenarios, it is important to detect AS timely and accurately.
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As illustrated in Fig. 6.1 right, ODAS differs from the conventional action detection tasks. Re-

cent online detection works [128; 129] target the per-frame labeling task which aims to correctly

classifying every frame into either the background class or certain action classes. Recent offline

detection works [52; 59; 51; 60; 62; 67; 125; 90; 132; 100; 91; 92; 133; 126; 93; 96; 89; 124; 49;

134; 135; 136] target the temporal localization task which aims to predict a set of action segment

instances in a long, untrimmed video. Despite lacking the need to correctly classify every frame

(as in per-frame labeling) or localize the complete action segment instance (as in temporal local-

ization), ODAS explicitly focuses on detecting AS, which is quite challenging as discussed in the

next paragraph. Traditional methods for per-frame labeling and temporal localization can indeed

be adapted for ODAS. But since they were originally designed to address different problems, the

challenges in detecting AS have not been specifically considered and deeply investigated. There-

fore, methods excelling at per-frame labeling or temporal localization might not perform well in

ODAS.

In this chapter, we identify three challenges in training a good ODAS model and accordingly

propose three novel solutions. (Challenge 1) As the example shown in Fig. 6.2, it is important

to learn and detect characteristics that can correctly distinguish the start window from the back-

ground, which precedes AS and may share very similar scenes but without the actual occurrence

of actions. Note that we follow the state-of-the-art video classification models such as C3D [46;

16], TSN [122], I3D [137] to accept short temporal sliding window as the network input. To ad-

dress this challenge, we introduce an auxiliary generative network trained in an adversarial process
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Figure 6.2: We identify three challenges in training a good ODAS model

to automatically generate hard negative samples during training. Although hard negative data

may be rare in the training videos, our generator directly learns to model the distribution of hard

negatives and thus can generate a much larger pool of hard negatives. (Challenge 2) We define the

start window and its follow-up window in Fig. 6.2. A start window contains both action frames and

background frames. Background preceding action can provide temporal contextual information but

can also be confusing. Due to the shared contents (background scene and object), the feature of the

start window may be closer to the preceding background window than the actual action window

after the start. To remedy this issue, since the follow-up window is completely inside action, we

propose to model the temporal consistency between the start window and its follow-up window

during training. (Challenge 3) It is important to accurately classify start windows in ODAS. But

each action instance only has a few training samples of start windows, and thus the number of

training samples for start windows is much more scarce than others such as background windows

90



and windows fully inside action. To address this issue, we design an adaptive sampling strategy

to increase the percentage of start windows in each training batch. Our experiments in Sec. 6.6 will

prove the effectiveness and necessity of each proposed method and putting three methods together

results in significant performance gains.

In the rest of this chapter, we review the related work in Section 6.2, introduce our ODAS

framework in Section 6.3, propose three novel methods to improve the capability of the backbone

networks at detecting action in a timely manner in Section 6.4, discuss the evaluation metrics in

Section 6.5, present the experimental results in Section 6.6, and finally summarize this chapter in

Section 6.7.

6.2 Related Work

6.2.1 Temporal Action Localization

Given a long, untrimmed video, temporal action localization needs to temporally localize each

action instance: we not only predict its category but also detect when it starts and ends. Although

these methods for temporal localization were originally designed for the offline setting, some of

them can be adapted to conduct temporal localization in an online manner. However, besides

detecting AS, temporal localization requires detecting the Action End (AE) as well. To this end,

many methods have to wait for seeing AE in order to localize the action segment as a whole so that

can determine AS, resulting in high latency. Also, a good temporal localization method may excel
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at AE detection but perform poorly in AS detection (considering a detected segment that overlaps

with the ground truth segment with IoU 0.7 and has the same AE as the ground truth). ODAS

focuses on AS specifically.

6.2.2 Early Recognition and Detection

Similar to ODAS, early recognition and detection also aim to detect action as soon as it happens in

streaming videos. Early recognition was effectively formulated as partial action classification [138;

139; 140; 141; 142; 143; 144]: the videos used in early recognition literatures are usually relatively

short; during testing, they cut each video to only keep its first certain portion of the whole video,

and then classify the cut video into the pre-defined action classes.

ODAS is more related to early detection. Hoai and De la Torre [130; 131] made attempts to

detect actions in an online manner yet under a simplified setting (e.g., one action instance per

video). Huang et al. [145] worked on a scenario that the background contents are simple (i.e. the

person is standing and keeping still). In this chapter, like [128; 129], we focus on the realistic

videos that are unconstrained and contain complex backgrounds of large variety. Ma et al. [19]

approached the early detection task by cutting the first certain portion of the whole testing video

and then conducting temporal localization on the cut video. Hence, besides detecting AS, this

work also focused on detecting whether the action ends or not.
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6.2.3 Online Action Detection

Recent works on online action detection are very close to ODAS. De Geest et al. [128] first simu-

lated the online action detection problem using untrimmed, realistic videos and benchmarked the

existing models. Gao et al. [129] designed a training strategy to encourage a LSTM-based Rein-

forced Encoder-Decoder (RED) Network to make correct frame-level label predictions as early as

possible. But both of them formulated online action detection as online per-frame labeling task,

which requires correctly classifying every frame rather than just detecting AS. A good per-frame

labeling method might not be necessarily good at detecting AS (considering a per-frame labeling

method correctly classifying frames in the 30%-100% portion of each action instance but mis-

classifying frames in its 0%-30% portion). Consequently, as for the applications that detecting AS

is the most important task, ODAS is the best fit.

In addition, there are also works on spatio-temporally localizing actions in an online manner

but also limited to short videos [146; 147]. Li et al. [148] and Liu et al. [149] leveraged Kinect

sensors and performed detection based on the tracked skeleton information. Vondrick et al. [150]

targeted future prediction, which is a more ambitious online detection task.

6.2.4 Generative Adversarial Network

The idea of training in an adversarial process was first proposed in [21] and has been adopted in

many applications [151; 27; 152; 153; 154]. Generative Adversarial Network (GAN) [21; 155]

consists of two networks trained simultaneously to compete with each other: a generator network
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G that learns to generate fake samples indistinguishable from real data and a discriminator network

D which is optimized to recognize whether input data samples are real or fake. To the best of our

knowledge, we are the first to explore GAN for action detection.

6.3 Framework

In this Section, we introduce our ODAS framework as shown in Fig. 6.1. We follow the state-of-

the-art video classification networks like C3D [46; 16], TSN [122], I3D [137] to accept temporal

sliding windows as input. In particular, we set the window length to 16 frames and use C3D as our

backbone network in Sec. 6.3 and Sec. 6.4 to help illustrate technical ideas.

We outline our ODAS framework by walking through the testing pipeline. During testing, when

a new frame arrives at the current time t, we immediately feed the streaming window ending at t

into our network. The network output at t consists of the semantic class ct which could be either

background or action 1, . . . , K (K is the total number of action classes) and the confidence score

st. In order to detect AS, we compare the network outputs at t− 1 and t. We generate an AS point

prediction whenever the following conditions are all satisfied: (1) ct is action; (2) ct 6= ct−1; (3) st

exceeds the threshold obtained by grid search on the training set. Such an AS point prediction is

associated with the time point t, the predicted class (set to ct) and the confidence score (set to st).

As alternatives, we have also studied the approach of adding a proposal stage specifically for

detecting action start and then classifying the action class. We found such an alternative approach

is not as effective as the one outlined above.
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Start window Follow-up windowNegative

(a) Adaptive sampling

Hard negative

(b) Modeling the temporal consistency (c) Hard negatives generation via GAN

Figure 6.3: The effects of our proposed three training methods for ODAS. Each rectangle repre-

sents data distribution in the high-level feature space after training

6.4 Our Methods

As for training our ODAS model, the complete videos are available during training. We slide

windows over time with a stride of 1 frame to first construct a set of training windows to be fed

into the network. For each window, we assign its label as the action class of the last frame of the

window. In this section, we propose three novel methods to improve the capability of the backbone

networks at detecting action in a timely manner. We first illustrate our intuition of designing

these methods and then present their formulations. We close this section by summarizing the full

objective used for training.

6.4.1 Intuition

6.4.1.1 Adaptively sample the training data

Since we want to detect actions as soon as possible, it is important for ODAS to accurately classify

start windows. This is a challenging task because the start window contains various background
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Figure 6.4: The network architectures of our ODAS models built on C3D and the proposed train-

ing objectives. (a) Our basic ODAS model consists of 3D ConvNets from Conv1 to Pool5 and 3

fully connected layers (FC6, FC7, FC8). We keep the same backbone network architecture as C3D

while setting the number of nodes in FC8 to K + 1, standing for K actions and background. The

output of FC8 is used for calculating multi-class classification softmax loss. (b) We model the tem-

poral consistency between the start window and its paired follow-up window by adding a temporal

consistency loss term to minimize the L2 similarity computed using their FC7 activations. Two

streams in this Siamese network share the same parameters. (c) Further, we design a GAN-based

framework to automatically generate hard negative samples to help our model more accurately dis-

tinguish actions against negatives. G is generator and D is discriminator. G accepts random noise

as input and output fake Pool5 features. We add an additional class in FC8 for fake samples. All

blue blocks of the same name are the same layer and share weights.

contents, and the number of start windows is quite scarce. If we construct each training batch

via randomly sampling out of all windows, the model might not see enough start windows during

training in order to generalize to the testing data well. To solve this issue, we guide the ODAS

model to pay more attention to start windows via adaptively sampling more start windows during

each training batch. Using this strategy, the ODAS model can learn a better classification boundary

to distinguish start windows against negatives more accurately, as illustrated in Fig. 6.3 (a).
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6.4.1.2 Model the temporal consistency

As illustrated in Fig. 6.3 (a), the start window is a mixture of action frames and background frames.

Therefore, in the feature space, start windows could be close to or even mixed with negatives. It

is important to accurately distinguish start windows and negatives in ODAS so that the model

can more timely detect action start when the video stream switches from negative to action. As

illustrated in Fig. 6.3 (b), since the follow-up windows are completely inside action, they are far

away from negative data in the feature space. Thus we explicitly model the Temporal Consistency

(TC) between each start window and its follow-up window to encourage their feature similarity.

Using this training method, start windows move closer to follow-up windows and thus become

more separable from negatives.

6.4.1.3 Generate hard negative samples via GAN

As exampled in Fig. 6.2, it is important to train the ODAS model to capture the subtle differences

that can serve as evidences for discriminating start windows from negatives preceding AS. As

illustrated in Fig. 6.3 (b), hard negatives that have subtle differences with start windows might be

close to start windows in the feature space. In order to learn a better decision boundary, we aim

to identify such hard negative samples in the training set during training. However, exhaustively

finding such samples is time-consuming because such hard negatives are rare and may even not

exist in the training data. Therefore, we propose to train a model to automatically synthesize

samples that are hard to distinguish from true start windows. As illustrated in Fig. 6.3 (c), equipped
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by these synthesized hard negatives, we can learn an even better ODAS model to discriminate start

windows from negatives.

6.4.2 Adaptively Sample the Training Data

Concretely, we randomly sample half of the training batch from start windows and randomly sam-

ple the other half batch from the remaining windows, which can be backgrounds or windows

completely inside actions. After each training batch is constructed, we can feed them into our

network as shown in Fig. 6.4 (a) and train the network via minimizing the multi-class classification

softmax loss Lclassification. We denote the set of start windows as pstart = {(xs, y)} where xs is the

start window to be fed into our model and y is its corresponding ground truth label. Similarly, we

express the set of remaining windows as pnotstart = {(xns, y)}. The label space of y is 1, . . . , K+1

where the first K classes are actions and the K + 1-th class stands for background. Our network

takes x as input and predicts a vector {o1, . . . , oK+1} of K + 1 dimension. Finally we apply the

softmax function to obtain the normalized probability of being class i: Pmodel (i|x) = eoi
∑K+1

k=1 eok
.

We use E [·] to represent expectation. The classification loss is defined as:

Lclassification = E(xs,y)∼pstart [− log (Pmodel (y|xs))]

+E(xns,y)∼pnotstart [− log (Pmodel (y|xns))].

(6.1)

6.4.3 Model the Temporal Consistency

Formally, we denote the training set of the paired start window and follow-up window as pstartfollowup =

{(xs, xf , y)}, where xs represents the start window and xf is its associated follow-up window and
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y is still the ground truth label. We model the temporal consistency via minimizing the similarity

Lsimilarity measured by L2 distance of the feature representation between xs and xf :

Lsimilarity = E(xs,xf ,y)∼pstartfollowup
‖F (xs)− F (xf )‖

2
2 , (6.2)

where the function F (·) indicates extracting feature representation. As shown in Fig. 6.4 (b), we

set F (·) to be the output of FC7 because it is also the input to the final layer FC8 for classifi-

cation. Trained with this temporal consistency loss, the features of start windows become more

distinguishable from negatives, which leads to the ODAS performance improvements as shown in

Sec. 6.6.1.4.

6.4.4 Generate Hard Negative Samples via GAN

In order to separate start windows and hard negatives which have subtle differences from start

windows, we design a GAN-based framework which synthesizes hard negative samples to assist

ODAS model training.

6.4.4.1 Generator (G)

Since directly generating video is very challenging, we use GAN to generate features rather than

raw videos. As shown in Fig. 6.4 (c), our GAN model has a fixed 3D ConvNets (from Conv1 to

Pool5) to extract real Pool5 features from raw videos and also has a G to generate fake Pool5

features. Upper layers serve as Discriminator (D), which will be explained later.
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G accepts a random noise z as input and learns to capture the true distribution of real start

windows. Consequently, G has the potential to generate various fake Pool5 samples which may not

exist in the real training set but may appear during testing. This enables our model to continuously

explore more discriminative classification boundary in the high-level feature space. Following

[155], z is a 100-dimensional vector randomly drawn from the standard normal distribution. In

practice, we find that a simple G consisting of two fully connected layers FC1 and FC2 works well.

Each fully connected layer is followed by a BatchNorm layer and a ReLU layer.

When training G, the principle is to generate hard negative samples that are similar to real start

windows. Conventional GANs utilize a binary real/fake classifier to provide supervision signal for

training G. However, this method usually encounters an instability issue. Following [156], instead

of adding a binary classifier, we require G to generate fake data matching the statistics of the real

data. Specifically, the feature matching objective is forcing G to match the expectation of the real

features on an intermediate layer of D (we use FC7 layer as indicated in Fig. 6.4 (c)). Formally,

we denote the feature extraction part of using the fixed 3D ConvNets as φ (·) and the process from

Pool5 to FC7 as ψ (·). The feature matching loss is defined as follows:

Lmatching =
∥
∥E(xs,y)∼pstart [ψ (φ (xs))]− Ez∼noise [ψ (G (z))]

∥
∥
2

2
, (6.3)

where G (·) denotes the generator, pstart = {(xs, y)} is the training set of start windows, xs repre-

sents the start window, and y is the ground truth label.
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6.4.4.2 Discriminator (D)

The principle for designing D is that the generated samples should be still separable from real start

windows despite their similarity, so that the generated samples can be regarded as hard negatives.

As shown in Fig. 6.4 (c), D consists of FC6, FC7, and FC8. Instead of adding a binary real/fake

classifier, we add an additional node in FC8 layer to represent the hard negative class, which is the

ground truth label for the generated samples. Note that this additional class is used during training

only and is removed during testing.

Similarly, some previous works also replaced the binary discriminator with a multi-class clas-

sifier that has an additional class for the fake samples [156; 157; 158]. However, their motivation

is mainly extending GAN to the semi-supervised setting: the unlabeled real samples could belong

to any class except fake. But in this chapter, we focus on generating hard negatives which should

be similar to actions but dissimilar to backgrounds; meanwhile our D needs to distinguish hard

negatives from not only actions but also from backgrounds.

Given a Pool5 feature φ (x) either extracted from real data or generated by G, D accepts φ (x)

as input and predicts a vector {o1, . . . , oK+2} which goes through a softmax function to get class

probabilities: PD (i|φ (x)) = eoi
∑K+2

k=1 eok
, where i ∈ {1, . . . , K + 2}. Regarding the real samples,

we can calculate their corresponding classification loss Lreal via extending Lclassification defined in

Eq. 6.1:

Lreal = E(xs,y)∼Pstart [−logPD (y|φ (xs))]

+E(xns,y)∼Pnotstart [−logPD (y|φ (xns))].

(6.4)
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As for the generated fake samples, the loss is:

Lfake = Ez∼noise [−logPD (K + 2|G (z))] , (6.5)

where K + 2 represents the hard negative class.

6.4.5 The Full Objective

We first pre-train the whole network via minimizing Lclassification+λ·Lsimilarity,which combines the

classification loss (Eq. 6.1) and the temporal consistency loss (Eq. 6.2) together with the weighting

parameter λ. Based on such initialization, we train G and D in an alternating manner during

each iteration: When training G, we fix D and train G so that the full objective is min
G

LG. LG

contains only the feature matching loss (Eq. 6.3): LG = Lmatching. When training D, we fix

G and train D so that the full objective is min
D

LD. LD contains the classification loss for both

the real and fake samples (Eq. 6.4 and Eq. 6.5) and also the temporal consistency loss (Eq. 6.2):

LD = Lreal + Lfake + λ · Lsimilarity, where λ is the weight.

6.5 Evaluation

6.5.1 Conventional Protocols and Metrics

Hoai and De la Torre [130; 131] first worked on early detection and proposed three evaluation

protocols to respectively evaluate classification accuracy, detection timeliness, and localization
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precision. As comprehensively discussed in [128], their protocols do not suit online detection in

realistic, unconstrained videos, because their protocols were designed for a simplified setting: each

video contains only one action instance of interest.

Therefore, as mentioned in Sec. 6.2, recent online detection works [128; 129] effectively

worked on the per-frame labeling task and evaluated the frame-level classification mean Aver-

age Precision (mAP) or its calibrated version. In addition, temporal localization methods detect

both the start and end times of each action instance and evaluate the segment-level detection mAP.

As for ODAS, the performance of detecting AS can indeed affect both the frame-level mAP and

the segment-level mAP. However, since the frame-level mAP is mainly used to evaluate the ac-

curacy of classifying every frame and the segment-level mAP involves evaluating the correctness

of detecting the end, both metrics are not exactly evaluating the performance in detecting action

starts.

6.5.2 Proposed New Protocol and Metrics

In order to specifically evaluate ODAS performance, we propose a new evaluation protocol. We

evaluate ODAS at the point level for each AS instance. As mentioned in Sec. 6.3, ODAS system

outputs a rank list of detected AS points. Each AS point prediction is associated with the time

point t, the predicted action class and the confidence score.

We aim to evaluate the detection accuracy and timeliness of ODAS system compared to the
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human annotated ground truths 1. As for the timeliness, inspired by the segment-level mAP which

measures the temporal overlap between the ground truth segment and the predicted segment, we

measures the temporal offset (absolute distance) between the ground truth AS point and the pre-

dicted AS point.

We propose the point-level AS detection mAP to evaluate ODAS results. Each AS point

prediction is counted as correct only when its action class is correct and its offset is smaller than

the evaluation threshold. We evaluate the point-level AP for each action class and average over all

action classes to get the point-level mAP. We do not allow duplicate detections for the same ground

truth AS point.

6.6 Experiments

In order to simulate the ODAS setting, we employ standard benchmarks consisting of untrimmed

videos to simulate the sequential arrival of video frames.

1According to the human annotations on THUMOS’14 test set [38], people usually can form agreement on when

the action starts: out of 3,358 action instances, 3,259 instances (97%) have their AS time annotations agreed by

multiple human annotators. The instances with ambiguous start times are excluded during evaluation.
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6.6.1 Results on THUMOS’14

6.6.1.1 Dataset

THUMOS’14 [38] involves 20 actions and videos over 20 hours: 200 validation videos (3,007

action instances) and 213 test videos (3,358 action instances). These videos are untrimmed and

contain at least one action instance. Each video has 16.8 action instances in average. We use

the validation videos for training and use the test videos to simulate streaming videos for testing

ODAS.

6.6.1.2 Metrics

We evaluate the point-level AS detection mAP at different temporal offset thresholds to compare

ODAS systems under the different user tolerances or application requirements. Note that AP depth

at recall X% means averaging the precisions at points on the P-R curve with the recall ranging from

0% to X%. The aforementioned default detection mAP is evaluated at AP depth at recall 100%. In

order to look at the precision of top ranked predictions, we can evaluate detection mAP at different

AP depth. At each AP depth, we average the detection mAP under different offset thresholds to

obtain the average mAP.

6.6.1.3 Comparisons

As for our approach, our network architecture can be found in Fig. 6.4. Since we build our model

upon C3D [46] which has been pre-trained on Sports-1M [14], we use it to initialize models shown
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in Fig. 6.4. Since Pool5 output has 8,192 dimensions, we use 4,096 nodes for both FC1 and FC2 in

G. We compare with the following baselines. (1) Random guess: we replace the network output

scores for K actions and background mentioned in Sec. 6.3 via randomly splitting score 1 into

K + 1 numbers all within [0, 1]. (2) C3D w/o ours: we use the C3D model which has exactly the

same network architecture as our model used during testing but is trained without our proposed

methods. (3) RED: Gao et al. [129] achieved the state-of-the-art performances on THUMOS’14

in online action detection task by encouraging the LSTM network to make correct frame-level

predictions at the early part of a sequence. We obtained the results from the authors and evaluated

based on our proposed protocol. (4) Per-frame labeling method - CDC: Shou et al. [125] designed

a Convolutional-De-Convolutional Network to operate on the testing video in an online manner

to output the per-frame classification scores, which can be used to determine AS points following

the same pipeline as proposed in Sec. 6.3. (5) Temporal localization method - TAG in SSN: Zhao

et al. [100] proposed an effective segment proposal method called temporal actionness grouping

(TAG). Based on the actionness score sequence, TAG can be operated in an online manner to

detect the start of a segment and then also detect its end. Thus TAG can be used for ODAS to

generate class-agnostic AS point proposals. For fair comparisons, we determine the action score

of each proposal by applying the AS classifier obtained by our best model (trained with all three

methods). (6) Shot boundary detection methods [159; 160; 161] detect the change boundaries in

the video which can be considered as AS proposals. Then we utilize our best classifier to classify
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Figure 6.5: Experimental results on THUMOS’14 for comparisons with state-of-the-art methods

on THUMOS’14. Left: y-axis is the point-level AS detection mAP and x-axis is varying the offset

threshold. Right: y-axis is the average mAP averaged over offsets from 1s to 10s at AP depth at

X% recall and x-axis is varying X% from 0.1 to 1.

each AS proposal. We employ two popular open-source shot detection methods ShotDetect2 and

SceneDetect3 respectively for comparisons. (7) Offline detection method: S-CNN [67] uses the

same C3D network architecture as our model but performs testing in offline.

Since the duration of action instance varies from <1s to >20s and thus during evaluation we

vary the offset threshold from 1s to 10s. As shown in Fig. 6.5, when using the proposed train-

ing strategies specifically designed to tackle ODAS, our approach improves the C3D w/o ours

2https://github.com/johmathe/Shotdetect

3https://github.com/Breakthrough/PySceneDetect
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Figure 6.6: Experimental results on THUMOS’14 for ablation study of our methods. Left: y-axis

is the point-level AS detection mAP and x-axis is varying the offset threshold. Right: y-axis is the

average mAP averaged over offsets from 1s to 10s at AP depth at X% recall and x-axis is varying

X% from 0.1 to 1.

baseline by a large margin.

Qualitative comparisons can be found in Fig. 6.7: (a) Once the BasketballDunk action starts,

our approach correctly detects it sooner than C3D w/o ours; (b) In this Billiards example, our

approach detects action start exactly when the Billiards action begins and much sooner than C3D

w/o ours; (c) In this example consisting of a CricketBowling instance and a CricketShot instance

back-to-back, our approach detects the start of CricketBowling timely and detects the start of

CricketShot exactly when it begins, but C3D w/o ours misses the CricketBowling instance and
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Figure 6.7: Qualitative comparisons on THUMOS’14. Green indicates the ground truth of AS;

Red indicates the AS detected by the C3D-based ODAS model trained with our proposed methods;

Orange indicates the AS detected by the same C3D model trained without our proposed methods

detects the CricketShot instance with delay.

Notably, our approach is far better than random guess and also outperforms RED, which

is a state-of-the-art method developed very recently to detect action as soon as possible. Also,

our method is better than other per-frame labeling method (i.e. CDC) and some class-agnostic

start point detection methods (i.e. TAG in SSN, ShotDetect, SceneDetect). Furthermore, our

approach can even achieve better results under high offset thresholds than the offline S-CNN

method.

6.6.1.4 Ablation study of individual proposed method

We conduct in-depth study on THUMOS’14 to analyze the performance gain contributed by each

proposed training method. In Fig. 6.6 left, we report the results on THUMOS’14 when training
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with only one of our proposed methods. All approaches in the following have the same network ar-

chitecture during testing: C3D is trained without any proposed methods; C3D-adaptive is trained

with the adaptive sampling strategy; C3D-TC is trained with modeling the temporal consistency;

C3D-GAN is trained within our proposed GAN-based framework; C3D-adaptive-TC-GAN com-

bines all three proposed methods together during training and achieves the best performance. These

results indicate that all three proposed methods are effective in improving the ODAS model.

In Fig. 6.6 right, we report the results on THUMOS’14 when training without one of our

proposed methods. We add additional approaches of the same network architecture during testing:

C3D-TC-GAN is trained without the adaptive sampling strategy; C3D-adaptive-GAN is trained

without modeling the temporal consistency; C3D-adaptive-TC is trained without our proposed

GAN-based framework. These results indicate that all three proposed methods are necessary for

training a good ODAS model.

6.6.2 Results on ActivityNet

6.6.2.1 Dataset

ActivityNet [82; 83] v1.3 involves 200 actions and untrimmed videos over 800 hours: around

10K training videos (15K instances) and 5K validation videos (7.6K instances). Each video has

1.7 action instances in average. We train on the training videos and evaluate ODAS using the

validation videos.

110



Table 6.1: AS detection mAP (%) on ActivityNet when varying the offset threshold

offset threshold (s) 10 50 100

Random guess 0.06 0.14 0.17

SceneDetect 4.71 18.93 25.84

ShotDetect 6.10 24.35 33.76

TSN w/o ours 8.18 31.39 44.15

Our approach 8.33 33.08 46.97

6.6.2.2 Comparisons

As for our approach, given the superior performances of TSN on ActivityNet video classification

task [122], following [93], for each window of 16 frames, we use TSN to extract a feature vector of

3,072 dimensions to serve as input to our network. Our backbone network for ActivityNet consists

of three fully connected layers (i.e. FC6, FC7, FC8) that are the same as these in C3D, but we train

this network directly from scratch. As for G, since the dimension of fake samples here is 3,072,

we set FC1 and FC2 in G to be 2,048 dimensions.

The duration of action instance varies from <1s to >200s in ActivityNet and thus during eval-

uation we vary the temporal offset from 10s to 100s. As shown in Table 6.1, our approach

significantly outperform the baseline methods again and improves TSN w/o ours which indicates

that it also accepts TSN features as input and has the same testing network architecture as our

approach but is trained without our proposed methods.
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6.6.3 Efficiency

In terms of testing speed, unlike offline detection which evaluates how many frames can be pro-

cessed per second simultaneously, it is important for ODAS to evaluate the detection delay which

is the time duration between the system receives a new video frame and the system outputs the pre-

diction for this frame. Our model in Fig. 6.4 (c) is able to respond within 0.16s on one single Titan

X GPU. Further, our method can maintain similar mAP results even when the striding distance of

the input window is increased to 8 frames, thus allowing real-time implementations.

6.7 Summary

In this chapter, we have proposed a novel Online Detection of Action Start task in a practical

setting involving untrimmed, unconstrained videos. The goal is to detect the start of an action in-

stance, with high categorization accuracy and low detection latency. We have designed three novel

training methods for training effective ODAS models in detecting action timely and accurately:

(1) hard negative samples generation based on GAN to distinguish ambiguous background, (2)

explicitly modeling the temporal consistency between data around action start and data succeeding

action start, and (3) adaptive sampling strategy to handle the scarcity of training data. Extensive

experiments show that our proposed methods lead to significant performance gains and improve

the state-of-the-art methods. An ablation study confirms the effectiveness and necessity of each

proposed method. In the future, since the developed methods can address the specific challenges
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in detecting action starts, it would be interesting to further apply them to help address other online

action detection tasks such as online per-frame labeling and online temporal action localization.
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Part III

Action Understanding in the Compressed

Domain
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Chapter 7

Studying the Effects of Video Encoding

Variations

7.1 Introduction

In real applications, videos are usually compressed by various video codecs such as MPEG-4 [162]

for the sake of saving storage and accelerating transmission. In the previous chapters, we follow

the mainstream action understanding methods to process the compressed video by first decod-

ing it into a sequence of RGB image frames. However, these frames usually contain similar visual

contents, resulting into redundant information to be processed. In addition, the state-of-the-art two-

stream methods further extract optical flow data from RGB images for modeling motion. Conse-

quently, this methodology of first decoding compressed video is quite time-consuming. As shown
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Figure 7.1: Comparisons between the conventional action understanding backbone networks in

the decoded domain and the recently proposed action understanding backbone network in the

compressed domain. Traditional backbone network first decodes the video and then feeds the

RGB frames into a CNN. The new backbone network in the compressed domain operates on the

compressed video directly.

in Figure 7.1, recently a new method called CoViAR [3] was proposed to directly perform action

understanding in the compressed domain without decoding the compressed video. The CoViAR

method exploits all data modalities in the compressed video, i.e. RGB I-frames, motion vectors and

residuals to bypass RGB frame decoding. As shown in Figure 7.2, CoViAR achieves promising

accuracy on the video-level action classification task and exhibits much faster speed than the tra-

ditional methods based on the decoded image frames, including a two-stream network (Temporal
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denotes the input data size. Compared to three decoded images based methods, the new CoViAR

method based on the compressed videos is both accurate and efficient. x-axis is in logarithmic

scale.

Segment Network [163]), Res3D [16], and ResNet-152 [12]. Such a backbone network operating

in the compressed domain can be integrated with any frameworks designed for addressing specific

action understanding tasks such as those developed in Part I and Part II.

The CoViAR method requires that the training videos and testing videos are encoded by the

same video codec with the same configurations. In reality, input videos could be compressed by

different video codecs with different encoding configurations. This issue of encoding variation also

exists in video transmission and storage. As shown in Figure 7.3, a practical strategy commonly

used by real applications is transcoding the input videos of different formats into the same format

for transmission and storage. Based on the transcoded videos of the same format (CoViAR uses
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Figure 7.3: The data flow of the video coding procedure in the realistic scenario: given raw videos,

different users or their video capturing devices employ different formats for video compression and

then send the compressed videos to the downstream real applications, which usually first transcode

input videos of different formats into a preselected, generic format G and then perform transmis-

sion, storage or semantic understanding based on the format G.

MPEG-4 with the number of Group Of Pictures (GOP) set to 12 and Macroblock Size set to 16x16),

we can perform action understanding using our models trained with videos of the same format.

However, the video encoding variation effect still remains unresolved. Because when com-

pressing a raw video using different formats, despite being transcoded into the same format after-

wards, the information loss and generated artifacts would be different. In this chapter, we aim to

investigate training compressed video action understanding models like CoViAR to be robust to

the variations of such information loss and artifacts caused by the video encoding variations.

To completely address the issue of video encoding variations, a straightforward solution is

that we train individual models for different videos formats and for each testing video we apply

the corresponding model trained with the videos transcoded from the same format. But this is

impractical in reality because it is extremely inefficient that for each task or dataset we train a
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handful of models for the sake of covering all kinds of encoding formats. Alternatively, we can

augment the training data to cover different kinds of encoding formats and training a generic model

based on the augmented, diverse training dataset. Experimentally we find that such a generic model

can indeed improve the baseline of training without data augmentation while it still performs not

as good as training individual models. Finally, we conduct comprehensive ablation studies in order

to understand how the variation of each compression factor, such as codec type, macroblock size

and GOP size, affects the action understanding performance. We find that when training a generic

model using videos transcoded from a certain format such as small macroblock size (i.e. 4x4) or

large GOP size (i.e. 18), we can obtain performance comparable to training individual methods.

In the rest of this chapter, we review the compressed data modalities in Section 7.2, motivate

the problem and summarize the possible encoding variations in Section 7.3, describe several ap-

proaches in Section 7.4, present and discuss the experimental results in Section 7.5, and finally

draw our summary in Section 7.6.

7.2 Preliminaries

7.2.1 Data Modalities in the Compressed Domain

Prevailing video compression standards employs the Group Of Pictures (GOP) structure to encode

the raw video into successive, non-overlapping GOPs. Frames or pictures within one GOP are

compressed together. Each GOP begins with an I-frame (intra coded frame) whose RGB pixel
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values are stored. I-frame can be decoded independently with other frames.

The rest of frames within a GOP are P-frame (predictive coded frame) and/or B-frame (bi-

predictive coded frame), containing motion-compensated difference information relative to the

previously decoded frames. Each P-frame can only reference one frame which could be either

I-frame or P-frame while each B frame can only reference two frames. In this thesis, we follow [3]

to focus on the low-latency scenario which only involves P-frame without B-frame. Each P-frame

stores motion vectors and residual errors: during encoding, the video codec divides a P-frame into

macroblocks of size such as 16x16 and find the most similar image patch in the reference frame for

each macroblock; the displacement between a macroblock in P-frame and its most similar image

patch in the reference frame is regarded as the corresponding motion vector, which will be used

in motion compensation during decoding; the pixel differences between a macroblock in P-frame

and its most similar image patch in the reference frame are denoted as residual errors. During the

decoding of a P-frame, the video codec performs motion compensation which effectively warps

the reference frame using the motion vectors and then adds the residual errors to the motion-

compensated reference frame to reconstruct the P-frame.

Consequently, three data modalities in the compression domain are suitable for action under-

standing: (1) RGB values of I-frame; (2) motion vectors and (3) residual errors of P-frame.
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7.3 Problem Statement

7.3.1 Motivation

As shown in Figure 7.3, we follow the convention for video transmission and storage in real ap-

plications to perform action understanding based on transcoded videos of the same format. We

follow the CoViAR [3], which is the only currently published method for action understanding

in the compressed domain, to train models based on MPEG-4 [162] videos of GOP size 12 and

macroblock size 16x16 (denoted as format G in this chapter). Thus, in Figure 7.3 we transcode

videos of different formats to format G during the testing time using the FFmpeg tool [164]. Al-

though the transcoded videos can be processed by the model trained on the videos of format G

directly compressed from raw videos, due to the different information loss and artifacts generated

during the process when the raw videos are compressed by different video codecs at the user end in

Figure 7.3, the trained model achieves inferior accuracy compared to the individual models trained

using the method presented in Section 7.4.1 (58.54% vs. 59.35% on the HMDB-51 video-level ac-

tion classification task [165]), motivating us to handle such encoding variations at the user end. In

this chapter, we aim to develop model training methods that are robust to such encoding variations

so as to close the above performance gap.
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7.3.2 Possible Encoding Variations

In this section, we discuss the possible encoding variations that are important in video compression.

According to the encoding and decoding procedures introduced in the above Section 7.2.1, there

are several major encoding configurations that are variable: GOP size is the number of frames in

one GOP. The default value for MPEG-4 is 12 in FFmpeg. In this chapter, we study possible values

of 6, 12, and 18. Macroblock size is the size of each macroblock in P-frame. The default value

for MPEG-4 in FFmpeg is 16x16, which is a bit large. In this chapter, we study possible values

of 4x4, 8x8, and 16x16. In addition, besides MPEG-4, we explore other possible video codecs

including H.264 and H.265 which have same three data modalities and similar coding procedures

with optimized details compared to MPEG-4. For H.264 and H.265, we use their default settings

in FFmpeg which have adaptive GOP size and adaptive macroblock size.

During experiments as described in Section 7.5.2.1, we compress the raw videos using different

compression formats to simulate the testing scenario in reality. We simulate the testing videos of

the following formats: (1) MPEG-4 of GOP size 12 and macroblock size 16x16 (the format G); (2)

MPEG-4 of GOP size 18 and macroblock size 16x16; (3) MPEG-4 of GOP size 6 and macroblock

size 16x16; (4) MPEG-4 of GOP size 12 and macroblock size 4x4; (5) MPEG-4 of GOP size 12

and macroblock size 8x8; (6) H.264 of adaptive GOP size and adaptive macroblock size; (7) H.265

of adaptive GOP size and adaptive macroblock size.
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7.4 Approach

In order to improve the baseline method of training on videos of the format G compressed directly

from raw videos following the CoViAR paper [3], we propose three training methods to handle the

encoding variation issue in the following.

7.4.1 Training Individual Models

One straightforward solution that can bypass the encoding variation problem is training individual

model for each format. Concretely, for each possible video compression format, we train a specific

action understanding model independently with other formats as shown in Figure 7.4a. During

testing, the model used for inference is set to be the one trained with videos transcoded from the

same format as the input testing video. This solution, denoted as training individual models,

is adhoc and very inefficient because it requires training one model for each compression format

while during testing there are many possible formats.

However, since a specific model is trained using videos transcoded from the same format, this

method can bypass the encoding variation issue to obtain highly competitive accuracy. As shown

in Section 7.5.3, this method achieves 59.35% overall accuracy on the HMDB-51 dataset, which

can be regarded as our target for improving the baseline method of training on videos of the format

G compressed directly from raw videos.
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Figure 7.4: Illustrations of three approaches studied in this chapter. Videos used during training

and testing are respectively highlighted by the corresponding dashed blue rectangles. (a) Training

individual models for every formats. (b) Training a generic model using the augmented dataset

consisting of videos of all possible formats. (c) Training a generic model using videos transcoded

from a certain format. Experimentally we find that (c) achieves accuracy comparable to (a).
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7.4.2 Training A Generic Model via Data Augmentation

In practice, ideally we should train and store only one generic model that will be applied to the

testing videos transcoded from different formats. Data augmentation has turned out to be effective

in addressing the scale variation in developing robust deep learning methods for image classifica-

tion and action recognition. Therefore, we are motivated to train a generic model assisted by data

augmentation: as shown in Figure 7.4a, during training we compress each raw video into different

common formats such as those listed in Section 7.3.2 and then transcode them into the format G

and finally feed them together for training one single model, which is applied to the testing videos

transcoded from different formats.

As shown in Section 7.5.3, this data augmentation method leads to some performance gain

while still performs not as good as training individual models (58.72% vs. 59.35%).

7.4.3 Training A Generic Model Using Videos Transcoded from A Certain

Format

The performance gap between training a generic model via data augmentation and training indi-

vidual models motivates us to further investigate how the variation of each configuration during

the compression influences the final performance of action understanding. Similar to the baseline

method which directly follows CoViAR to train one generic model using the compressed videos

encoded from the raw format to the format G, we propose to, as illustrated in Figure 7.4c, train
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one generic model only using the compressed videos encoded from the raw format to a certain for-

mat and then transcoded to the format G. In order to perform ablation study for each compression

configuration, we set such a certain format to the format G with one of the configuration values

modified.

split1 split2 split3 avg

MPEG-4 of GOP size 12 and macroblock size 16x16

(The format G used in the baseline method)
60.46 57.54 57.62 58.54

MPEG-4 of GOP size 12 and macroblock size 4x4 61.28 58.83 58.20 59.44

Table 7.1: Video-level action classification accuracy (%) on HMDB-51 for training videos

transcoded from different macroblock sizes.

split1 split2 split3 avg

MPEG-4 of GOP size 12 and macroblock size 16x16

(the format G used in the baseline method)
60.46 57.54 57.62 58.54

MPEG-4 of GOP size 6 and macroblock size 16x16 61.63 57.65 58.25 59.18

MPEG-4 of GOP size 18 and macroblock size 16x16 61.21 57.53 59.49 59.42

Table 7.2: Video-level action classification accuracy (%) on HMDB-51 for training videos

transcoded from different GOP sizes.

First, we take a closer look at the macroblock size. Rather than setting it to a large size (i.e.

16x16) as in the format G, we explore a smaller macroblock size which can preserve more detailed

information in the motion vectors to allow more accurate motion compensation. Table 7.1 shows

that when compressing the training videos before transcoding, changing the macroblock size from

16x16 to 4x4 can improve the accuracy significantly.

Second, we vary the GOP size to study the effect of its variation. The default value in the format

G is 12. We further experiment smaller and larger GOP sizes. A smaller GOP size reduces the
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artifacts generated during motion compensation. But note that when extracting the motion vectors

and residual errors of a P-frame to be fed into the classification CNNs, we follow the CoViAR

method to trace all motion vectors back to the reference I-frame and accumulate the residual errors

on the way. Thus a larger GOP size allows the modeling of longer dependencies in time. As shown

in Table 7.2, setting the GOP size to a smaller value (i.e. 6) and a larger value (i.e. 18) both can

improve the accuracy. Setting the GOP size to 18 is slightly better than 6.

Finally, according the comparisons in Table 7.3, we find that the model trained using videos

transcoded from a certain formats, such as MPEG-4 of GOP size 12 and macroblock size 4x4

or MPEG-4 of GOP size 18 and macroblock size 16x16, is quite robust enough to match the

performance of training individual models, successfully addressing the encoding variation issue.

7.5 Experiments

7.5.1 Datasets and Evaluation Protocol

We evaluate on the HMDB-51 dataset [165], which contains 6,766 videos from 51 action categories

and has 3 public train/test splits. All videos have single action label out of 51 classes. Thus we

evaluate top-1 video-level action classification accuracy.
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7.5.2 Implementation Details

7.5.2.1 Experimental Setup

Given the raw testing videos, in order to simulate the realistic scenario that testing videos can

have various formats, we compress all the raw videos to each of the formats listed in Section 7.3.2

respectively. For each format we apply the trained model to obtain the overall accuracy and finally

we compute the average accuracy for all formats.

7.5.2.2 Training

Following CoViAR [3], we employ a ResNet-152 classifier for I-frame and ResNet-18 classifiers

for processing motion vectors and residual errors respectively. All videos are resized to 340x256

and are randomly cropped to 224x224 during each training batch. Learning rate starts from 0.001

and is divided by 10 when the accuracy plateaus. The batch size is set to 40. For each compressed

data modality, we obtain the video-level prediction by averaging the predictions of three frames

that are randomly sampled out of the whole video. The final prediction of the video-level label is

obtained by fusing the predictions made by all three compressed data modalities.

7.5.2.3 Testing

During testing, we follow CoViAR [3] to obtain the video-level prediction for each testing video

by averaging the predictions of 25 uniformly sampled frames. Instead of the random cropping,

the center cropping and corner cropping are used. Specifically, as shown in Figure 7.3, given a

128



testing video, we first transcode it into the format G (MPEG-4 of GOP size 12 and macroblock

size 16x16) used in CoViAR [3] and then apply our trained model.

7.5.3 Comparisons among Different Approaches

split1 split2 split3 avg

Training a generic model directly following CoViAR

(The baseline method)
60.46 57.54 57.62 58.54

Training individual models 61.46 58.11 58.46 59.35

Training a generic model via data augmentation 59.79 57.72 58.64 58.72

Training a generic model using videos

transcoded from a certain format

(MPEG-4 of GOP size 12 and macroblock size 4x4)

61.28 58.83 58.2 59.44

Training a generic model using videos

transcoded from a certain format

(MPEG-4 of GOP size 18 and macroblock size 16x16)

61.21 57.53 59.49 59.42

Table 7.3: Video-level action classification accuracy (%) on HMDB-51 for comparisons among

various methods for handle the encoding variation issue.

In Table 7.3, we compare the baseline method of directly following CoViAR and other three

methods presented in Section 7.4:

(1) The baseline method is training a generic model using the videos compressed from the raw

format to the common format G which is MPEG-4 of GOP size 12 and macroblock size 16x16.

This method directly follows the CoViAR method and achieves low accuracy because it is sensitive

to the video encoding variations.

(2) The method of training individual models trains a specific model dedicated to processing the

testing video of each format, bypassing the issue of video encoding variations. Thus its accuracy
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can be regarded as our target for improving the baseline method. But this method is not practical

for real applications due to the need of training and storing a lot of models corresponding to all

possible formats.

(3) Training a generic model via data augmentation achieves better accuracy than the baseline

method while still performs not as good as training individual models.

(4) Training a generic model using videos transcoded from a certain format, such as MPEG-4

of GOP size 12 and macroblock size 4x4 or MPEG-4 of GOP size 18 and macroblock size 16x16,

achieves performance comparable to training individual models, indicating that the trained model

is robust enough already to handle the video encoding variation issue.

7.6 Summary

In this chapter, we focus on the backbone network for action understanding in the compressed

domain, which can achieve a better trade-off between accuracy and efficiency compared to the

traditional decoded video based methods as demonstrated in the previous work. However, the input

videos during testing in practice are usually compressed by different video codecs with different

encoding configurations. Following the common practice used for video transmission and storage,

we first transcode the input videos of different formats into a preselected format and then training

and testing action understanding models using the preselected format only.

But the problem of video encoding variation still remains unresolved because the information

loss and generated artifacts would be different when the raw video is compressed using different
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formats before transcoded into the preselected format. Thus we investigate how such different

information loss caused by the video encoding variation issue would affect the performance of

action understand. In order to address this encoding variation issue, we propose and compare three

solutions: (1) training individual models that each model corresponds to one specific format, (2)

training a generic model using the augmented dataset consisting of videos transcoded from all

possible formats, and (3) training a generic model using videos transcoded from a certain format.

Experimentally we find that training a generic model using videos transcoded from a certain format

such as small macroblock size (i.e. 4x4, accuracy 59.44% on HMDB-51) or large GOP size (i.e.

18, accuracy 59.42% on HMDB-51), can obtain performance comparable to training individual

methods (accuracy 59.35% on HMDB-51). This experimental finding indicates that a generic

model trained using videos transcoded from a certain format is robust enough to the different

information loss and thus this simple method can successfully address the encoding variation issue

for action understanding in the compressed domain.
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Chapter 8

Learning to Generate Discriminative

Motion Cues

8.1 Introduction

Video is a rich source of visual content as it not only contains appearance information in indi-

vidual frames, but also temporal motion information across consecutive frames. Previous work

has shown that modeling motion is important to various action understanding tasks, such as ac-

tion recognition [34; 2; 166] and action localization [167; 168; 67; 169; 170; 90; 171]. Currently,

methods achieving state-of-the-art results usually follow the two-stream network framework [34;

137; 33], which consists of two Convolutional Neural Networks (CNNs), one for the decoded RGB

images and one for optical flow, as shown in Figure 8.1a. These networks can operate on either sin-
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Figure 8.1: Illustrations of (a) the two-stream network, (b) the recent CoViAR method that achieves

high accuracy via fusing compressed video data and optical flow, and (c) our proposed DMC-Net.

Unlike CoViAR+Flow that requires video decoding of RGB images and flow estimation, our DMC-

Net operates exclusively in the compressed domain at inference time while using optical flow to

learn to capture discriminative motion cues at training time.
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Figure 8.2: Comparing inference time and accuracy for different methods on HMDB-51. (a)

Compressed video based method CoViAR is very fast. (b) But in order to reach high accuracy,

CoViAR has to follow two-stream networks to add the costly optical flow computation, either using

TV-L1 or PWC-Net. (c) The proposed DMC-Net not only operates exclusively in the compressed

domain, but also is able to achieve high accuracy while being two orders of magnitude faster

than methods that use optical flow. The blue box denotes the improvement room from CoViAR to

CoViAR + TV-L1 Flow; x-axis is in logarithmic scale.

gle frames (2D inputs) or clips (3D inputs) and may utilize 3D spatio-temporal convolutions [15;

33].

Extracting optical flow, however, is very slow and often dominates the overall processing time

of video analysis tasks. Recent work [3; 172; 173] avoids optical flow computation by exploiting

the motion information from compressed videos encoded by standards like MPEG-4 [162]. Such

methods utilize the motion vectors and residuals already present in the compressed video to model

motion. The recently proposed CoViAR [3] method, for example, contains three independent

CNNs operating over three modalities in the compressed video, i.e. RGB image of I-frame (I),

low-resolution Motion Vector (MV) and Residual (R). The predictions from individual CNNs

are combined by late fusion. CoViAR runs extremely fast while modeling motion features (see

Figure 8.1b). However, in order to achieve state-of-the-art accuracy, late fusion with optical flow
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is further needed (see Figure 8.2).

This performance gap is due to the motion vector being less informative and discriminative

than flow. First, the spatial resolution of the motion vector is substantially reduced (i.e. 16x)

during video encoding, and fine motion details, which are important to discriminate actions, are

permanently lost. Second, employing two CNNs to process motion vectors and residuals separately

ignores the strong interaction between them. Because the residual is computed as the difference

between the raw RGB image and its reference frame warped by the motion vector. The residual is

often well-aligned with the boundary of moving object, which is more important than the motion

at other locations for action recognition according to [174]. Jointly modeling motion vectors and

residuals, which can be viewed as coarse-scale and fine-scale motion feature respectively, can

exploit the encoded motion information more effectively.

To address those issues, we propose a novel approach to learn to generate a Discriminative

Motion Cue (DMC) representation by refining the noisy and coarse motion vectors. We develop

a lightweight DMC generator network that operates on stacked motion vectors and residuals. This

generator requires training signals from different sources to capture discriminative motion cues

and incorporate high-level recognition knowledge. In particular, since flow contains high resolu-

tion and accurate motion information, we encourage the generated DMC to resemble optical flow

by a pixel-level reconstruction loss. We also use an adversarial loss [21] to approximate the dis-

tribution of optical flow. Finally, the DMC generator is also supervised by the downstream action

recognition classifier in an end-to-end manner, allowing it to learn motion cues that are discrimi-
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native for recognition.

During inference, the DMC generator is extremely efficient with merely 0.23 GFLOPs, and

takes only 0.106 ms per frame which is negligible compared with the time cost of using flow. In

Figure 8.1c, we call our full model DMC-Net. Although optical flow is required during training,

our method operates exclusively in the compressed domain at inference time and runs two orders

of magnitude faster than methods using optical flow, as shown in Figure 8.2.

In the rest of this chapter, we review the related work in Section 8.2, describe the proposed

DMC-Net in Section 8.3, present the experimental results in Section 8.4, and finally draw our

summary in Section 8.5.

8.2 Related Work

8.2.1 Motion in the Compressed Video Action Recognition

Recently, a number of approaches that utilize the information present in the compressed video

domain have been proposed for video-level action classification. In the pioneering works [173;

172], Zhang et al. replace the optical flow stream in two-stream methods by a motion vector

stream, but it still needed to decode RGB image for P-frame and ignored other motion-encoding

modalities in compressed videos such as the residual maps. The CoViAR method [3] proposed to

exploit all data modalities in compressed videos, i.e. RGB I-frames, motion vectors and residuals

to bypass RGB frame decoding. However, CoViAR fails to achieve performance comparable to
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that of two-stream methods, mainly due to the low-resolution of the motion vectors and the fact

that motion vectors and residuals, although highly related, are processed by independent networks.

We argue that, when properly exploited, the compressed video modalities have enough signal to

allow us to capture more discriminative motion representation. We therefore explicitly learn such

representation as opposed to relying on optical flow during inference.

8.2.2 Motion Representation and Optical Flow Estimation

Traditional optical flow estimation methods explicitly model the displacement at each pixel be-

tween successive frames [175; 176; 177; 178]. In the last years CNNs have successfully been

trained to estimate the optical flow, including FlowNet [179; 180], SpyNet [181] and PWC-Net [182],

and achieve low End-Point Error (EPE) on challenging benchmarks, such as MPI Sintel [183] and

KITTI 2015 [184]. The Im2Flow work [185] also shows optical flow can be hallucinated from

still images. Recent work however, shows that accuracy of optical flow does not strongly correlate

with accuracy of video recognition [186]. Thus, motion representation learning methods focus

more on generating discriminative motion cues. Fan et al. [187] proposed to transform TV-L1

optical flow algorithm into a trainable sub-network, which can be jointly trained with downstream

recognition network. Ng et al. [188] employs fully convolutional ResNet model to generate pixel-

wise prediction of optical flow, and can be jointly trained with recognition network. Unlike optical

flow estimation methods, our method does not aim to reduce EPE error. Also different from all

above methods of motion representation learning which take decoded RGB frames as input, our
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method refines motion vectors in the compressed domain, and requires much less model capacity

to generate discriminative motion cues.

8.3 Approach

Discriminator

DMC	generator

Motion	Vector

Flow	

reconstruction	

loss

Classification	

loss

Residual

Adversarial	

loss

Predictions

Action	1:	0.1

…

Predictions

Real:	0.5

Fake:	0.5

DMC	generator Classifier

Discriminator

Action	2:	0.7

Action	k:	0.1

Testing	stage Training	stage Training	losses

Optical	Flow

DMC

Figure 8.3: The framework of our Discriminative Motion Cue Network (DMC-Net). Given the

stacked residual and motion vector as input, the DMC generator reduces noise in the motion vector

and captures more fine motion details, outputting a more discriminative motion cue representation

which is used by a small classification network to classify actions. In the training stage, we train

the DMC generator and the action classifier jointly using three losses. In the test stage, only the

modules highlighted in pink are used.

In this section, we present our approach for generating Discriminative Motion Cues (DMC)

from compressed video. The overall framework of our proposed DMC-Net is illustrated in Fig-

ure 8.3. In Section 8.3.1, we introduce the basics of compressed video and the notations we use.

Then we design the DMC generator network in Section 8.3.2. Finally we present the training

objectives in Section 8.3.3 and discuss inference in Section 8.3.4.
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8.3.1 Basics and Notations of Compressed Video

We follow CoViAR [3] and use MPEG-4 Part2 [162] encoded videos where every I-frame is fol-

lowed by 11 consecutive P-frames. Three data modalities are readily available in MPEG-4 com-

pressed video: (1) RGB image of I-frame (I); (2) Motion Vector (MV) records the displacement

of each macroblock in a P-frame to its reference frame and typically a frame is divided into 16x16

macroblocks during video compression; (3) Residual (R) stores the RGB difference between a P-

frame and its reference I-frame after motion compensation based on MV. For a frame of height H

and width W , I and R have shape (3, H , W ) and MV has shape (2, H , W ). But note that MV has

much lower resolution in effect because its values within the same macroblock are identical.

8.3.2 The Discriminative Motion Cue Generator

8.3.2.1 Input of the Generator

Existing compressed video based methods directly feed motion vectors into a classifier to model

motion information. This strategy is not effective in modeling motion due to the characteristics

of MV: (1) MV is computed based on simple block matching, making MV noisy and (2) MV has

substantially lower resolution, making MV lacking fine motion details. In order to specifically

handle these characteristics of MV, we aim to design a lightweight generation network to reduce

noise in MV and capture more fine motion details, outputting DMC as a more discriminative

motion representation.
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Network Architecture GFLOPs

C3D [15] 38.5

Res3D-18 [16] 19.3

ResNet-152 [12] 11.3

ResNet-18 [12] 1.78

DMC generator (PWC-Net [182]) 36.15

DMC generator [ours] 0.23

Table 8.1: Computational complexity of different networks. Input has height 224 and width 224.

Layer Input size Output size Filter config

conv0 5, 224, 224 8, 224, 224 8, 3x3, 1, 1

conv1 13, 224, 224 8, 224, 224 8, 3x3, 1, 1

conv2 21, 224, 224 6, 224, 224 6, 3x3, 1, 1

conv3 27, 224, 224 4, 224, 224 4, 3x3, 1, 1

conv4 31, 224, 224 2, 224, 224 2, 3x3, 1, 1

conv5 33, 224, 224 2, 224, 224 2, 3x3, 1, 1

Table 8.2: The architecture of our Discriminative Motion Cue (DMC) generator network which

takes stacked motion vector and residual as input. Input/output size follows the format of #chan-

nels, height, width. Filter configuration follows the format of #filters, kernel size, stride, padding.

To accomplish this goal, MV alone may not be sufficient. According to [174], the motion

nearby object boundary is more important than the motion at other locations for action recognition.

We also notice R is often well-aligned with the boundary of moving objects. Moreover, R is

strongly correlated with MV as it is computed as the difference between the original frame and its

reference I-frame compensated using MV. Therefore, we propose to stack MV and R as input into

the DMC generator, as shown in Figure 8.3. This allows utilizing the motion information in MV

and R as well as the correlation between them, which cannot be modeled by separate CNNs as in

the current compressed video works [3; 172; 173].
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8.3.2.2 Generator Network Architecture

. Quite a few deep generation networks have been proposed for optical flow estimation from RGB

images. One of these works is PWC-Net [182], which achieves SoTA performance in terms of

both End Point Error (EPE) and inference speed. We therefore choose to base our generator design

principles on the ones used by PWC-Net. It is worth noting that PWC-Net takes decoded RGB

frames as input unlike our proposed method operating only in the compressed domain.

Directly adopting the network architecture of the flow estimator network in PWC-Net for our

DMC generator leads to high GFLOPs as indicated in Table 8.1. To achieve high efficiency, we

have conducted detailed architecture search experimentally to reduce the number of filters in each

convolutional layer of the flow estimator network in PWC-Net, achieving the balance between

accuracy and complexity. Furthermore, since our goal is to refine MV, we propose to add a shortcut

connection between the input MV and the output DMC, making the generator to directly predict

the refinements which are added on MV to obtain DMC.

Table 8.2 shows the network architecture of our DMC generator: 6 convolutional layers are

stacked sequentially with all convolutional layers densely connected [13]. Every convolutional

filter has a 3x3 kernel with stride 1 and padding 1. Each convolutional layer except conv5 is

followed by a Leaky ReLU [189] layer, where the negative slope is 0.1.

As shown in Table 8.1, our DMC generator only requires 0.63% GFLOPs used by the flow esti-

mator in PWC-Net if it were adopted to implement our DMC generator. Also, Table 8.1 compares

our DMC generator with other popular network architectures for video analysis including frame-
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level models (ResNet-18 and ResNet-152 [12]) and clip-level models (C3D [15] and Res3D [16]).

We observe that the complexity of DMC generator is orders of magnitude smaller compared to

that of other architectures, which makes it running much faster. We have explored a strategy of

using two consecutive networks to respectively rectify errors in MV and capture fine motion details

while this did not achieve better accuracy.

8.3.3 Flow-guided, Discriminative Motion Cues

Compared to MV, optical flow exhibits more discriminative motion information because: (1) Un-

like MV is computed using simple block matching, nowadays dense flow estimation is computed

progressively from coarse scales to fine scales [190]. (2) Unlike MV is blocky and thus misses fine

details, flow keeps the full resolution of the corresponding frame. Therefore we propose to guide

the training of our DMC generator using optical flow. To this end, we have explored different

ways and identified three effective training losses as shown in Figure 8.3 to be presented in the

following: a flow reconstruction loss, an adversarial loss, and a downstream classification loss.

8.3.3.1 Optical Flow Reconstruction Loss

First, we minimize the per-pixel difference between the generated DMC and its corresponding

optical flow. Following Im2Flow [185] which approximates flow from a single RGB image, we

use the Mean Square Error (MSE) reconstruction loss Lmse defined as:

Lmse = Ex∼p ‖GDMC(x)− GOF(x)‖
2
2 , (8.1)
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where p denotes the set of P-frames in the training videos, E stands for computing expectation,

GDMC(x) and GOF(x)
1 respectively denote the DMC and optical flow for the corresponding input

frame x sampled from p. Since only some regions of flow contain discriminative motion cues

that are important for action recognition, we have explored weighting the flow reconstruction loss

to encourage attending to the salient regions of flow. But this strategy does not achieve better

accuracy.

8.3.3.2 Adversarial Loss

As pointed out by previous works [26], the MSE loss implicitly assumes that the target data is

drawn from a Gaussian distribution and therefore tends to generate smooth and blurry outputs.

This in effect results in less sharp motion representations especially around boundaries, making

the generated DMC less discriminative. Generative Adversarial Networks (GAN) [21] has been

proposed to minimize the Jensen−Shannon divergence between the generative model and the true

data distribution, making these two similar. Thus in order to help our DMC generator learn to

approximate the distribution of optical flow data, we further introduce an adversarial loss. Note that

unlike GAN which samples from random noise, adversarial loss samples from the input dataset,

which already has large variability [26].

Let our DMC generator GDMC be the Generator in the adversarial learning process. As shown

in Figure 8.3, a Discriminator D is introduced to compete with GDMC. D is instantiated by a

1We relax the notational rigor and use GOF (x) to refer to the optical flow corresponding to the frame x, although

for many optical flow algorithms the input would be a pair of frames.
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binary classification network that takes as input either real optical flow or fake samples generated

via our DMC generator. Then D outputs a two-dimensional vector that is passed through a softmax

operation to obtain the probability PD of the input being Real, i.e. flow versus Fake, i.e. DMC.

GDMC and D are trained in an alternating manner: GDMC is fixed when D is being optimized, and

vice versa.

During training D, GDMC is fixed and is only used for inference. D aims to classify the gener-

ated DMC as Fake and classify flow as Real. Thus the adversarial loss for training D is:

LD
adv =Ex∼p[− logPD(Fake|GDMC(x))

− logPD(Real|GOF(x))],

(8.2)

where p denotes the set of P-frames in the training set and GDMC(x) and GOF(x) respectively

represent the DMC and optical flow for each input P-frame x.

During training GDMC, D is fixed. GDMC is encouraged to generate DMC that is similar and

indistinguishable with flow. Thus the adversarial loss for training GDMC is:

LG
adv = Ex∼p[− logPD(Real|GDMC(x))], (8.3)

which can be trained jointly with the other losses designed for training the DMC generator in an

end-to-end fashion, as presented in Section 8.3.3.3.

Through the adversarial training process, GDMC learns to approximate the distribution of flow

data, generating DMC with more fine details and thus being more similar to flow. Those fine details

usually capture discriminative motion cues and are thus important for action recognition.
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Figure 8.4: Accuracy vs. speed on 3 benchmarks. Results on UCF-101 and HMDB-51 are aver-

aged over 3 splits. (b1) and (b2) use ResNet-18 to classify flow and (c) also uses ResNet-18 to

classify DMC. The proposed DMC-Net not only operates exclusively in the compressed domain,

but also is able to achieve higher accuracy than (a) while being two orders of magnitude faster than

methods that use optical flow. The blue area indicates the improvement room from (a) to (b1).

8.3.3.3 The Full Training Objective Function

Semantic classification loss. As our final goal is to create motion representation that is discrimi-

native with respect to the downstream action recognition task, it is important to train the generator

jointly with the follow-up action classifier. We employ the softmax loss as our action classification

loss, denoted as Lcls.

The full training objective. Our whole model is trained with the aforementioned losses putting

together in an end-to-end manner. The training process follows the alternating training procedure

stated in Section 8.3.3.2. During training the discriminator, D is trained while the DMC generator

GDMC and the downstream action classifier are fixed. The full training objective is to minimize the

adversarial loss LD
adv in Equation 8.2. During training the generator GDMC, D is fixed while the

DMC generator GDMC and the downstream action classifier are trained jointly with the following

full training objective to be minimized:

Lcls + α · Lmse + λ · LG
adv, (8.4)
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where Lmse is given by Equation 8.1, LG
adv is given by Equation 8.3, and α, λ are balancing weights.

8.3.4 Inference

As shown in Figure 8.3, despite having three losses jointly trained end-to-end, our DMC-Net is

actually quite efficient during inference: basically first the generator outputs DMC and then the

generated DMC is fed into the classification network to make action class prediction. We compare

our inference speed with other methods in Section 8.4.4.

8.4 Experiments

In this section, we first detail our experimental setup, present quantitative analysis of our model,

and finally compare with state-of-the-art methods.

8.4.1 Datasets and Evaluation

UCF-101 [64]. This dataset contains 13,320 videos from 101 action categories, along with 3 public

train/test splits.

HMDB-51 [165]. This dataset contains 6,766 videos from 51 action categories, along with 3 public

train/test splits.

Kinetics-n50. From the original Kinetics-400 dataset [137], we construct a subset referred as

Kinetics-n50 in this chapter. We keep all 400 categories. For each class, we randomly sample 30
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videos from the original training set as our training videos and randomly sample 20 videos from

the original validation set as our testing videos.

Evaluation protocol. All videos in the above datasets have single action label out of multiple

classes. Thus we evaluate top-1 video-level class prediction accuracy.

8.4.2 Implementation Details

8.4.2.1 Training

For I, MV, and R, we follow the exactly same setting as used in CoViAR [3]. Note that I employs

ResNet-152 classifier; MV and R use ResNet-18 classifier. To ensure efficiency, DMC-Net also

uses ResNet-18 to classify DMC in this chapter unless we explicitly point out. To allow apple-

to-apple comparisons between DMC and flow, we also choose frame-level ResNet-18 classifier as

the flow CNN shown in Figure 8.1b. TV-L1 [176] is used for extracting optical flow to guide the

training of our DMC-Net. All videos are resized to 340×256. Random cropping of 224×224 and

random flipping are used for data augmentation.

We first train the DMC generator for 1 epoch using the flow reconstruction loss only with the

classification network fixed. Then we include the classification loss to train both the generator and

classifier end-to-end for 49 epochs. In the total loss indicated by Equation 8.4, we set α to 10 to

balance weights. The overall learning rate is set to 0.01 and it is divided by 10 whenever the total

training loss plateaus. All layers in the classification network except its last layer have the learning

rate set to be 100x smaller. Then we use the above trained model as the initialization for training
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our whole model with all three losses including the adversarial loss. Our whole model consists of

the generator, the classifier and the discriminator now. In the total loss indicated by Equation 8.4,

we set α to 10 and set λ to 1. The overall learning rate is set to 0.01 and it is divided by 10 whenever

the total training loss plateaus. All layers in the classification network except its last layer have

the learning rate set to be 100x smaller. Based on the network architectures for the discriminator

used in a popular GAN implementation repository 2, we experimented with various number of

filters in each layer and various number of layers. Finally we identified a network architecture

for implementing our discriminator which achieves accuracy comparable to more complicated

architectures. This discriminator’s architecture consists of a stack of 2D convolutional layers with

a two-way Fully Connected layer at the end, as shown in the following Figure 8.5.

8.4.2.2 Testing

For I, MV, and R, we follow the exactly same setting as in CoViAR [3]: 25 frames are uni-

formly sampled for each video; each sampled frame has 5 crops augmented with flipping; all

250 (25×2×5) score predictions are averaged to obtain one video-level prediction. For DMC, we

following the same setting except that we do not use cropping and flipping, which shows compa-

rable accuracy but requires less computations. Finally, we follow CoViAR [3] to obtain the final

prediction via fusing prediction scores from all modalities (i.e. I, MV, R, and DMC).

2https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations
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Figure 8.5: The network architecture of our discriminator. We denote each 2D convolutional layer

in the format of #filters; kernel size, stride, padding.

8.4.3 Model Analysis

How much gain DMC-Net can improve over CoViAR? Figure 8.4 reports accuracy on all three

datasets. CoViAR + TV-L1 and CoViAR + PWC-Net follow two-stream methods to include

an optical flow stream computed by TV-L1 [190] and PWC-Net [182] respectively. CoViAR +

TV-L1 can be regard as our upper bound for improving accuracy because TV-L1 flow is used to
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Two-Stream Method

(RGB+Flow)

Compressed Video

Based Methods

BN-Inception ResNet152 CoViAR DMC-Net [ours]

Time

(ms)

Preprocess 75.0 75.0 0.46 0.46

CNN (S) 1.6 7.5 0.59 0.89

Total (S) 76.6 82.5 1.05 1.35

CNN (C) 0.9 4.0 0.22 0.30

Total (C) 75.9 79.0 0.68 0.76

FPS
CNN (C) 1111.1 250.0 4545.4 3333.3

Total (C) 13.1 12.6 1470.5 1315.7

(a) DMC-Net vs. Two-stream methods and CoViAR

Generator Generator + Cls.

Time (ms) / FPS Time (ms) / FPS

Deepflow [191] 1449.2 / 0.7 1449.5 / 0.7

Flownet2.0 [180] 220.8 / 4.5 221.0 / 4.5

TVNet [187] 83.3 / 12.0 83.5 / 12.0

PWC-Net [182] 28.6 / 35.0 28.8 / 34.8

DMC-Net [ours] 0.1 / 9433.9 0.3 / 3333.3

(b) DMC-Net vs. flow estimation methods

Table 8.3: Comparisons of per-frame inference speed. (a) Comparing our DMC-Net to the two-

stream methods and the CoViAR method. We consider two scenarios of forwarding multiple CNNs

sequentially and concurrently, denoted by S and C respectively.. (b) Comparing our DMC-Net to

deep network based optical flow estimation and motion representation learning methods. CNNs

in DMC-Net are forwarded concurrently. All networks have batch size set to 1. For the classifier

(denoted as Cls.), all methods use ResNet-18.

guide the training of DMC-Net. By only introducing a lightweight DMC generator, our DMC-Net

significantly improves the accuracy of CoViAR to approach CoViAR + Flow. Figure 8.6 shows

that the generated DMC has less noisy signals such as those in the background area and DMC

captures fine and sharp details of motion boundary, leading to the accuracy gain over CoViAR.
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(a) RGB image (b) Optical Flow (c) Motion Vector (d) Residual (e) Our DMC w/o adv.

(a) RGB image (b) Optical Flow (c) Motion Vector (d) Residual

(f) Our DMC

(e) Our DMC w/o adv. (f) Our DMC

Figure 8.6: A Cartwheel example (top) and a PlayingTabla (bottom) example. All images in one

row correspond to the same frame. For the Cartwheel example, these noisy blocks in the back-

ground (highlighted by two red circles) are reduced in our DMC. For the PlayingTabla example,

our DMC exhibits sharper and more discriminative motion cues around hands (highlighted by the

red circle) than our DMC w/o the adversarial loss during training. Better viewed in color.

How effectiveness is each proposed loss? As indicated by Figure 8.4 (1), on HMDB-51 the

accuracy is 59.1% for CoViAR and 62.8% for CoViAR + TV-L1 Flow and 62.2% for CoViAR +

PWC-Net Flow. For our DMC-Net, when only using the classification loss, the accuracy is 60.5%;

when using the classification loss and the flow reconstruction loss, the accuracy is improved to

61.5%; when further including the adversarial training loss as presented in Section 8.3.3.3, DMC-

Net eventually achieves 61.8% accuracy.

8.4.4 Inference Speed

Following [3], we measure the average per-frame running time, which consists of the time for data

pre-processing and the time for CNN forward pass. For the CNN forward pass, both the scenarios
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HMDB-51 UCF-101

Compressed video based methods

EMV-CNN [173] 51.2 (split1) 86.4

DTMV-CNN [172] 55.3 87.5

CoViAR [3] 59.1 90.4

DMC-Net (ResNet-18) [ours] 62.8 90.9

DMC-Net (I3D) [ours] 71.8 92.3

Decoded video based methods (RGB only)

Frame-level classification

ResNet-50 [12] 48.9 82.3

ResNet-152 [12] 46.7 83.4

Motion representation learning

ActionFlowNet (2-frames) [188] 42.6 71.0

ActionFlowNet [188] 56.4 83.9

PWC-Net (ResNet-18) + CoViAR [182] 62.2 90.6

TVNet [187] 71.0 94.5

Spatio-temporal modeling

C3D [15] 51.6 82.3

Res3D [16] 54.9 85.8

ARTNet [192] 70.9 94.3

MF-Net [193] 74.6 96.0

S3D [194] 75.9 96.8

I3D RGB [137] 74.8 95.6

I3D RGB + DMC-Net (I3D) [ours] 77.8 96.5

Decoded video based methods (RGB + Flow)

Two-stream [34] 59.4 88.0

Two-Stream fusion [195] 65.4 92.5

I3D [137] 80.7 98.0

R(2+1)D [33] 78.7 97.3

Table 8.4: Accuracy averaged over all three splits on HMDB-51 and UCF-101 for both state-of-

the-art compressed video based methods and decoded video based methods.

of forwarding multiple CNNs sequentially and concurrently are considered. Detailed results can

be found in Table 8.3 (a). Results of two-stream methods are quoted from [3]. Due to the need
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of decoding compressed video into RGB frames and then computing optical flow, its pre-process

takes much longer time than compressed video based methods. DMC-Net accepts the same inputs

as CoViAR and thus CoViAR and DMC-Net have the same pre-processing time. As for the

CNN forwarding time of compressed video based methods, we measure CoViAR and DMC-

Net using the exactly same implementation as stated in Section 8.4.2 and the same experimental

setup: we use one NVIDIA GeForce GTX 1080 Ti and set the batch size of each CNN to 1 while

in practice the speed can be further improved to utilize larger batch size. Despite adding little

computational overhead on CoViAR, DMC-Net is still significantly faster than the conventional

two-stream methods.

Deepflow [191], Flownet [180] and PWC-Net [182] have been proposed to accelerate optical

flow estimation by using deep networks. TVNet [187] was proposed to generate even better motion

representation than flow with fast speed. Those estimated flow or generated motion representation

can replace optical flow used in two-stream methods to go through a CNN for classification. We

combine these methods with a ResNet-18 classifier in Table 8.3 (b). We can see that our DMC

generator runs much faster than these state-of-the-art motion representation learning methods.

8.4.5 Comparisons with Compressed Video Methods

As shown in the top section of Table 8.4, DMC-Net outperforms all other methods that operate

in the compressed video domain, i.e. CoViAR [3], EMV-CNN [173] and DTMV-CNN [172].

Our method outperforms methods like [173; 172] that the output of the MV classifier is trained
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to approximate the output of the optical flow classifier. We believe this is because of the fact

that approximating the classification output directly is not ideal, as it does not explicitly address

the issues that MV is noisy and low-resolutional. By generating a more discriminative motion

representation DMC, we are able to get features that are highly discriminative for the downstream

recognition task. Furthermore, our DMC-Net can be combined with these classification networks

of high capacity and trained in an end-to-end manner. DMC-Net (I3D) replaces the classifier

from ResNet-18 to I3D, achieving significantly higher accuracy and outperforming a number of

methods that require video decoding. Note that the speed of DMC-Net (I3D) and the speed of

DMC-Net (ResNet-18) are not directly comparable. ResNet-18 is a frame-level classifier: given

an input frame, DMC-Net (ResNet-18) can classify it with the speed at 0.76ms. However, I3D is

a clip-level classifier: during testing, we follow [137] to feed 250 frames concurrently into a I3D

classifier to obtain one action class prediction. The per-frame inference time of DMC-Net (I3D)

is 0.79ms which is slightly slower yet very close to DMC-Net (ResNet-18) (i.e. 0.76ms). But

in order to make one action prediction, DMC-Net (I3D) needs to take 0.79x250=197.5ms while

DMC-Net (ResNet-18) only takes 0.76ms with the need of only one input frame.

8.4.6 Comparisons with Decoded Video Methods

In this section we compare DMC-Net to approaches that require decoding all RGB images from

compressed video. Some only use the RGB images, while others adopt the two-stream method [34]

and further require computing flow.
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RGB only. As shown in Table 8.4, decoded video methods only based on RGB images can be

further divided into three categories. (1) Frame-level classification: 2D CNNs like ResNet-50

and ResNet-152 [12] have been experimented in [196] to classify each frame individually and then

employ simple averaging to obtain the video-level prediction. Due to lacking motion information,

frame-level classification underperforms DMC-Net. (2) Motion representation learning: In Ta-

ble 8.4, we evaluate PWC-Net (ResNet-18) + CoViAR which feeds estimated optical flow into

a ResNet-18 classifier and then fuses the prediction with CoViAR. The accuracy of PWC-Net

(ResNet-18) + CoViAR is not as good as DMC-Net because our generated DMC contains more

discriminative motion cues that are complementary to MV. For TVNet [187], the authors used

BN-Inception [123] to classify the generated motion representation and then fuse the prediction

with a RGB CNN. The accuracy of TVNet is better DMC-Net (ResNet-18) thanks to using a

strong classifier but is worse than our DMC-Net (I3D). (3) Spatio-temporal modeling: There are

also a lot of works using CNN to model the spatio-temporal patterns across multiple RGB frames

to implicitly capture motion patterns. It turns out that our DMC-Net discovers motion cues that

are complementary to such spatio-temporal patterns: I3D RGB + DMC-Net (I3D) improves I3D

RGB via incorporating predictions from our DMC-Net (I3D).

RGB + Flow. As shown in Table 8.4, the state-of-the-art accuracy is belonging to the two-stream

methods [197; 33], which combine predictions made from a RGB CNN and an optical flow CNN.

But as discussed in Section 8.4.4, extracting optical flow is quite time-consuming and thus these

two-stream methods are much slower than our DMC-Net.

155



8.5 Summary

Motion has shown to be useful for action understanding, where motion is typically represented

by optical flow. However, computing flow from video frames is very time-consuming. Recent

works directly leverage the motion vectors and residuals readily available in the compressed video

to represent motion at no cost. While this avoids flow computation, it also hurts accuracy since the

motion vector is noisy and has substantially reduced resolution, which makes it a less discrimina-

tive motion representation.

We hypothesize that a fast deep network exclusively operating in the compressed domain can

learn to generate a more Discriminative Motion Cue (DMC) representation compared to motion

vectors, remedying the aforementioned issues. Thus, we propose a lightweight DMC generator

network, which reduces noises in motion vectors and captures fine motion details. Since optical

flow is a more accurate motion representation, we hypothesize that optical flow and semantic

action labels can be used to supervise the training of DMC generator. To this end, we train the

DMC generator to approximate flow using a reconstruction loss and a adversarial loss, jointly with

the downstream action classification task.

On three action recognition benchmarks (HMDB-51 [165], UCF-101 [198] and a subset of

Kinetics [197]), our full system DMC-Net, consisting of the generator and the classifier, obtains

high accuracy close to that of using optical flow and runs two orders of magnitude faster than using

optical flow at inference time. These results confirm the feasibility of generating Discriminative

Motion Cue representation in the compressed domain without sacrificing speed. Our ablation
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studies confirm the effectiveness of leveraging both optical flow and semantic action labels as

training supervision.

In the future, it would be interesting to further detect scene change in the compressed domain.

If the scene changes, the motion vectors may not be able to capture the true moving trajectory

of each macroblock and thus are not good for semantic action classification. Therefore, the gen-

erated DMC, which aims to refine motion vectors, is likely to fail for capturing discriminative

motion information. Consequently, when the scene changes, it is better to rely on residual errors

and I-frame rather than motion vectors and DMC for action classification. In addition, since the

generated DMC aims at capturing discriminative motion representation rather than reconstructing

perfect optical flow, it would be interesting to investigate how to predict optical flow in the com-

pressed domain, targeting very low flow reconstruction error only without the requirement of high

classification accuracy. This is useful for applications that only need optical flow but do not need

to understand the semantics of actions. One potential solution is to remove the classification loss

in our DMC-Net and feed the RGB image of I-frame into the DMC generator as well to leverage

more input information.
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Part IV

Conclusion
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Chapter 9

Conclusion

9.1 Summary of Contributions

This thesis is dedicated to developing deep learning based methods to understand actions in video.

To this end, we have focused on three main challenges: action detection at fine granularities in

time (Part I), action detection in the constrained scenarios (Part II), and action understanding in the

compressed domain (Part III).

For action detection at fine granularities in time, we have proposed new frameworks for de-

tecting at segment-level and frame-level respectively. For segment-level action detection, we have

hypothesized that we need a multi-stage processes: (1) instead of directly performing classification

based on exhaustive scanning, doing segment proposal before classification will filter out unlikely

segments to be fed into classification, reducing false alarms; (2) instead of the conventional Soft-
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max classification loss, training a localization network with a new loss, which takes into account

the overlap between the predicted segment and ground truth segment, will boost the localization ac-

curacy. Thus, we have introduced an effective multi-stage framework called Segment-CNN, which

are the first to exploit 3D ConvNets with multi-stage processes for temporal action localization in

untrimmed, long videos in the wild. When the overlap threshold used in evaluation is set to 0.5, our

proposed improves mAP on MEXaction2 from 1.7% to 7.4% and mAP on THUMOS 2014 from

15.0% to 19.0%, confirming the effectiveness of our multi-stage framework. The ablation stud-

ies have further validated the need of eliminating unlikely candidate segments by doing segment

proposal first and showed that the localization network is important for improving the localization

accuracy. For frame-level action detection, we have hypothesized that jointly modeling action se-

mantics in space-time and fine-grained temporal dynamics can more accurately predict actions at

frame-level. Therefore, we have proposed a novel Convolutional-De-Convolutional (CDC) filter

to simultaneously perform spatial downsampling (for spatio-temporal semantic abstraction) and

temporal upsampling (for detect at a finer granularity in time), and designed a CDC network to

predict actions at frame-level. Our CDC network improves mAP on THUMOS’14 from 41.3% to

44.4% for the per-frame labeling task, confirming the need of joint modeling in both space and

time. Further, we have hypothesized that the frame-level predictions can be used to detect precise

segment boundary for the temporal action localization task. To this end, we have leveraged such

frame-level predictions to refine temporal boundaries of segment proposals. Our method signifi-

cantly improves the state-of-the-art mAP for the temporal action localization task from 19.0% to
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23.3% on THUMOS’14 and from 16.4% to 23.8% on ActivityNet v1.3, validating the usefulness

of making predictions at frame-level for detecting precise segment boundary.

For action detection in the constrained scenarios, we have respectively investigated the scenar-

ios of incomplete supervision and incomplete input data. For the scenario of incomplete supervi-

sion, we have targeted weakly-supervised action detection and hypothesized that it is important to

specifically address the localization task at the segment level by direct segment boundary predic-

tion. Therefore, we have proposed AutoLoc which is the first weakly-supervised temporal action

localization framework that can directly predict the temporal boundary of each action instance with

only the video-level annotations available during training. To provide training supervision for such

a boundary prediction model, we have hypothesized that a likely action segment would have high

activations within its boundary and low activations in its contextual area. Thus we have designed

a novel OIC loss to automatically discover the segment-level supervision by looking into the con-

trast between activations inside the predicted segment and its outside contextual area. Our method

significantly improves mAP on THUMOS’14 from 13.7% to 21.2% and mAP on ActivityNet v1.2

from 7.4% to 27.3%, confirming our hypothesis regarding the need of direct boundary prediction.

Our ablation studies also have validated our design principles for the proposed OIC loss which

looks into activations inside and outside the predicted action segment. For the scenario of incom-

plete input data, we have proposed a novel task called Online Detection of Action Start (ODAS) in

untrimmed, unconstrained, streaming videos to specifically focus on detecting Action Start timely

and accurately. We have designed three novel methods for training effective ODAS models: (1)

161



generating hard negative samples based on GAN to assist ODAS models in discriminating start

windows from negatives, (2) modeling the temporal consistency between the start window and its

follow-up window to encourage their feature similarity, and finally (3) adaptively sampling start

windows more frequently to address the training sample unbalance issue. Extensive comparisons

on THUMOS’14 and ActivityNet have demonstrated the superiority of our approach over the con-

ventional methods designed for online detection, per-frame labeling, temporal localization, and

shot boundary detection in specifically solving the ODAS problem. The ablation studies have

confirmed the effectiveness and necessity of each proposed training method.

For action understanding in the compressed domain, we have studied two imperative issues

in developing the backbone networks which can benefit all kinds of action understanding tasks.

First, we have studied the effects of video encoding variations for action understanding. We have

experimentally compared several methods for training data preparation and found that the model

trained with video encoded by some certain formats can be robust enough to handle the testing

video encoding variance. Second, we have hypothesized that a fast deep network exclusively oper-

ating in the compressed domain can learn to generate a more discriminative motion representation

compared to motion vectors. In order to supervise the training of such a generator, we have hypoth-

esized that optical flow and semantic action labels can provide the needed supervision. Thus we

have proposed DMC-Net, a novel and highly efficient framework can predict discriminative mo-

tion cues by learning to approximate optical flow and being trained jointly with the action classifier.

During inference, it runs two orders of magnitude faster than estimating flow. We have extensively
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evaluated DMC-Net on 3 action recognition benchmarks and demonstrated that DMC-Net can

significantly shorten the performance gap between state-of-the-art compressed video based meth-

ods with and without optical flow, confirming the feasibility of generating discriminative motion

representation in the compressed domain without sacrificing speed. The ablation studies have con-

firmed the contributions from leveraging both optical flow and semantic action labels as training

supervision.

9.2 Open Issues

Despite the significant contributions made in this thesis, there remain exciting open issues for video

action understanding backed up by deep learning techniques.

9.2.1 Spatio-temporal Action Localization

Beyond action detection at segment-level and frame-level, there have been explorations about

localizing action in both space and time simultaneously. Jain et al. [199] and Soomro et al.

[200] built their work on supervoxel. Recently, researchers treat this as a tracking problem [201;

202] by leveraging object detectors [203], especially human detectors [204; 205; 202; 206] to

detect regions of interest in each frame and then output sequences of bounding boxes. Dense tra-

jectories have also been exploited for extracting the action tubes [207; 208]. Jain et al. [209] added

object encodings to help action localization.
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In the future, it would be interesting to extend our techniques developed in Part I from 1D in

time only to 3D in both space and time. Spatio-temporal localization requires exhaustive anno-

tations for objects of interest on every frame as training data. Thus it would also be interesting

to also extend our weakly-supervised detection framework in Chapter 5 to discover the needed

supervision.

9.2.2 Complex Event Detection

A complex event usually consists of a collection of actions and contains high-level semantics.

Methods developed in this thesis focus on recognizing and detecting actions, which are necessary

stepping stones towards detecting complex events in video. In the future, it is important to model

the interactions and dependencies between different actions contained in one single complex event.

To this end, one promising technical direction is leveraging attention models such as graph con-

volution [210] and self-attention mechanics [211]. Another technical direction could be adopting

state-of-the-art pattern mining techniques to identify actions that appear together frequently.

9.2.3 Joint Video Compression and Understanding

In Part III, we have developed techniques to utilize data modalities in the compressed domain

to directly perform action understanding. Nowadays, prevailing video codecs (e.g. MPEG-4,

HEVC/H.265, AVC/H.264) are hand designed, preventing the joint optimization of the video com-

pression codecs and the downstream action understanding models. There have been a few recent
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attempts to develop deep learning based video compression models [212; 213]. This trend of devel-

oping deep learning based video codecs makes it possible to jointly model video compression and

understanding in an end-to-end fashion: optimizing compression with action understanding can

allow the compression model to allocate less bits for the areas that are not perceptually important;

optimizing action understanding with compression can provide more semantically discriminative

compressed data modalities as input for the downstream action understanding models, improving

the accuracy of action understanding.
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