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ABSTRACT Automatic vision-based inspection systems have played a key role in product quality assess-
ment for decades through the segmentation, detection, and classification of defects. Historically, machine
learning frameworks, based on hand-crafted feature extraction, selection, and validation, counted on a
combined approach of parameterized image processing algorithms and explicated human knowledge. The
outstanding performance of deep learning (DL) for vision systems, in automatically discovering a feature
representation suitable for the corresponding task, has exponentially increased the number of scientific
articles and commercial products aiming at industrial quality assessment. In such a context, this article
reviews more than 220 relevant articles from the related literature published until February 2023, covering
the recent consolidation and advances in the field of fully-automatic DL-based surface defects inspection
systems, deployed in various industrial applications. The analyzed papers have been classified according to a
bi-dimensional taxonomy, that considers both the specific defect recognition task and the employed learning
paradigm. The dependency on large and high-quality labeled datasets and the different neural architectures
employed to achieve an overall perception of both well-visible and subtle defects, through the supervision
of fine or/and coarse data annotations have been assessed. The results of our analysis highlight a growing
research interest in defect representation power enrichment, especially by transferring pre-trained layers to
an optimized network and by explaining the network decisions to suggest trustworthy retention or rejection
of the products being evaluated.

INDEX TERMS Artificial vision, auto-encoder, automatic recognition, feature attention mechanism, con-
volutional neural network, deep learning, explainable artificial intelligence, generative-adversarial network,
industrial surface defects, transfer learning.

I. INTRODUCTION
The automatic recognition of object defects and particularly
defective surfaces from images and videos is surging in the
field of industrial manufacturing, thanks to deep learning
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(DL)-enhanced decision-making [1]. The surface of a defec-
tive product may present anomalies referrable to the com-
position of employed materials [2], the inclusion of foreign
objects debris [3], and disturbance affecting the production
phases, such as machinery and finishing processes [4] and
transportation on conveyor belt [5]. Recently, massive invest-
ments have been devoted to the development of technologies
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FIGURE 1. Evolution of defect recognition approaches in the manufacturing industry.

that are able to automatically identify and localize defects by
computing and further processing a suitable representation of
raw data. Historically, hand-crafted features were extracted
using multiple human-aided techniques and employed into
machine learning (ML)models, by feeding traditional topolo-
gies such as feed-forward artificial neural networks [6].
In particular, combined approaches of image processing
algorithms and human knowledge to process, reduce, and
transform initial data into meaningful concentrated represen-
tations were adopted. However, in recent years, the advent
of deep neural networks, particularly convolutional neural
networks (CNNs) and specialized topologies such as CNN
Auto-Encoders (CNN-AEs) and Generative Adversarial Net-
works (GANs) embedded the feature learning step within
the convolution operator. This allowed these models to effec-
tively learn complex patterns in high-dimensional data, such
as images and videos, automatically. Therefore, DL systems
offer end-to-end solutions that are able to inspect surfaces
without the human intervention, also cutting performance
milestones [7], [8].

Although customized DL architectures are able to pro-
cess images and videos remarkably accurate along the whole
supply chain of any industrial application, there is a spread
of specific algorithms, that tightly depend on defect types
and products. Hence, they need to be fine-tuned for each
particular application, which rely on the availability of mas-
sive and task-aware labeled samples to understand defective
patterns [9]. This approach involves conspicuous human and
economic resources with poor generalization performance
when products, materials, or processes are switched [10].
Furthermore, huge computational expenses are tricky to be
matched to real-time market-oriented systems, thus leading
to un-competitiveness and propagation of defects [11], [12].
As a consequence, both academia and industry are willing
to engage in the development of robust and softly-supervised
vision systems [13].

A. FROM HUMAN-EXPERIENCED TO ARTIFICIAL
TRUSTWORTHY KNOWLEDGE
ML algorithms learn from experience as humans do innately.
The human visual cortex is capable of judging the likeli-
hood of a defect presence by comparing objects with the

distribution of previously seen normal patterns. New types of
defects can be early recognized only if skilled personnel can
infer a lack of functionality related to the unseen or abnor-
mal product appearance. Figure 1 illustrates the evolution of
paradigms employed in the products defect recognition, and
described in the sequel.

1) EXPERIENCED HUMAN INSPECTORS
Originally, employees were involved in the entire decision-
making process of manual recognition of industrial defects,
which requires visual, cognitive, and physical effort. As a
result, three main problems arise in the manual inspection
and annotation process: first, low-contrast and hard-visible
defects may not be detected, thus needing for highly expe-
rienced operators; second, the manual process consists in a
subjective judgment derived from a time-consuming, tedious,
and fatigue-prone task because of its repetitive nature; third,
floating illumination setup, non-linear noise, and interference
may act as bottleneck in the robustness of the pipeline due to
the increasing recognition effort.

2) SYSTEMS WITH HAND-CRAFTED FEATURES
With the introduction of ML, feature handcrafting is finalized
by decisions provided by a learning network, sufficiently
trained on a mid-size dataset and performing the classifi-
cation task or an incomplete defect detection [14]. Manual
feature extraction through traditional image processing con-
sists in thresholding, transforming, or modeling images [15].
However, traditional ML performance are hindered by low
generalization ability of hand-crafted features because they
fit specific operating conditions (e.g., imaging acquisition
scheme) and other changing factors in dynamic and time-
varying large-scale production [16].

3) SYSTEMS WITH FULLY-AUTOMATIC EXTRACTED
FEATURES
DL replaces hybrid systems with end-to-end automatic learn-
ing that relies on the automatic feature extraction from hefty
datasets. Features, which are extracted through convolutional
filters, contain details and semantic image information, and
are trained to be useful for final decision-making. The latter
encloses classification and precise localization of anomalies.
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FIGURE 2. Cycle illustrating the collaborative connection between human
and artificial knowledge.

These systems lighten human intervention that is involved
almost only at the annotation stage.

4) SYSTEMS WITH TRANSFERRED CROSS-DOMAIN
KNOWLEDGE
Manual annotation requirements are further lowered by trans-
ferring features extracted from a large training on image data
of unrelated fields, which usually improves performance and
delivers a multi-domain expertise to the new network. As a
consequence, such an approach has the potential to recognize
new occurring defects, which are infrequent or even absent in
in-house collected datasets or labeled training samples, thus
reducing the false negative rate.

5) TRUSTWORTHY SYSTEMS
The integration of DL with methods that aim to under-
stand network behaviour, during the defects recognition pro-
cess, or while performing post-hoc analysis, (e.g., visualizing
inner states and extracted features in low-dimensional space),
sheds light on the availability of new knowledge that could
potentially strengthen the human experience. Increasing
informativeness of feature layers allows reliable deci-
sions and, consequently, an easier application in real-world
scenarios [17].

The evolution of the above-mentioned approaches can be
translated into a cyclic knowledge analysis and synthesis
where human intervention is progressively lowered, as illus-
trated in Fig. 2. The cycle begins with problem representation
and is developed to match acquired knowledge within robust
models by aggregating and re-using cross-domain evidence.
Finally, artificial models that make reasonable predictions,
increase the valuable expertise thanks to their informative-
ness. The application of DL in real-world critical domains
is often enabled by a trustworthy model output explaining
decisions and actions to human users; interpretability can be
defined as a means of finding reasonable evidence in rules of
automatic feature selection.

B. PAPER POSITIONING IN THE RELATED LITERATURE
In the last decade, several surveys and reviews focusing
on image-based DL for industrial surface defects inspection

have been published. However, the available works are either
confined to a specialized application domain (such as met-
allurgical [18], [19], fabric and electronic [20], [21], [22],
wood [23], and textile manufacturing [24], [25], [26]), or to
a specific type of learning strategy (e.g., unsupervised meth-
ods [27]), or a specific architecture (e.g., Generative Adver-
sarial Networks [28]), or else consider one single technique
(e.g., transfer learning [29]) or requirement (e.g., lowering the
number of labelled data for training [30]).

In addition to the cited works [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], the related liter-
ature counts other reviews not specialised in the inspected
material, employed architecture, or supervision level used
for training. For instance, Czimmermann et al. [31] explore
visible and palpable defects and traditional feature extrac-
tion methods, characterizing supervised and unsupervised
automatic approaches. Zheng et al. [32] provide a com-
prehensive review on three classes of industrial products
(i.e.,, steel, fabric, and semiconductors) surface defects and
respective tailored CNNs. Bhatt et al. [6] provide a taxon-
omy about the defect recognition tasks, inserting explain-
able decision-making methods and knowledge reuse into
the roadmap of future goals. Mohammadi et al. [1] report
well-documented image processing methods and categorize
recent proposed models, with special attention on unsu-
pervised models for anomaly detection. Ren et al. [33]
compare optical illumination setups, image acquisition and
deep defect detection related to Long-Short Memory, Deep-
Belief Network, and Stacked Auto-Encoders. Moreover,
Chen et al. [34] provide a subdivision in supervised, unsu-
pervised, and weakly-supervised for DL solutions. Yang
et al. [35] provide a classification of works in supervised and
unsupervised methods, which in turn are distinguished into
before DL and after DL approaches. The latest review papers
of 2022 include the works of Gao et al. [36] that groups exist-
ing approaches from a feature perspective, including the tra-
ditional feature modeling, and learning through CNN, Auto-
Encoder and Recurrent Neural Networks; Chen et al. [37]
which compares standard DL architectures such as AlexNet,
YOLO, VGG, and ResNet along with public defect datasets,
and Cheng et al. [38] that explores vision-based solutions
aided by personnel’s knowledge for predictivemaintenance in
the manufacturing industry, but not including the most recent
DL-based solutions. Table 1 reports a concise overview with
comprehensive comparisons between our work and the pre-
viously published reviews. All considered works have been
described in terms of: 1) year of publication, 2) learningmeth-
ods used for the DL network training (i.e., fully-, weakly-,
semi-, and un-supervised approach), 3) recognition tasks (i.e.,
classification, detection, and segmentation), 4) fields of spe-
cialization (e.g., regarding to material/application domain,
learning setting, etc.), 5) an indicator specifying if there is
a comprehensive analysis of DL methods (e.g., discussion
about their strengths, weaknesses, and peculiarities), 6) an
indicator specifying if all challenging aspects have been
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recapitulated with respect to the industrial scenarios, 7) num-
ber of papers considered in the review of defect recognition,
and 8) an indicator specifying if the entire workflow of arti-
cles identification, screening, and eligibility check is reported
for the sake of reproducibility.

From this summary table, the novel contributions and
advantages of our work are evident. This review focuses on
DL systems for surface defect detection applicable on a vari-
ety of scenarios through the improvement and engineering
of the main building-blocks, which result in flexible defect
recognition systems. There is not a well-founded and effec-
tive reason to favor specialized solutions because, as proved
by a great number of the reviewed works, the connection
between cross-domains needs and achievements offers rele-
vant insights. All these aspects are useful to guide the selec-
tion of the best practices in industrial vision systems, and are
made clear even to those who do not have much experience.
Therefore, the authors expect this review to provide a broad
picture and sustain it by a substantial number of papers, which
rely on cross-domain knowledge fusion or hybrid supervision
to improve robustness of their frameworks.

Differently from not specialized reviews, this work starts
from the presentation of problems and solutions concerning
surface defects inspection on manufacturing products, and
provides only the necessary theory to the comprehension of
the discussion, which is corroborated by the evidence col-
lected from real case studies. Moreover, as discussed below,
the number of articles dealing with DL-based surface defect
recognition systems using vision has been exponentially
growing every year since 2015, thus motivating an updated
revision that will include all the cutting-edge proposed solu-
tions in the rapidly-changing industrial scenario.

In particular, this review discusses several relevant exper-
iments that tackle key problems in the industry, such as data
imbalance, multi-scale defects recognition, real-time con-
straint, and physical reasoning of network decisions, with
the exclusive employment of DL models for defect recog-
nition. The present work analyzes the recent relevant liter-
ature and deepens with documented discussion the future
directions and developments, that were only mentioned in
previous surveys. The authors are convinced that such an
exhaustive review could be appreciated by practitioners as
well as research community since it provides insights on tasks
and methods emerging from un-compartmentalized literature
analysis.

C. PAPER OBJECTIVE AND STRUCTURE
The goal of this paper is to systematically and com-
prehensively review the significant trend of vision-based
defect recognition among manufacturing industries with DL.
For this purpose, the authors have focused on advanced
systems that get accurate and timely inferences by improv-
ing deep networks architectures through knowledge trans-
ferring, and by distilling and explaining capabilities in the
industrial scenario. An overview of DL-based and fully-
automated defects inspection for manufacturing products

is provided, highlighting innovative solutions regarding the
deep architecture engineering, data generation, feature train-
ing, and visualization. These interesting strategies emerge
from the exploitation of labeled samples to unravel trustwor-
thy decisions about ambiguous or noisy samples as well as
the exploration of vision-based solutions, deployed on the
production line, for the continuous monitoring of products
through edge-cloud collaborative systems [39].

The remainder of this paper is articulated as follows.
Section II describes the research methodology, detailing the
sources and explaining the inclusion and exclusion criteria
used to select relevant articles from the related literature.
In Section III the open issues and challenges addressed by
existing vision-based DL systems are presented. Section IV
proposes a bi-dimensional taxonomy of DL vision-based
approaches used in industry, by grouping the defects recog-
nition tasks alongside the different available levels of super-
vision. Section V develops the main methodological analysis
in accordance with the proposed taxonomy. Section VI puts
forward the findings and outcomes of the conducted analysis,
highlighting the research gaps, trends, and promising devel-
opment directions based on the synthesis of the collected evi-
dence. Some concluding remarks are reported in Section VII.
For interested readers, some useful theoretical background
concepts are summarized in Appendix A.

II. RESEARCH METHODOLOGY
This section describes how the related literature has been
retrieved along with the screening process, in order to allow
readers to assess the relevance of review findings. As a
starting point, the search query to access the most popular
scientific databases has been defined; second, for the sake
of facilitating a transparent, complete, and accurate report-
ing, the selection process has been performed following the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) guidelines [40]. A flow chart summariz-
ing the adopted search and screening process –and showing
the number of papers retained or excluded in each phase– is
given in Fig. 3.

A. SEARCH CRITERIA
In order to provide a comprehensive and updated overview
of the research topic, a large set of related publications were
selected from the most popular scientific databases covering
the years from 2015 to 2022.

First, an initial group of articles was retrieved through an
electronic search on the Scopus® database among the articles
that have been online available and accepted up to February
28, 2023. Since the research question to answer concerns
the DL-based solutions used for industrial defects recogni-
tion through images and videos processing, a set of relevant
keywords and keyphrases have been suitably included in the
search query formulation. In particular, the query has been
iteratively refined to be sensitive and specific to the research
question, concatenating keyphrases with the Boolean opera-
tors ‘AND’, ‘OR’. The precise applied query is: (anomal* OR
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TABLE 1. Overview of existing survey papers and comparison with our work. The legend depicts the learning methods to train the DL network
(i.e.,, = fully-, =weakly-, = semi-, =un-supervised) and the defect recognition tasks (C= classification, D=detection, S=segmentation) which
have been encompassed.
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FIGURE 3. Flow diagram of the search and screening process adopted in
the literature review: identification and selection rules following the
Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines [40] were used.

defect*) AND (‘‘deep learning’’ OR ‘‘convolutional neural
network*’’ ORCNNOR ‘‘deep n*’’) AND (imag* OR vision
OR visual OR vide*) AND (indust*). The initial query of
1,431 papers has been further constrained to journal articles
only limited to the Computer Science, Engineering, Physics
and Astronomy, and Mathematics research fields.

Moreover, all the studies missed by the electronic query
but referenced in the lists of eligible studies, have been added
by hand searching. Some articles facing the theory behind
artificial learning and models, have been retrieved from Web
of Science® database, for a total of additional 124 potentially
relevant articles collected through other methods.

As indicated in Fig. 3, after duplicate removal the total
number of selected articles at the end of the identification
phase is 1015 (i.e., 895 and 120 from Scopus® and other
methods, respectively).

B. ARTICLE SCREENING AND SEARCH OUTCOMES
As a next step, the selected potentially relevant papers were
submitted to a first screening process based on title and
abstract. Defects recognition has applications in several dif-
ferent domains, such as finance, healthcare, antennas, cyber
security and surveillance that were excluded accordingly;
hence, in this stage, for caution, all papers whose relevance
was unclear from the abstract were maintained in the list of
elected papers. Conversely, all papers developing recognition
algorithms for anomalies in other application than industrial
manufacturing (e.g., finance, healthcare, surveillance, smart
network security) were rejected.

Subsequently, the full text of all eligible papers has been
analyzed and assessed in accordance with the relevance cri-
terion. In particular, a considerable amount of papers passed

FIGURE 4. Number of surveyed articles and reviews as a result of the
PRISMA selection process.

to the eligibility examination phase. By reading full-text,
173 papers were rejected, for the following reasons: defect
recognition systems are not based on image/video data pro-
cessing (e.g., mechanical destructive test); the application
domains concern civil infrastructures (e.g., rail, road, sewer,
tunnel, and bridge); the focus is on examining defects of the
inner structure of the material, or on the parameter tuning
provided by experts intervention; the study explains clearly
neither the architecture nor the evaluation strategy. Further-
more, 278 articles have been rejected for being not relevant
to the research question.

As a result of the final step, 211 fully compliant articles
were included for the scope of this work, while 24 review
papers were retrieved and considered for the paper position-
ing in Section I. The distribution of included articles and
reviews over the years can be seen in Fig. 4.

III. OPEN ISSUES AND CHALLENGES
This section summarizes the major challenges encountered
by the recent defect recognition systems in industrial con-
strained scenarios. Focusing on handling each challenge sep-
arately may conflict with the remaining ones, since they are
often concurrently present. Therefore, researchers are contin-
ually encouraged to find suitable trade-off solutions. These
will be clearly delineated in Section VI.

A. MULTI-SCALE AND DIFFERENTLY TARGETABLE
DEFECTS
One or more categories of defects can occur on foreground
objects, as well as on a framed portion of extended textures,
or else can interest an object framed on a patterned back-
ground, as illustrated in Fig. 5, thus leading to an increas-
ing recognition effort. A stable and reliable DL inspection
system leverages on the self-adaptation ability of learnable
layers to represent patterns within the data through fea-
ture extraction and selection [41]. The activations of CNN
layers, for example, are a hierarchical translation of image
characteristics into a stacked sequence of information from
low-level to high or semantic level [42]. Low-level features
are more easily traceable to morphological image processing
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FIGURE 5. Illustration of four types of labeling documented in the
literature and sorted from left to right with increasing detail annotation
effort for three objects from the MVTec AD dataset [53]. The vertical axis,
from top to bottom, denotes an increasing difficulty in defect recognition:
defect occurs on a foreground object placed on a homogeneous
background (screw), a patterned surface (carpet), and a foreground
object placed on a defect-free and patterned background (zipper).

algorithms through gradient calculation (that are responsive
to adjacent pixel values changing rapidly), such as edge and
shape detection [43]. Since these features are highly sensitive
to noise and background information, they should include
further abstract characterization, in order to allow accurate
description and lower reconstruction error, but it is at the
expense of more training data and inference time, due to the
exponential growth of convolution and non-linear operations
in deeper architectures [44].

The information carried by feature maps measures the
response to the convolutional kernel and involves spatial
position. The appealing hypothesis is that the information
irrelevant to defect inspection is down-weighted and finally
lost while sparse defective regions are preserved during the
resolution reduction. This goal is hard to achieve if the
large majority of pixels belongs to non-defective background.
These highly redundant portions of the feature matrix occupy
the visual receptive field inefficiently, which leads to overlap-
ping latent space representations between classes.

B. IMBALANCED AND SMALL DATASET
In the industrial scenario, it is difficult to acquire large and
balanced training data since, thanks to the overall quality
of processes, anomalies rarely occur (1–5% of the amount
of data [45]), even in the tune-up phases of the production
lines [46]. The distribution of samples might be not only
extremely skewed between classes, but also compounded by
an overall small number of samples; such an uneven dataset
hampers a stable network training unless either images related

to a similar domain or pre-trained weights are available [47].
Moreover, a precise detection is hindered by a small training
dataset since this latter might exclude some defect types that
have not occurred yet on the inspected production process.
As a first result, the lack of diversity in the training dataset,
(e.g., not having complete features pertaining the defective
patterns) leads supervised DL inspection systems to learn
with biases towards the most represented class, hence with
unreliable predictions and high miss-rate of rare defects.
Second, overfitting occurs due to the high dimensionality
of features, able to perfectly model the training data of the
minority class by capturing irrelevant or noisy information,
with a poor generalization performance on unseen samples.
In fact, the number of features far exceeds the amount of
extractable patterns in the few available defective samples.

The relevance of tackling data imbalance will be intro-
duced in Section V, providing also some innovative
approaches. To restore balance and cope with small datasets,
both data augmentation from the existing samples and gen-
eration of new defective samples through a dedicated net-
work (e.g., with generative networks like GAN [48]) are
prolific, since they increase the size and quality of the dataset
by counterbalancing the distribution and by enriching the
features of the training images [49]. Besides, there exist
learning methods (e.g., one-class approach) that leverage
exclusively or prevalently non-defective (i.e., abundant) sam-
ples to construct a negative (i.e., without defects) template
distribution [50], which is useful to recognize outlier samples
through contrastive learning [45]. Other algorithm-based
solutions group the approaches where the objective function
is optimized to give importance to the defective samples by
emphasizing the errors on the minority class [48]. In the last
years, one research-related branch is focused on the few-shot
detection challenge, in which only a bunch of defective sam-
ples can be collected [51], labeled and used [52] to develop
efficient DL systems.

C. ANNOTATION EFFORT REQUIREMENTS AND NOISY
LABELS
Existing inspection systems are primarily based on the super-
vised learning method, which over-depends on the quality of
labeled data. The annotation process requires skilled staff to
register defective samples; in addition, further information
may be added, starting from image-level and from region-
level to pixel-based pairing with defect classes, resulting in a
valuable information ready for supervision but at the cost of
a quite expensive procedure. An additional cognitive effort
during both annotation and network training is registered
when a defective pattern has to be distinguished from the
texture in the surrounding, besides when a defect occurs
either on a foreground object surrounded by homogeneous
background or on a textured surface or a foreground object
within a defect-free and patterned background.

Image category labels, bounding box labels, fine-grain
pixel-wise labels, and its more coarse version based on
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scribbles, are the four classical types of labels available.
Scribbles are image connected or not connected points
belonging to the defective area. A thorough class mask is
derived by growing the defective region having pixel similar
to scribble points as a proof of knowledge during train-
ing [54]. In Fig. 5 three classes of images from the MVTec
AD public dataset are used to illustrate both concepts (i.e.,
annotation and recognition efforts) in horizontal and vertical
axes respectively [53].

Deep learning models have been showing to propagate
or amplify the ambiguities introduced during the annotation
phase [55]. The labeling annotation process has to face uncer-
tainties attributed to multiple annotators besides those due
to the vague boundaries of weak-contrast defects, which are
hard to be accurately demarcated even for experienced work-
ers. This could lead to incomplete demarcation of defects
and inaccurate post-segmentation measurements. Moreover,
some suspicious patterns can be marked as anomalous in a
portion of the occurrences while as normal in the remaining
ones, a problem commonly referred to as label noise. Such
inconsistent annotations introduce a confounding pattern in
the learning process due to biases in the ground truth [56].
Having a clean dataset is very complicated and recent works
show that DL training is prone to overfit on corrupted labels
since these latters excite more convolutional layers for the
same class, thus resulting in a memorization effect [57], [58].

D. UNCLEARNESS OF BLACK-BOX NETWORK DECISION
The optimization of a network involves, during training, the
automatic process of feature extraction from images with
the aim to minimize errors in network decision; however,
this process is a sort of agnostic learning to the extent that
it is unaware of the physical rules underlying faults in the
defective class. Unfortunately, this process has intrinsic limi-
tations in being transparent about how outcomes are achieved
and impedes the application of powerful algorithms in fields
where trusted systems are required.

A clear understanding of the rationale behind an algo-
rithm predictions, as well as guarantees of robustness and
performance, are essential steps for applications in such
safety-critical areas. Heatmaps for CNNs activations are con-
sidered as a possible solution for the assessment of network
reliability. Tao et. al through inner states visualization prove
that a network can correctly predict the defective label for
a sample although the focus area covers regions of the image
that do not contain the defect, thus resulting in uninterpretable
decision [27]. Geometrical mapping of feature in hyperspace
and distance calculation, or Residual Explanation (SHAPE,
LIME) together with visual explanation of feature relevance
or embeddings (e.g., t-SNE) are tools to evaluate trustable
behaviors [59].

E. REAL-TIME DECISION-MAKING
Continuous and effectivemonitoring of the finishing products
through vision inspection systems that work on-premise is

considered an asset of the production process. A figure of
merit of these inline defect recognition systems consists in
limiting their influence on manufacturing pace. For instance,
since these systems could embed high-demanding image pro-
cessing on high-resolution data streams to identify defects
accurately, they might require a longer response time than
it would be allowed by the real deployment environment.
This leads to a real-time compliance challenge along with
the need to adapt to any disturbance that may occur during
production. Therefore, achieving synchronization with the
inspection systems requires high responsiveness and tight
latency constraints, while assuring an elevated standard of
accuracy. Moreover, the choice of the imaging modality can
either speed up the acquisition phase, lightweight the process-
ing, and be immune to industrial interference. An extrinsic
factor exacerbating training imbalance is the utilization of a
continuous stream of data coming from the production chain.
Moreover, this latter is considered to disregard real-time
constraints since the time elapsed for the acquisition and
storage [60]. In fact, with the vast amount of data being gen-
erated in real time, besides the acquisition, even storing and
managing such data can be a significant challenge; sophisti-
cated data management systems are then required to ensure
the accuracy, timeliness, and accessibility of these data [61].
Another concern is the availability of adequate number and
class-balanced images within a short delayed time and their
management to dynamically improve the network class rep-
resentation during a new phase of training.

To tackle some of these issues, field engineers are increas-
ingly adopting lightweight systems that provide high perfor-
mance while maintaining a low inference time, by adopting,
for instance, model compression and modular assembly of
DL blocks [62]. In addition, cloud and edge collaborative
systems are also being used to cope with the computational
resources needed for more complex systems.

IV. TAXONOMY
A believable pathway among the requirements and the con-
straints of defect recognition systems in industry involves
understanding ‘‘what’’ and ‘‘how’’ to inspect defects and
eventually measuring the corresponding extent. A defect can
be measured through object localization by using a bound-
ing box or by providing a precise pixel-wise mask. After
analyzing the fully compliant papers and relevant reviews,
while considering the previous key questions and previously
discussed open issues and challenges, the authors propose
a taxonomy based on two high-level criteria that allows
an effective methodological framework to analyze paper
contents: the former is the objective task, which includes
segmentation, detection, and classification; the latter is
the learning method or supervision level used to train
the DL-based processing chain, which encloses fully-
supervised, weakly-supervised, semi-supervised, and un-
supervised approaches. As illustrated in Fig. 6, different pairs
related to the available ground truth annotations are possible.
Two objective tasks have been rarely performed in cascade.
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FIGURE 6. The top of the figure illustrates the available ground truth
annotations, while the center displays the usable ground truth
annotations specific to each objective task, which are color-coded in
accordance with the corresponding level of supervision. The color legend
of the various learning methods is placed at the bottom of the figure.

Ground truth annotations are usually apt to the objective
task, owning the same level of detail with respect to the
expected output from the network. For instance, the defect
classification determines ‘‘if’’ a defect is present, and ‘‘what’’
kind of defect, both in a binary or multi-categorical manner;
for a classification task, the same level of information is given
by image-level tag encoding for ground truth. A lower level of
detail matches, for example, when a defect localization task
in the image is accomplished with image-level annotation:
expected output from the network has a greater fine-grained
result (localization of defect in the image) with respect to
ground truth (overall image tag).

Remarkably, the final outputs can be achieved by training
a network with a coarser information. The finer knowledge
is extracted by leveraging on the network confidence level
and inner attention on features useful for the final prediction.
For instance, starting from a model performing classification,
through saliency maps highlighting the salient (i.e., impor-
tant) areas, eXplainable Artificial Intelligence (XAI)methods
develop defective area segmentation having provided a single
global label per image obtaining a local result, with a drasti-
cally reduced time and effort for data acquisition. Therefore,
the coupling of the objective task (e.g., classification, local-
ization or their combination) with image labels for network
training has not a unique pairing, and results in ‘‘how’’ to
supervise the DL system.
Defects classification consists in finding out ‘‘if’’ and/or

‘‘what kind’’ of defect is present, which means to perform
either a binary or multi-class classification. It assigns a label
(e.g., ‘‘crack’’ [63]) to the whole image or to patches in which
the image is divided. Defects localization finds ‘‘where’’ is
the defect and provides a classification score and/or defect-
specific label to variable sized regions or to pixels of an
image, reported as consistent with defects presence. Since
Defects Localization is addressed by a huge amount of dif-
ferent works in the literature, the authors chose to group
them more deeply, with a division in two branches called
Defect segmentation andDefect detection, respectively. Then,

according to the desired output, the authors have identified
these three main objective tasks into which all recognized
papers fall. In particular:

• Defect classification evaluates whether a defective pat-
tern is present and associates to the image a prototype of
concept (defect) retrieved.

• Defect segmentation represents the defect extension
giving it precise boundaries.

• Defect detection delimits a rectangular region bounding
the defect and classifies it.

Defect segmentation and defect detection assign to rec-
ognized defects a spatial reference and cover its extension
in the image; hence, both these tasks allow to qualify the
defects, and, for example, to extract morphological signature
(width, length, aspect ratio, area, etc.) that can be related to
the functional or production process dysregulation.

The objective task and the annotations available draw a
correspondence that defines the learning method. The four
main labeling techniques that a DL network uses to train
defect representation for its recognition are depicted, along
the horizontal axis, in Fig. 5. Alongside these four types, there
exists one type of labeling that matches exactly the objective
task, providing a reference to compare network output. At the
same time, one or more types of annotations provide a lower
level of detail with respect to the objective task requirements.
This increases defect recognition effort and makes the net-
work output not comparable with the available ground truth.
The former is named ‘‘full’’ supervision, whilst the latters
are ‘‘softly’’ supervised methods. These correspondences are
referenced as:

• fully-supervised refers to a method in which the ground
truth is at the same level of detail as the output (e.g.,
defect segmentation and pixel-wise labels attached to
input images);

• weakly-supervised refers to a method in which the
labels are simpler than in the previous case due to a lower
level of detail with respect to the desired output (e.g.,
defect detection and class label for the whole image as
input);

• semi-supervised provides bimodal supervision sam-
ples, which present different levels of detail (e.g., both
unlabelled and labelled samples or a couple of different
labels within four types mentioned in Par. III-C). The
output has the same level of detail of the most detailed
portion. This method enhances generalization capabil-
ities and minimizes, at the same time, the annotation
effort [64]. The unlabelled portion is useful if it carries
information useful for label prediction that is not con-
tained in the labelled data [64]. To this group belongs
the so-called active learning, in which a partially trained
supervised model makes inference on the unlabelled
portion of data samples, which are further joined to
labelled dataset portion with a confidence score; this
process is known as pseudo-labeling.

• un-supervised methods provide no labels associated
to samples and the defect recognition task generates a
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FIGURE 7. Distribution of collected papers per learning method and
objective task.

detailed output by only considering intrinsic properties
of data samples (e.g., defect classification by supply-
ing input with no image-level labels). To this category
belongs those training settings in which neither defective
nor non-defective classes have labels, and the One-class
learning approach. The latter provides for training only
defect-free class samples; therefore, it deals with the
accurate representation of the normal data distribution.
Defects are recognized by contrast. In such a context,
the self-supervised approach learns how to reconstruct
the erased regions of the input defect-free class image
through feature regression. When a defective image is to
be tested, it undergoes inpainting and feature prediction
by the network; its abnormal regions are repaired and
thus a reconstruction error map overlaying the defects is
got by the difference with the original image [3].
In the manufacturing production, an anomalous sample
has a low probability of occurrence with respect to
the defect-free class that covers the majority of sam-
ples, thus representing the baseline behaviour. Anomaly
Detection consists in learning regularities inside data
in order to recognize outliers as inconsistent with the
baseline template. However, the performance of models
trained only on defect-free samples is undermined by the
intra-class variation in the negative class and is depen-
dent on the distance metric used to evaluate similarity
with test samples.

Summing up, all the collected papers fall into a spe-
cific learning method within the pursued objective task.
An overview of the distribution of papers in these two
dimensions is shown in Fig. 7. Weakly supervision does not
have any correspondence for the classification task because
image-level label (which means fully-supervision in the case
of classification) has not a lesser informative annotation oth-
erwise than un-supervised learning.

V. SURFACE DEFECT RECOGNITION
This section analyzes the objective tasks oriented to defect
recognition with a dedicated subsection devoted to each

category. Further, within each task, the evidence from papers
is presented in the light of the employed learning methods
for network training. Each subsection reports a definition
of the aim of the task and of the common functional parts
(named ‘‘building-blocks’’) that can be identified in its ref-
erence architecture; moreover, in the ‘‘conceptualization’’
subsection the most impactful aspects for a well-posed task
definition are put forward.

A. DEFECT CLASSIFICATION
Defect classification aims at recognizing a defective pattern,
by judging the ‘‘defective’’ versus ‘‘non defective’’ classes,
and/or at identifying defect types occurring in the image. The
correct classification of defects allows to analyze production
process conditions, feeding back with information about the
defect (e.g., name, type of defect) [65]. Tables 2-3-4 provide
a summarised view of the surveyed articles dealing with the
classification task, divided per learning method. To this pur-
pose, for each work, the following information are reported:
the application field or material, network topology, name of
the dataset (when publicly available, otherwise ‘‘custom’’
stands for a in-house collected dataset), data description
(regarding the imaging modality and the number of available
samples used for the training phase), the performance in the
test samples, the acceptation year, and the reference. As for
the performance, in particular, the followingmetrics are used:
the percent accuracy, the error rate, the True Positive Rate
(TPR), and the Area Under the Curve (AUC).

1) BUILDING BLOCKS
DL architectures for classification are composed of three
main modules: 1) a backbone as feature extractor made up
of convolutional layers with different widths, depths, scales
and cardinality [66], [67] (e.g., Alexnet [68], GoogleNet [69],
Visual Geometry Group Network (VGG) [70], ResNet [71],
and DenseNet [72]; 2) an optional neck performs parameters
selection and aggregation; finally the 3) head activates fea-
tures towards decision.

SomeML algorithms (such as K-Nearest Neighbors, Deci-
sion Trees, Support Vector Machines, and other shallow clas-
sifiers) can constitute the classifier head as an alternative
of fully-connected networks [9]. They take deep features
extracted by CNN backbone as input and are trained to opti-
mize a decision boundary to distinguish among classes.

2) CONCEPTUALIZATION
The classification task with deep feature extraction enhances
the ensuing decision phase: deep convolutional layers
describe image content through detail and semantic informa-
tion. Preserving details during downsampling operations is
fundamental when the defect is a specific occurring entity that
can be recognized as disruption of a subtle or visible edge
pattern. High-level information, on the other hand, catches
contextual information and difformities in the result of the
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semantic production process (e.g., screw fastening quality
process [73]) known as functional anomalies [27].
Many industrial defects are likely to occur with differ-

ent sizes within the same class and the encoding of these
information in a pooled number of features is challeng-
ing. Apostolopoulos and Tzani [74] propose parallel feature
extraction to overcome sequential downsampling loss. Then,
they connect early with late feature maps, obtaining an extra
feature processing path. Liu et al. [75] arrange two concurrent
CNNs with different input image sizes but same functional
blocks working in parallel to extract multi-scale features to
enhance defects recognition, using a lightweight backbone.
They compared performance of such architecture with that of
other state-of-the classifiers and claimed their contribution to
have a better performance evenwhen only 20% of the training
set is used.

Multilevel feature fusion is a potential aid to overcome
salient information loss and improve multi-scale defects clas-
sification [76], [77], [78] but, on the other hand, it adds
coarseness during higher feature maps oversampling (e.g.,
with bilinear interpolation) for the final summation or mul-
tiplication. Li et. al [66] proposed a boundary refinement
block that restores boundaries after feature fusion by means
of a residual structure [79]. Object boundaries, edges and
other details are high frequency components of the image;
usually defects, like ‘‘scratch’’, are recognizable among these
categories. Yang et al. [80] adopted a Frequency-shifted con-
volutional layer to tackle high frequency information loss at
the expense of semantic information prevalence in deeper
layers. Other mathematical operations are being explored,
such as Atrous (or Deformable) Convolution which helps
combine sparse encoded information, by connecting feature
related to non-adjacent image regions [81].

Adding convolutional layers may enrich feature represen-
tation ability, thus increasing network expressiveness, but it
is feasible only when a balanced dataset allows to lengthen
training without the overfitting side effect, which is rather
an ideal condition. As a consequence, knowledge transfer,
through pre-trained feature layers import, gives the advantage
in the learning convergence, both in terms of prediction accu-
racy and learning speed. Kim et. al [82] express this advan-
tage proving that transfer-learned network can be compressed
up to 1/128 number of convolutional layers with only 0.48%
drop in accuracy.

Learning an optimized feature space from high-
dimensional data as images or video is challenging. The
decision-making process for classification manages stacked
information to design a decision boundary, distinguishing
normal from abnormal samples or classifying the latter
into defective classes. To make the final decision reliable,
there are visualization tools that catches a single mid-layer
class-activation, as well as a sequence of activation maps
at different depths, which act as snapshots to monitor the
network focusing on regions with patterns considered impor-
tant. A more intelligible model could allow defective pattern
interpretation in terms of its physical meaning.

3) FULLY-SUPERVISED CLASSIFICATION
Fully-supervised classification learns with image-level anno-
tations from input images in order to extract meaningful
patterns that can be used to predict class label of unseen
or test samples, supported by pairwise class category label
provided during training. Currently available in literature
are both binary (‘‘defective’’ vs ‘‘non-defective’’ or ‘‘defect
class A’’ vs ‘‘defect class B’’) or multi-categorical (‘‘defect
class A’’ vs ‘‘defect class B’’ vs. . . ‘‘defect class N’’ where
N is the number of defect classes) classification. A simple
variant in multi-class classification is to categorize N-1 of
N as defect classes together with the ‘‘Good’’ or defect-free
class [63], [83], [84]. Moreover, binary and multi-class clas-
sification can be combined in consecutive steps: for exam-
ple Niu et al. [85] designed first a binary classification
step in which non-defective products are distinguished from
anomalies, and further classifies defective samples in separate
types. In addition, the classification task can be deployed
on sub-images or patches, when the overall classification
depends on all the inferences made individually on each
patch. Kamal et al. [86] used the Canny edge detector to detect
and crop in eight boxes a gear image which is classified as
defective or non-defective if at least one CNN box predic-
tion is claimed as defective. Wang et al. [58] exploited the
connection between the channels activation surging trend and
the overfitting that occurs in presence of noisy labels to adjust
weights of the Cross-Entropy and Mean-Absolute-Error loss
function.

a: OVERCOMING IMBALANCED DATA
Having a balanced dataset between defective and non-
defective class and/or among classes of defects is one of
the major concerns to avoid bias during training. Mittel and
Kerber [87] used oversampling of minority class to deal
with imbalanced datasets. Defective images were upsam-
pled by synthetic scaling, rotating or shifting, while the
majority classes were downsampled to adjust to the number
of the minority class samples. Different sized dataset are
employed for training using different oversampling rates.
Xu et al. [88] employ Label Dilation to extend the num-
ber of defective samples, conducting their sample number
equal to the number of samples of the largest class before
expansion. Sliding window approach consists in the extrac-
tion, especially from large images (such as X-Ray), of sub-
images or patches [88], [89]. This gives three advantages,
the first of which is to allows re-equilibrating class number
representation: Mery [90] divided images whose ground truth
was ‘‘defect-free’’ in numerous patches and added synthetic
defects modeled with an ellipsoidal model, obtaining half
of the dataset belonging to the positive class and the other
half to the negative class. Secondly, patch-level classification
delineates regions of higher likelihood for defects. Finally,
CNN input images with lower dimension reduce the network
computational load as well as the number of tunable param-
eters and memory occupation.
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To counteract the problem of data imbalance, defect sam-
ple images augmentation as well as generation of new images
with Generative Adversarial Network (GAN) are recently
being performed. Data augmentation improves the general-
ization ability of the network when the number and diversity
of available images is inadequate. A large and diversi-
fied dataset with resampled and combined representations
helps the recognition network to learn new features, with
an increased robustness on never-seen-before defects. Three
major methods tackling hard sample mining at image-level
are recurrent: 1) image-level linear transformation: it consists
of an augmentation on the training set by scaling, rotating,
translating, flipping, cropping or zooming, height and width
shifting [51], [83], [87], [91], [92], [93]. Martinez et al. [73]
augment their dataset of functional anomalies of screw fasten-
ing process through horizontal flipping and random rotation.
Wang et al. [94] generate synthetic defect datasets using ero-
sion, dilation, rotation or cropping on extracted defects from
defective image and fuse them on defect-free images. 2) intro-
ducing stochastic variations or modifying lighting condi-
tions: it consists of adding Gaussian noise, random brightness
changing, enhancing contrast [74], [91], [95], [96], [97], [98],
[99], using circular or elliptical templates [90]. 3) generative
models: they include Conditional-Convolutional Variational
AE [65], [100] and Deep Convolutional GAN [80].

The introduction of augmented dataset for training is effec-
tive if new features are introduced, which yield the network
improvement in defect inspection. Dai et al. [101] employed
geometric transformations and noise distortion + GAN to
augment imbalanced datasets. Xu et al. [88] proposed a
semi-supervised data augmentation using CNN. The same
authors deployed a semi-supervised method to generate new
defective images by improving random cropping on the orig-
inal image: this latter operation was guided by the intensi-
ties feature map generated from pre-trained GoogleLeNet.
Hence, the regions of interest are accurately selected, ensur-
ing the presence of the defect even when it is proximal to
the image border. A surface-Defect GAN is proposed to
expand original highly uneven training datasets with the gen-
eration of defective images; Niu et al. [85] improved defect
recognition by training a robust and supervised model with
an expanded image dataset, thus increasing the diversity of
data. Deep-Convolutional GAN is a variant introduced by
Gao et al. [102] combined with traditional data enhancement
(e.g., horizontal and vertical flipping, random rotation and
scaling, image brightness enhancement) reinforcing origi-
nal dataset to improve generalization ability. In Conditional-
Convolutional Variational AE a latent vector is obtained by
sampling the latent space and associating a one-hot encoded
class information before decoding each defect class in the
final image [65]. Prior knowledge of experts can guide
image augmentation with realistic visual defects appearance;
methods such as Copy-Pasting GAN [103] and addition of
defects (e.g., random circle, blurring) are used; however,
due to their complexity some defects cannot be efficiently
managed.

b: TRANSFER LEARNING
Prior and effective knowledge can be infused via transfer
learning. Sekhar et al. [84] verified that pre-trained mod-
els on ImageNet achieved better performance than using
models trained from scratch, both in binary and multi-class
classification settings. Pre-trained backbone was used as
layer 0 while the following fully connected layers were
trained. An improved fine tuning option is released by
Hridoy et al. [104] that freeze all pre-trained weights except
for the last 14 convolutional layers and the fully connected
layers. Aslam et al. [15] compare three learning fine tuning
strategies: on first k layers, or bottom k layers and standard
fine tuning of the network. Althubiti et al. [105] provide
accurate classification of products based on pre-trained CNN
with VGG16 as backbone. Perri et al. [106] used SqueezeNet
V1.1 for its low complexity for a four class classification
using transfer learning and fine tuning customized on weld
defects.

c: HYPERPARAMETER TUNING
Ma et al. [107] proposed Flower Pollination Algorithm to
optimize learning rate by effectively searching the space
where global optima exist. This improves training efficiency
and training time. The learning rate hyper-parameter repre-
sents the speed with which gradient loss, calculated on the
batch size (portion multiple of 2 evaluated in one iteration of
network training), is used to update network weights. During
performance evaluation, classification comparing different
batch sizes and learning rate is made [16], [83].

d: ENSEMBLE LEARNING STRATEGY
Few studies were found using ensemble learning strategy:
Zhang et al. [108] combine two independent CNNs inspired
by notable results in the ILSVRC201 challenge, in which
the first 12 winner positions used integration of models.
The two learners get the same input image and contained
some differences in the architecture; finally, outputs were
averaged to get the final decision. Aslam et al. [15] dispose
an ensemble of recent CNN architectures combining couples
among DenseNet-201, ResNet50, Xception and EfficientNet-
b3. Su et al. [109] proposed an ensemble classifier made by
AlexNet andGoogLeNet [69], where the classification output
of each one was considered only if a reasonable higher confi-
dence score was predicted for test image, otherwise the sam-
ple was evaluated from an experienced human. Xu et al. [88]
train an ensemblemodel using four state-of-art models named
SqueezeNet v1.1 [110], Inception v3 [111], VGG-16, and
ResNet18. Le et al. [112] augmented severely rare defective
images with Wasserstein GAN (WGAN), trained ensemble
and transfer-learned neural networks to make final averaged
prediction of faults on decorative sheets and welding joints.

e: PERFORMING EVALUATION ON IMBALANCED DATASETS
The performance evaluation states the confidentiality with
which a classifier recognizes defects: in fully-supervised
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approach the predicted label on test image is compared with
the actual label (ground truth). Among few standard met-
rics, accuracy quantifies the proportion of correctly classified
images on the overall evaluated images. It is a fair evalu-
ator only if a balanced dataset is given for each category:
otherwise, accuracy-based metrics would be biased towards
the majority class and, in this case, unconditionally high
due to many network predictions on the overfitted class. For
instance, Singh et al. used accuracy after having re-balanced
the dataset. Buongiorno et al. [113] set a high misclassifica-
tion penalty in the loss function to improve the learning ability
for the minority class, thus achieving improved classification
effect in deep regression and classification networks on heav-
ily imbalanced datasets. They measure the F1-score on the
positive class through five running inferences on stratified
k-folds [114], [115]. Reconstruction-based methods require
setting a threshold to binarize residual score (often linearized
in the range of [0, 1]) and distinguish abnormal from normal
samples; the Area Under the Curve of the Receiver Operating
Characteristics is used to evaluate how much the classifier
is robust to threshold setting and allows to choose the most
suitable threshold in precision and recall trade-off.

Some studies compare the performance of their proposed
solution when repeating training phase on different number
of images. This allows to quantify the reduction in network
detection ability when the number of samples is lowered [65],
[75], [87], [116], [117]; having a little effect allows to reduce
the time and cost of collecting and labeling data, which is a
key factor in the industry resources management.

f: VISUALIZING NETWORK REASONING
The visualization of intermediate CNN activations helps
understand learning representations. In correspondence of a
convolutional layer depth and for each class being evalu-
ated, a Class-Activation Map (CAM) is obtained weighting
and summing feature maps of the level. As the depth of
the considered layers increases, activations become increas-
ingly abstract and less visually referable to defects [118].
Lee et al. [119] visualize activations of the last con-
volutional layer, comparing different significance levels
assigned by the considered network to visual receptive field
regions to distinguish each class; CAMs visualization prior
to classification are visualized in Konovalenko et al. [120]
and Yang et al. [118], where attention features highlight
those regions that allow classifying an image as defec-
tive for the presence of one or more occurrences of
defects. Xia et al. [121] localize network attention for deci-
sion through Guided GradCAM visual analysis. From the
comparison of CAMwith Guided-GradCAM, it emerges that
CAM catches semantic information while the latter captures
helpful details for defect localization, such as edges and
texture identification. Li et al. [66] and Shih et al. [122]
used Grad-CAM++ providing better visual explanations and
defects location ability than using Grad-CAM and, there-
fore, improved faithfulness in CNN model prediction. The

core perspective of Hu et al. [10] consists in developing
an object-level attention to judge semantic information per-
taining casting products (‘‘defective’’ or ‘‘non defective’’)
without additional network structure to be trained; authors
proposed a visualization technique named Bi-CAM which
is designed for bilinear architectures. Heatmaps are obtained
weighting feature maps with eigenvalues that preserve most
of the information of the channel.

4) SEMI-SUPERVISED CLASSIFICATION
Semi-supervised classification utilizes a bunch of labelled
(image-level) samples with the majority of data without
labels. Some approaches start with a fully supervised training
on the limited portion of labelled data, then this provisional
knowledge is used for the estimation of categories confidence
for the vast portion of unlabelled samples.

a: ACTIVE LEARNING
A common retrieved approach is active learning, which
improves efficiency in the usage of available ground truth,
since it assigns to unlabelled samples the same category
of similar labelled sample that it is trained on. After the
initialization of training in a fully-supervised manner on
the available annotated data, a query strategy on unlabelled
samples grades them with different levels of uncertainty and
ask human to label only samples that will considerably speed
up further training, while data-driven labelling is left to pre-
dict on the most confident samples. These pseudo-labeled
samples are further joined to training set and will be used
in the next full training phase, until a stop criterion is
satisfied [123]. Liu et al. [124] design a multi-scale fea-
ture extraction CNN, apt to different sizes of defects, and
implemented two independent classifiers to mutually correct
pseudo labeling that may be wrong, thus improving accuracy
and preventing to degenerate learning in an erroneous niche.
Pseudo-labels are assigned combined with threshold selec-
tion on the confidence score.

b: DEALING WITH BOTH LABELLED AND UNLABELLED DATA
To keep the scope trackable even in the presence of few anno-
tated images, the network introduced by Liu and Ye [125] is
trained contextually both on labelled and unlabelled samples
to avoid risk of overfitting. Pseudo-labels of unlabeled sam-
ples behave as optimization variables, and are accordingly
introduced in the loss function and updated during training,
while labelled samples remains fixed. This is an example
of Transductive Learning where the focus is the continuous
improvement of the network performance on already seen
but unlabelled images; moreover, this semi-supervised model
further minimizes human annotation effort. Di et al. [126]
train with massive unlabelled data a Convolutional AE and
use the encoder network as feature extractor to fed a soft-
max activation layer to predict among N+1 classes; N is
the number of defect classes and the additional one is the
binary classification of image as real or fake. Xu et al. [88]
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compared feature extraction ability of VGG16 trained on a
fully-supervised method with a multi-scale CNN trained only
on 25% of labelled samples.

5) UN-SUPERVISED CLASSIFICATION
Un-supervised classification works without labels and is
robust against class imbalance. In addition to the one-class
approach, one stream of studies provides training datasets
that contain defective samples but are not marked; the
implicit assumption is that the majority of samples belongs
to defect-free class and their distribution can be accurately
modeled, while the defective images are less in number and
varied [143]. The objective is to effectively represent nor-
mal samples as clustered, in order to claim that abnormal
patterns are inconsistent with the cluster properties. Two
main approaches are found to detect defective samples, which
are the Latent Space discrimination and the Reconstruction-
based methods.

a: LATENT SPACE DISCRIMINATION APPROACHES
In the first approach, the so-called Support Vector Data
Description is an encoding operation that performs feature
extraction in the latent space, which is the correspond-
ing low-dimensional representation of the image. Park and
Ko [137] trained a Convolutional-AE with only 2% of
anomaly images. Latent vectors extracted by the encoding
path are mapped into an hypersphere. The hypersphere center
reflects the average pattern; since during training the negative
class ismore frequently seen than the defective class, it is used
as reference for the normal distribution, which on its part is
employed for the inference stage. The likelihood of anomalies
is evaluated according to the distance from to the center: sam-
ples outside the hypersphere decision surface are considered
as defects. They adopt a pre-trained feature extractor and
simultaneously endorse convolutional layers with residual
addition being more robust to intra-class variation. Zhang
et al. [143] during the testing phase measure the Euclidean
distance between samples using their respective latent vectors
and discriminate defective samples according to the centroid
of obervations in the latent space. The minimization of the
hypersphere volume leads to a lower false negative error rate.
The one-class classification reduces the training dataset to
containing only defect-free samples. An abnormal pattern
in a test image can be highlighted by a distance measure
(e.g., Wasserstein distance with GAN [100], [144]) between
the latent vector and the normal prototype vector and this
information is involved in the discriminator decision [138].
Lai et al. [142] train a GAN to obtain from noise a faithful
latent space for detecting whether a test image is defective,
by using Fréchet distance between two multivariate normal
distributions in the latent space. On the basis of training on
normal images, an abnormal sample is out of the reconstruc-
tion reaching with the same accuracy of defect-free images
and is reflected in the anomaly score. Jiang et. al [131] nor-
malized the anomaly score in the range [0, 1] and compared

this with a threshold, thus obtaining a binary decision for
the classification of the whole image or patch for industrial
defective products. Song et al. [136] train a one-class GAN
where the generator is an autoencoder, made up by a back-
bone (ResNet50) and U-Net (Res-UNet-GAN); the aim of
the generator is to maximize the reconstruction quality of
the non-defective class during training. A test image under-
goes encoding by means of learned normal distribution in
the low-dimensional space by the discriminator: if the sam-
ple image is defective, a reconstruction error above certain
threshold is an indicator of anomaly score. A pooled loss
function results as the weighted sum of: 1) Adversarial Loss,
also known as min-max optimization, minimizing generative
loss andmaximizing discriminative power; 2) Structural Sim-
ilarity, which is defined on three factors that are brightness,
contrast, and structure is kept high by the Adversarial Loss
and 3) low Feature Loss defined as the norm of the vector
obtained from the difference of latent vectors of input and
reconstructed image.

b: RECONSTRUCTION-BASED APPROACHES
The Reconstruction-based approach considers a decoder path
following the encoder network or a GAN, whose aim is to
recover image space to tightly reproduce the input defect-free
image; a considerable reconstruction error is gained, above a
defined threshold, if the input image contains a defect because
this cannot be reproduced due to the abnormal pattern. Gen-
erative methods based on Auto-Encoders consider only the
final reconstructed image; this architectures are composed
by encoder, decoder and sampling space. Input images are
encoded as a parameterized distribution through the encoder
path. Tang et al. [116] proposed a dual-auto-encoder-GAN in
which both the generator and discriminator are AEs. The gen-
erator contains skip connections and, taken the input image,
has a high reconstruction ability and generates the fake image.
The discriminator can identify the difference between input
image and fake image. The reconstruction error is lower for
a normal sample, since during training only normal samples
are provided. Li et al. [140] propose a denoising AE with
constrained latent space to represent normal data. Themethod
is built on a convolutional-GAN that helps establish a deci-
sion boundary robust to anomaly data infiltration since it has
purpose of optimizing the normal image space by recovering
from latent space. Yang et al. [80] introduced a reconstruc-
tion error based on residuals to quantify a pooled abnormal
image pattern score, which, once compared with a threshold,
generated a binary class label. Niu et al. [45] adopted a mem-
ory block to preserve historic information and to learn the
group characteristics of the defect-free samples. A discrimi-
nator based on Fréchet Markov distance compares the input
and reconstructed image by using a statistically-determined
threshold for non-defective samples which are outliers
to the gaussian normal samples distribution. In addition,
the workflow can coarsely determine the location area of
defect.
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TABLE 2. Summary of the surveyed articles dealing with the classification task.
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TABLE 3. (Continued.) Summary of the surveyed articles dealing with the classification task.
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TABLE 4. (Continued.) Summary of the surveyed articles dealing with the classification task.
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c: DATA GENERATION
Expanding non defective image datasets for unsupervised
learning has the aim to train robustly against intra-class
variability. The inclusion of more samples is beneficial
to enhance accuracy in the representation. For example,
Ishida et al. [139] proposed to integrate data augmentation
and mixing, a random based approach that combines weight-
ing coefficient with three chains of linear image transfor-
mations of the original image finally fused with the input
image. Hao et al. used a Wasserstein GAN as image data
augmentation. Unlike supervised networks, in which the loss
function accounts for difformities between input and ground
truth, unsupervised loss considers the reconstruction error
between reconstructed and original image or between their
latent vectors.

B. DEFECT SEGMENTATION
Defect segmentation gives a fine estimation of defect local-
ization and extension providing a pixel-wise mask.Moreover,
the semantic segmentation of defects classifies foreground
pixels into different classes of defects without delimiting the
different instances of objects, while the instance segmentation
differentiates between all instances of each class, assigning a
unique boundary to each one.

Defect segmentation is addressed converting the pixel-
intensity correspondence in the input image into pixel-
likelihood for defect in the output image. In addition, Neven
et al. [145] proposed a network that outputs a probability map
which estimates the severity of defects only valid for fore-
ground pixels. Image analysis on the precise mask of defect
as post-processing step leads to a detailed evaluation of the
defect appearance (area [146], shape, texture and contextual
feature) and could guide a multi-grades classification [25].
Tables 5-6-7-8 provide a summarised view of the articles
dealing with the segmentation task, divided per learning
method. The performance metrics used are: the Intersection
over Union (IoU) and the mean-IoU (mIoU), obtained by
the average per-class overlap between pixels, the Average
Precision (AP), the F1 score, and the Dice coefficient.

1) BUILDING BLOCKS
Most defect segmentation architectures typically have three
key components: 1) an encoder with a convolutional back-
bone for feature extraction, 2) an optional neck for feature
enhancement and selection (e.g., edge refinement), and 3) a
decoder that uses up-convolutional layers to reconstruct fea-
tures and produce a defect mask of the same size as the input
image. The encoder is also responsible for feature extraction,
a role it shares with the backbone in classification tasks.

2) CONCEPTUALIZATION
Some defect recognition applications demand an accurate
localization of the defect and its boundaries, separating it
from the normal portion of the object or background [147],
as illustrated in Fig. 5.

A challenging segmentation task consists in the pixel-wise
localization of thin, small, and low-contrast defects because
their features are faded by the overwhelming background
pixels. In such cases, it is difficult to extract a defect from
background at a glance. Ho et al. [148] proposed a segmen-
tation task based on ResNet50 performing feature extraction
and concatenation to combine the multilevel features, fol-
lowed by binary classification of image patches a little bigger
than a pixel; in so doing, the system detects and locates
defective pixels precisely, even if surrounded by a complex
background. Chen et al. [149] proposed amulti-scale adaptive
thresholding to support their GAN, highlighting potential
defective pixels in the weighted difference image. More in
detail, they adopt a smaller threshold to focus the inspection
more on small defects in a large-scale sample and vice versa.

Boundaries restoration and refinement is usually added as
final stage of the segmentation task, a process that can be
found in all the learning methods. Dong et al. [147] intro-
duced a boundaries refinement block inside their PGA-Net,
thus visualizing the refined output as a residual map activated
by a ReLu function. Based on the footsteps of the latter
work, Yu et al. [52] proposed a novel implementation within
a few-shot segmentation framework, that avoids information
loss during forward propagation, and activates the query fea-
ture, where pixels share higher similarity with the support fea-
tures. Lu et al. [44] used a residual structure-based boundary
refinement module to help the network strengthen the details
of the defect boundaries; they also performed an ablation
study that revealed the usefulness of this module in return for
a negligible longer time it takes for segmenting one image.
Chen et al. [50] normalize the image reconstruction error map
dividing by the variance estimated through a multi-layer per-
ceptron before obtaining the segmentation map; this refines
the results through a scale factor normalization.

3) FULLY-SUPERVISED SEGMENTATION
In fully-supervised segmentation, training is accomplished by
providing pixel-level ground truth annotations. Segmentation
networks achieved great performance on identifying large
and clear defects. Most often explored methods make use of
classic convolutional architectures or GANs.

a: CLASSIC CONVOLUTIONAL ARCHITECTURES
Cheng et al. [150] proposed a modified version of U-Net,
where several improvements were made, such as downsam-
pling layers substitution with convolution ones and IoU loss
adoption. Tabernik et al. [151] implemented a pixel-wise
localization of defective surfaces through a CNN backbone
optimized with pixel-wise loss, and used the extracted fea-
tures for a binary classification of the image. Experiments
are performed on KolecktorSDD dataset using only approx-
imately 25–30 defective training samples. Lu et al. [152]
segment the defective pixels in lace textures through rebuild-
ing and classification from videos acquired on the industrial
line. Djavadifar et al. [153] evaluated four different CNNs
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(i.e., U-Net, IC-Net, DeepLab v3+ and Mask R-CNN) to
perform instance segmentation, which is the distinct segmen-
tation of all available objects of each class in the image, on a
custom sheets-based dataset of 206 images. To accomplish
the task, the CNNsweights were pre-trained on ImageNet and
augmentation was adopted. Ouyang et al. [154] used a mod-
ified CNN that includes a dynamic activation layer, namely
Pairwise Potential Activation Layer, that produces a defect
probability map. Dong et al. [155] proposed a multi-stage
architecture that involves U-Net for feature extraction, a Sup-
port Vector Machine to classify the type of defect present
in the image and a Random Forest network for pixel-wise
segmentation. Damacharla et al. [156] performed a compar-
ison between two backbones incapsulated in U-Net, which
are ResNet and DenseNet. They also compared the same
backbones pre-trained on ImageNet and when using just the
50% of the available data. Results showed that pre-trained
networks outperformed random initialized backbones in all
the cases. Moreover, we could also identify a mixed CNN-
AE-based multi-stage approach proposed by Tao et al. [157].
First, the input image is transformed into a prediction mask
using their Cascaded AE, then a threshold module is used
to binarize the result and obtain a detailed defect contour.
After that, defect regions are extracted and classified into
specific classes using a region detector and compact CNN
in the classification module. It is worth mentioning the work
by Luo et al. [158] since they propose a multi-learning and
multi-task system that includes a memory attention feature
enhancement module and a saliency detection module. This
latter filters out background interference by using a human
attention mechanism to measure the importance of image
content, thus resulting in a heatmap that can be used to
create a mask for identifying defects. The system can be
trained not only with image-level annotations, thus providing
a weak supervision level, but also with pixel-wise labels or a
combination of both.

b: GAN APPROACHES
Regarding GAN approaches, Yang et al. [46] proposed a
multi-stage framework to increase the generalization abil-
ity of the defect inspection model. Unlike all classic GAN
approaches, this work tries to generate the defect regions
and the background textures separately via mask-to-defect
construction network (M2DCNet), and fake-to-real domain
transformationGAN (F2RDT-GAN), respectively. In particu-
lar, M2DCNet is used as a first anomaly renderer, because the
output is passed to F2RDT-GAN that transforms the primitive
background in a detailed one. The generated image is then
fine-tuned to an inspection model, in this case U-Net++.
Niu et al. [159] proposed a GAN for defect generation: a
defect mask input module and a defect direction vector mod-
ule have been designed to increase the diversity of the gener-
ated defect sets by controlling the defect region and strength.
They also included a defect attention loss to improve the
image quality.

c: DEALING WITH TINY AND LOW-CONTRAST DEFECTS
Despite the great success obtained from the aforementioned
approaches, the recognition of tiny and low-contrast defects
is still challenging [160]. Different solutions have recently
been explored to address this problem: multi-scale feature
fusion, feature attention mechanisms, and a combination of
both strategies. Niu et al. [161] overcome randomness in data
generation by proposing a data augmentation addressed for
downstream segmentation task. The CNN is forced to focus
more attention to low-confidence areas for defects, which are
usually inherent to tiny and stretched defect parts, once the
higher-confidence regions have been occluded. This method
reasons on the probability map of inner activations, with the
aim to thoroughly segment defects and does not need to train
any additional module.

The fusion of multi-scale features helps the network in
the final decision by using both raw and semantic informa-
tion to enhance localization accuracy [3]. Even in this task,
fusing features to solve the tiny and low-contrast detection
problem is one of the most commonly explored solutions.
Cao et al. [162] adopted aggregation of adjacent feature layers
at all depths of the encoder based on ResNet50; this enforces
all feature maps to contain both detailed and contextual
information, in order to recover defect details and improve
their segmentation. Yang et al. [163] proposed an efficient
Fully-Convolutional AE-based (FCAE) framework called
Multi-Scale-FCAE. In particular, they used different FCAE
simultaneously working on the input image but at different
scales. In fact, before starting, the FCAE step is preceded
by a single encoding module followed by a Feature Cluster-
ing Module. Finally, the results are fused together obtaining
the segmented defect. Lin et al. [160] presented EMRA-Net
where three types of feature get extracted: local pyramid edge
features (extracted with the help of a Laplace edge detection
operator), global MSF (multi-scale fusion) features and the
global convolution features. The redundancy of these features
is minimized through the enhancement of different informa-
tion. Dong et al. [76] developed a novel method based on
multilevel deep features fusion and non-convex total variation
regularized PCA (NTV-RPCA). The aim is to learn robust
feature representation and to cope with the noise contamina-
tion. RPCA model is used to separate the deep feature matrix
into the redundant matrix representing background and the
sparse matrix representing defects.

The idea behind a feature attention mechanism is learn-
ing to focus on the image patterns which are relevant for
the efficient recognition and, at the same time, to ignore the
other irrelevant patterns. This concept changed the way a DL
algorithm is seen, opening to the explanation of the inner
black-box learning. Furthermore, the attention module can
be used either to enhance the prediction capabilities in con-
texts where defects are not very clear and to attenuate irrel-
evant background information. The most famous DL models
with an built-in self-attention mechanism are transformers.
Uzen et al. [164] proposed a novel Swin transformer-based
multi-scales integration network that obtained relevant results
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although background similarity with low-contrast defects,
and variability in defect size.

Within this learning method, the use of both feature fusion
and feature attention mechanism is gaining relevance.
Dong et al. [147] used a five resolution fusion strategy that
manages to improve the efficiency of pixel-wise localiza-
tion thanks to the upsampling and down-scaling of feature
layers through a novel Global Context Attention Module.
Tao et al. [43] proposed a Dual Attention Feature block
to fuse and re-weight hierarchical features, recovering spa-
tial information with rich context data. Yang et al. [165]
proposed a bidirectional Convolutional Long-Short Mem-
ory attention module and multi-scale feature fusion through
skip connections among encoder and decoder of UNet-based
backbone for the improvement of microdefects segmentation.
Hao et al. [166] implemented a novel version of ResNet,
that already contains the Split-Attention block, including the
Feature Pyramid Network that is a top-down feature fusion
method. Liu et al. [167] developed a two-stage approach in
which an attention-based fusion module fuses multiple scale
features and attention information during the segmentation
stage. They also included an adaptive schemewhere learnable
parameters are gradually optimized to strike dynamic bal-
ances between feature extraction and attention mechanism.
Lu et al. [44] presented MRD-Net, which consists of a pre-
trained MobilNetv2 backbone, a novel Reverse Attention
module and a multi-scale feature enhancement fusion mod-
ule. It has shown good performance on objects and tex-
tured surfaces as well. In such a context, another interesting
work comes from Zhang et al. [168] since they proposed a
learning-based soft template matching network that uses an
innovative feature attention mechanism, by employing fea-
ture pyramid fusion. The aim of the network is first to find the
image template and then output the differences between origi-
nal image and reconstructed one. To detect defects in complex
backgrounds, a multi-template ensemble testing module is
used to further increase the accuracy. Li et al. [169] proposed
a segmentation and decision multi-scale residual attention
network in which the output of the U-shaped subnet and the
final feature maps are used as the input of the decision subnet.
This method allows precision and universality, especially in
the detection of small defects by reusing shallow features.
Meanwhile, Niu et al. [56] managed to train a segmenta-
tion network when a boundary suspicious region is present
between defective and non-defective area thus in presence
of noisy labels. They used a Bayesian Normalized U-Net to
provide the area of a defect and to demarcate a margin region
between an upper and lower boundary through a discrimina-
tion confidence weighted from multiple predictions.

d: EXPLAINABILITY
Within fully-supervised methods, authors could identify only
two works that used XAI to give an idea of what the network
is really doing. Ren et al. [42] operated heatmaps as part of
segmentation process. In addition, they showed pixel-wise

likelihood, proving that the network effectively focused on
the defect regions. Otsu adaptive thresholding was applied as
a binarization strategy. Wan et al. [170] performed the defect
segmentation task with the support of anomaly scoring maps,
which are obtained by computing the Mahalanobis distance
between the features. Post-hoc they visualized the reasons
behind the decision through activation maps.

4) WEAKLY-SUPERVISED SEGMENTATION
In weakly-supervised segmentation, the ground truth belongs
to the image-level, bounding box or scribble category. The
remainder of this paragraph groups articles according to each
category of annotation provided. These methods bridge the
gap between lighter supervision and pixel-level predictions,
by seeking for local defective areas. Therefore, research is
mainly focused on the learning process: for instance, several
studies have attempted to improve existing loss functions or
substitute them with some new proposition.

a: IMAGE-LEVEL SUPERVISION
Even in this learning method, CNN approaches reach signifi-
cant performance. An interesting work has been done by Wu
et al. [171] that improved the learning process by imitating the
human eye defects recognition through the CNN and CAM.
They developed an Autofocus sub-windowing, which exam-
ines progressively narrower regions in the image that differs
from other normal regions in the feature distribution, meaning
a higher defective potential. The loss is composed by a sum
of multiple sub-loss terms: the global loss and the focused
region loss. Xu et al. [172] proposed a novel cross-entropy
based objective function that is per-pixel optimized when
all pixels in the input image containing defects are correctly
subdivided into defective and non-defective. Chen et al. [173]
presented a multi-stage framework that classifies images and
then segments defective areas. The CNN-based classification
module was redesigned by substituting the fully connected
layer with a more robust Random Forest classifier. For both
the classification and segmentation modules, a spatial atten-
tion mechanism was used to reduce background interference
and sharpen features tensor. The generated heatmap was
thresholded by the Otsu method in the segmentation module.

According to recent studies, using GAN is becoming popu-
lar when discussing image-level annotations. Niu et al. [174]
designed a defects cycle-consistency loss to properly restore
defect-free patterns in the image, by adding structural simi-
larity to the original L1 loss function, to account for struc-
tural and texture of weak defects. Subsequently, the precise
defective region is segmented by thresholding defect saliency
map. In a previous work, the same authors proposed the
cycle-consistency loss, introduced by Zhu et al. [175], in the
industrial surface defects field by using aGAN-based siamese
network for training. With this kind of loss, a prototype of
image (e.g., non-defective) can be obtained with translation
from a different image content (e.g., with defects) giving
some guidelines. Chen et al. [149] developed a multi-scale
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GAN with transformer to reconstruct non-defective patches
at different scales, comparing them with input patches to
find pixel-level differences. In particular, the loss function of
the generator involves three different loss terms: multi-scale
feature loss, content loss and adversarial loss.

b: BOUNDING-BOX SUPERVISION
In recent years, defects bounding regions have been poorly
adopted as labels for segmentation. Only Weimer et al. [41]
in 2016 investigated the influence of the width and depth
of the feature extractor, a typical CNN, stating that boosted
performance could be obtained by deepening the architecture,
but at the cost of longer inference time. Their approach
is weakly-supervised because defects were coarsely-labeled
with an ellipse.

c: SCRIBBLE SUPERVISION
When facing scribble annotations, trainingmasks are derived,
propagating category information from labelled pixels to
unlabelled pixels during network training. Yao et al. [54]
proposed a semantic segmentation approach that combines
scribbles with super-pixels annotation to obtain training
masks, named as pseudo-masks because of the labelling mis-
takes they can contain. Authors used a novel loss function,
by aggregating several terms to counteract the simplicity
of the annotation. In particular, the loss function includes
different terms built on partial cross-entropy losses, one of
which is the Centroid Loss.

d: EXPLAINABILITY
In the work proposed by Ye et al. [176] a deep comparison
of the most popular XAI algorithms (Attention, CAM and
Grad-CAM++) has been presented. More than explaining
locally how a system ponders decisions, their use consists
in enhancing localization performance, saving computations
and time. Wu et al. [171] trained a CAM-based algorithm
for segmentation task and improved the algorithm using a
siamese network. They demonstrated that the original CAM
algorithm could not produce a consistent class localization on
any scale-transformed input images. Replacing Global Aver-
age pooling with LogSumExp pooling for CAM calculation,
this new system surpasses other weakly-supervised state-of-
art systems.

5) SEMI-SUPERVISED SEGMENTATION
Semi-supervised segmentation must be capable of using two
different types of labels in a single framework. In the seg-
mentation task overview, available semi-supervised studies
are roughly 11% of the total.

a: PIXEL-WISE ANNOTATIONS AND NO LABELS
Typically, the training set contains a portion of images
with pixel-wise annotations and another one with no labels.
Shao et al. [177] used a student-teacher network that was
trained with both fully- and un-supervised data. When a

labeled image is sent to the student network, a segmen-
tation result is produced by the help of a supervised loss
function. Instead, when an unlabeled sample is provided,
the consistency loss function ensures that the prediction
result of the teacher network is similar to the prediction
label of the student network. Zheng et al. [178] proposed a
semi-supervised approach that requires a small quantity of
labeled data based on MixMatch augmentation. It adheres to
the consistency regularization principle, ensuring the class
of unlabeled data remains unchanged after augmentation.
They also introduced a novel residual neural network that
uses a combination of supervised and un-supervised loss
functions. While the supervised loss function uses common
cross entropy, the un-supervised one uses a combination of
the mean square error and Kullback-Leibler divergence. Lin
et al. [179] presented a novel CNN based on CAM and U-
Net. Their dataset was composed by 98.4% of defect-free
images and the remaining 1.6% of defective pairs (sample +

mask). TheU-Net backbonemade byVGG16was pre-trained
on ImageNet. The overall network structure consists of a
single-path encoder and a multi-path decoder containing
three sub-networks from which the outputs are aggregated to
obtain the final segmentation mask. The CAM module uses
the global average pooling to generate discriminative maps
that were injected into the sub-networks, together with the
other extracted features. The three decoders try to optimize
different losses: an Intersection Over Union-based loss, the
Binary Cross Entropy loss, and a Structural Similarity Index-
based loss.

b: PIXEL-WISE ANNOTATIONS AND SOFT LABELS
The latest works started exploring different combinations of
labels, i.e., pixel-wise labels and image-level labels [180],
[181], as well as pixel-wise annotations and bounding
boxes [145]. Bozic et al. [180] presented an end-to-end archi-
tecture composed of two sub-networks that employs a single
parameter λ, to handle both weakly- and fully-supervised
labeled samples, since the combined loss is the sum of two
weighted cross-entropy functions. Hu et al. [181] designed
a siamese network trained by fully- and weakly-supervised
images simultaneously. The aim of this network is to produce
pseudo-labels for weakly annotated samples by using an
auxiliary cross-field and cross-attention network that maps
features from the classification field to the segmentation field.
Finally, a fully supervised segmentation model was trained.

6) UN-SUPERVISED SEGMENTATION
Un-supervised segmentation is, by definition, trained without
the guidance of labels. In the classic approach both defective
and non-defective images can be used while in the one-
class approach only defect-free images are adopted. When
discussing un-supervisedmethods in semantic segmentation,
a relevant distinction between texture-oriented and object-
oriented methods should be made, as they present varying
levels of difficulty, as shown on the vertical axis in Fig. 5.
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TABLE 5. Summary of the surveyed articles dealing with the segmentation task.
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TABLE 6. (Continued.) Summary of the surveyed articles dealing with the segmentation task. Bounding boxes are abbreviated with: bb.
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TABLE 7. (Continued.) Summary of the surveyed articles dealing with the segmentation task.
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TABLE 8. (Continued.) Summary of the surveyed articles dealing with the segmentation task.

Texture-oriented refers to methods trying to highlight defects
within a pattern. Instead, object-oriented methods are used to
segment the defective area from an entire object or a portion
of it.

a: TEXTURE-ORIENTED METHODS
Texture-oriented methods can be divided into fake data
generation-based and reconstruction-basedmethods. The for-
mer requires only normal images that are used as a baseline
to obtain defective samples using a custom fake defect gen-
erator. Subsequently, a CNN is trained on pseudo-defective
samples and used for testing real defective images [207]. The
reconstruction-based methods can use either an AE [208],
[212] or a GAN [79], [210], which is supposed to repair
the input image, along with a further stage to segment the
defect region by subtracting the reconstructed image from
the input sample. An instance of this has been carried out
by Yao et al. [208], who built a reconstruction framework
based on the one-class strategy. It exploited the ability of an
AE to build a realistic image without anomalies. A residual
map is then employed to detect the defective parts, accord-
ing to the pixel-wise probability for the normal texture and
defective parts. Hu et al. [210] utilized a GAN in a one-
class approach to perform a patch-based defects prediction
with super-pixel segmentation by adopting a discriminator
trained on defect-free samples and an inverter (encoder) to
reconstruct patches in the normal image space. After that,
patches are assembled and defects are segmented, due to
merging of residual map with probability map. An innovative

solution has been presented by Yao et al. [200] that used the
one-vs-all strategy based on Contrastive Learning. A mem-
ory bank, containing typical normal texture mode, is used
to substitute for anomalous features and obtain anomaly
scores.

b: OBJECT-ORIENTED METHODS
Object-oriented methods have been extensively explored
and several solutions have been proposed to determine
the defective region of an object. In addition to various
reconstruction-based solutions [3], [211], [213], which use
the one-class principle [78], [214], different alternatives
can be found. For instance, Yao et al. [205] developed a
student-teacher network with ResNet18 as backbone. The
student network was trained from scratch while the teacher
was pre-trained on ImageNet. Several anomaly maps were
obtained at different feature map resolutions; hence, after
up-sampling with a Gaussian receptive field, the lowest reso-
lution maps were fused to obtain the overall anomaly map.
An interesting study based on ResNet was proposed by
Li et al. [204], who proposed a framework that manages to
segment images using only defect-free samples for training,
making use of the one-class approach. It is unique to the
extent that, once a feature is extracted, it is organized in
a bi-dimensional space through a self-organizing map used
for anomaly score computation. In addition, Yoa et al. [206]
developed a ResNet-based framework trained using only
pairs of unlabeled images. They applied dynamic local
augmentation to create pseudo-defective images from normal

43394 VOLUME 11, 2023



M. Prunella et al.: DL for Automatic Vision-Based Recognition of Industrial Surface Defects: A Survey

ones to compute the loss function. Yang et al. [198] focus
on the intra-class variance to artificially augment the dataset.
They perform both textural and structural defect simulation
onto the object surface. A memory module that retains nor-
mal images information from just few samples along with
different spatial attention maps assists the network in the
segmentation process.

Reconstruction methods rely on a class-specific threshold
to evaluate anomaly score between the original and recon-
structed image, which may not always be feasible. Therefore,
Venkataramanan et al. [209] trained and tested Convolutional
Adversarial Variational AE with Guided Attention (CAVGA)
with two learning methods; in the unsupervised setting,
defect-free images are used to stimulate the attention module,
then concentrating on normal parts of the image. When few
image-level labelled defective samples are provided, a semi-
supervised setting encourages the network to expand nor-
mal attention and suppress abnormal attention on normal
images. In the anomalous test images, anomalous attention
and normal attention appear complementary. They scored
CAVGA-generated attention maps both on object and tex-
tured images (e.g., on MVTec AD dataset [53]) with ground
truth, and achieved superior results in terms of AUC and
Intersection over Union, outperforming different state-of-the-
art methods.

c: SELF-SUPERVISED NETWORKS
A segmentation network using the self-supervised approach
is developed by Jing et al. [3], which used multi-scale deep
pre-trained features to recover the multi-resolution randomly
erased regions of the input image. The cosine value between
the input and predicted feature maps results in the anomaly
map for defects. The work of Jiang et al. [202] comprised
an anomaly generation module to generate rich anomalies
in the input defect-free image, which is divided into sev-
eral patches that are randomly masked. An inpainting sub-
network based on the Swin Transformer, which uses global
context information, restores the hidden areas with anomaly-
free patterns, while the discriminant U-Net sub-network
is employed for anomaly segmentation by the difference
between the input and the inpainted image. Nardin et al. [201]
adopted the ViT-based architecture named Masked Trans-
former, which by being able to learn relationships between
different patches of the input images, can predict the con-
tent of the masked patches from the surrounding data with
the aid of an attention module. They also showed that per-
formance were positively affected by splitting the image
into patches of heterogeneous shapes capturing different
scales.

d: EXPLOITING ACTIVATION ANOMALY MAPS
Explainability inside un-supervisedmethods is quite adopted,
mainly based on anomaly maps [50], [199], [200], [204],
[205], to perform the final segmentation through a threshold
mechanism [3], [192], [208], [210], [212].

C. DEFECT DETECTION
Defect detection delimits a rectangular region tight-fitting
each defect, providing its position in the image. As a step
further, classification of the boxes and/or definition of defect
boundary through segmentation can be undertaken [215]. The
goal is to label defects with bounding boxes; this includes
a variable amount of background pixels, thus representing a
crude localization of defects to coarsely measure the defects
extension. Nonetheless, this task is reliable for counting the
number of defects occurring in the image. The amount of
defects can help to determine whether or not the product
repairing would be sufficient to restore the original require-
ments and fulfill consumer’s expectations. For example,
Block et al. [216] proposed a defect detection and tracking
system to reliably detect defects and use a majority voting
mechanism to classify them as mild, if original quality could
be achieved after reworking, or severe, if restoring quality is
unreachable. Counting defects can be achieved also through
instance semantic segmentation, which allows an optional
morphological evaluation thanks to precise mask provided.
Tables 9-10-11 provide a summarised view of the surveyed
articles dealing with the detection task, divided per learning
method. As for the performance, the mean-AP (mAP) and
sensitivity (Recall) are considered in addition to the accuracy,
AP, AUC, and F1 score, which were already used in the other
tasks.

1) BUILDING BLOCKS
In detector architecture three main blocks can be generally
identified: 1) a backbone, which is a CNN for feature extrac-
tion, 2) an optional neck to sample feature map promoting
some candidate regions for defects presence, and finally a
decision 3) head, usually made up by two sub-networks
of convolutional and dense connected layers aimed to two
sub-tasks, which are bounding region regression and region
classification.

Currently, two main paradigms exists: two-stage detectors
(e.g., Regional-CNN (R-CNN) [217] introduced in 2014 and
its derivatives) include a neck network to select regions with a
confidence for defects. These sub-image portions are used as
input for a further deep feature extraction and classification;
additional layers can be inserted to detect the same defect
occurring with different sizes, aspect ratios and shapes [18].

R-CNN generates region proposal by selective search
and features are extracted from each region and input to
Support Vector Classifiers. The Fast-RCNN introduced in
2015 extracts feature from a series of proposal regions and
a pooling operation is applied to reduce these features to a
fixed dimension vector for final classification and regression
of box vertices. The Faster-RCNN in 2016 added a CNN,
named Region Proposal Network (RPN), in the training path,
which dynamically optimizes bounding box localization and
dimension, addressing the mismatch between defect size and
receptive field of detection head [218]. In fact, the presence
of the RPN in a Faster R-CNN first generates k anchor boxes
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for each point on the feature map, then selects boxes with
possible defects, and finally regresses vertices leading to
proposals each with a confidence score [219].
One-stage detectors (e.g., Single Stage Multibox Detector

(SSD) [220], You Only Look Once (YOLO) [221], Reti-
naNet [222]) are detectors in which box regression is applied
directly over a dense sampling of possible locations, posi-
tions, scales, and sizes of candidate regions: this results in
a lightweight architecture with less inference time than other
approaches but at the expense of less accuracy. SSD performs
worse because anchor sizes are free to cover a large amount
of background, that leads to bias and confuse network.

2) CONCEPTUALIZATION
A common problem to face in defect detection consists in the
different sizes they can have in conjunction with different
backgrounds, thus resulting in different levels of detection
difficulty, as depicted along the vertical axis in Fig. 5.

CNN-based detectors are capable of effectively detecting
defects on complex backgrounds and are being improved to
suppress background interference for tiny, blurred, and low
contrast defects recognition [223]. Moreover, such CNNs as
ResNet family backbones can be equipped with feature pyra-
mid module and deformable convolution. The former ensures
an efficient representation ability of low and high-level infor-
mation, thus merging higher resolution of shallower layers
with stronger semantic information of deeper layers; the latter
augments spatial sampling locations with better extraction of
multi-shapes defects [224].

In some cases, fabric images have rich texture informa-
tion and low semantic value, hence a feature aggregation
module, to be accurate, should be biased towards low-level
features; for this purpose, Zhou et al. [225] proposed a new
module named L-shaped feature pyramid network to focus
on low-level features while reducing the influence of high-
level features, less important to defect detection. As a result,
shorter backbones with narrower width and depth feature
maps are used without a significant reduction in accuracy,
but with improvement in saving sources and overall model
efficiency. Liu et al. [226] proposed a R-CNN that embeds
a feature enhancement and selection module to increase
context complementarity and reduce confusion information
at multiple scales. At the same time, to ensure optimized
feature extraction for small defects in complex background,
the dual attention maps (derived for channels and positions)
are multiplied with the input feature maps. This shortens
the information path and is more suitable for performing
real-time detection [227].

On the other hand, in industrial pipelines, product images
are acquired in a standardized setup and thus the vari-
ance of background appearances is very small. A network
stuck on contextual information leads to over-fitting the
seen background, hampering generalization ability on unseen
backgrounds. As a result, defect-free texture coming from
a different production process can be mis-classified as

defective [228]. Secondly, defects are characterized by a
distribution of sizes and positions within the image.

A basic approach consists in the subdivision of the image
in adjacent or partially overlapped patches that are singularly
classified. If a patch contains a defect, the fixed-sizedwindow
constitutes the defect bounding box [229]. However, it can
be a partial or enlarged defect box that results in a low
robustness [2]. Hence, it is necessary to accommodate sliding
window size according to the characteristics of the target to be
detected.Moreover, to guarantee a high recall, a great number
of proposals is needed, many of which are false candidate that
hamper the processing speed [230].

Handling cluttered background through a preliminary
Region Of Interest (ROI) selection in which defects could be
placed is a partial solution overcoming network overloading;
it is what Yang et al. [231] propose with pre-processing
images with Otsu thresholding for target workpiece evalua-
tion. Secondly, the image is uniformly divided in patches that
were separately classified by a CNN; finally adjacent patches
belonging to the same class aremerged to get a quite thorough
defect detection.

Advanced approaches dynamically allocate proposals of
defective region in light of extracted features. Anchors are
reference locations in the image around which network eval-
uates a box regression and classification either to get pro-
posals in two-stage detectors, or to predict final bounding
box in one-stage detectors. In Faster-RCNNs these anchors
are densely considered in the image around feature map
nodes, and will be expanded in k anchor boxes with different
sizes and aspect ratios. Wang et al. [230] proposed Guided
Anchoring, an optimized anchors selection rule that leverages
semantic features, and follows two steps: first it identifies
sub-regions where defects are likely to exist and then it
determines the scales and aspect ratios related to different
locations based on a single ormultiple featuremap at different
levels.

3) FULLY-SUPERVISED DETECTION
Considering defect detection as an object detection task, the
fully-supervised approach makes use of ‘‘box-level’’ anno-
tations bounding the defect. For training, a bounding box
is provided with the coordinates of a surface defect and its
corresponding class. During training, the network optimizes
a learning rule to be able to predict a box bounding the
defective region in test images. The objective function fol-
lows a multi-task loss composed by the classification loss and
regression loss of bounding box vertices: the former is the
softmax loss and quantifies how accurate the network is in
recognizing an object. Furthermore, only for proposals being
predicted as defect-containing (e.g., with a probability greater
than 0.5), regression loss is calculated by comparing ground
truth vertices with proposal vertices, through a smooth-L1
function [232].

a: TWO-STAGE APPROACHES
In a two-stage approach a list of proposals is first generated
by the RPN and secondly these proposals are retained or
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otherwise discarded if the classification layer does not rec-
ognize the presence of defect.

Defect detection performance mainly relies on feature
extraction: a backbone with a sufficiently high recall for
defect characteristics speeds up the localization phase. Com-
plex and variable textures are common in industrial materials
such as steel, fabric and leather; detection and exhaustive
localization is undermined by complex background inter-
ference. Wang et al. [129] proposed a stacked network to
compare a reference negative image with a test image to
localize regions that are likely to contain defects; in addi-
tion, a discriminator (with ResNet as backbone) distinguishes
between defects and textures within each proposed regions.

Cheng and Yu [233], to reduce information loss between
backbone and neck, introduced a residual calculation
(DE-block) between downsampled and upsampled feature
maps. This residual map is used equivalently by the Channel
Attention Module, for enhancing features. Finally, an adap-
tive spatial feature fusion between neck and head is used
to merge scale-invariant features for steel surface defect
detection. Luo et al. [234] proposed a decoupled two-stage
object detection in which localization and classification
sub-networks develop in parallel. A raw image is processed
from a backbone and feature maps are considered ‘‘stem
features’’ which undergo differentiation through aggregation
and feature attention mechanism in semantic feature for clas-
sification and low-level features apt for detection and precise
localization. They implement a Local-Non-Local attention
module to adaptively enhance locally discriminative semantic
information for the improvement of defects classification
in integrated circuits (Flexible-PCB). Akhyar et al. [235]
adopted a R-CNN based on ResNet50 as baseline, improving
it with a deformable RoI pooling and deformable convolu-
tional filters that granted the model to be highly adaptive to
the geometrical variation of the defect.

Data augmentation strategies recover from data imbalance
and follow two groups: 1) a data-level approach introduces
variability, such as brightness change, color equalization,
addition of noise and geometric translation and flipping, are
used directly in images [133], [236] and 2) an algorithm level
(modifying loss function to avoid overfitting), and the usage
of GAN as resampling method.

The transfer learning is a wide adopted strategy in defect
detection task and counteracts data scarcity in the indus-
trial field, reducing the amount of training data [237].
Guo et al. [238] peculiarly apply Conditional-GANwith con-
trast enhancement in discriminator in a supervised setting
(in which both generator and discriminator have class label,
see Section A-D) to generate new images of different classes
of defects, facing two problems: feature scarcity and data
imbalance. They adopted Xception with pre-trained layers
as feature extractor with the first network to classify the
image to locate defects and the second one to identify the
specific category. Wang et al. [239] finalized a defect detec-
tor for steel surface using few shot images as target data
for fine tuning in order to generate defect-specific features.

Cao et al. [240] evaluated three backbone depths for fine
tuning, from shallower to deeper, and tested the 1-shot and
5-shot settings; they selectedK samples of target data for each
defect category as the training data and used the rest as the
testing data, and repeated the experiments on disjoint dataset
parts. The greatest accuracy and F1-score were achieved by
fine tuning last stage in the 5-shot setting. Deng et al. [241]
improve the CNN architecture based on pre-trained VGG16
backbone and compared the model accuracy in the case of
training from scratch, of finely tuning the entire module,
without freezing any layer, and of freezing the last x layers.
Results demonstrated the highest overfitting ratio was for the
model without transfer learned feature, since it lacks enough
data for feature extraction. The higher the number of frozen
layers, the worse the test accuracy.

Inspired by Guided Anchor, Chen et al. [242] leveraged
semantic features to yield more suitable anchor boxes for
different surface defects. They proposed an Adaptive Anchor
Module (AAM) that first insights on locations where surface
defects are likely to exist, and then predicts the shapes at
different location [230]. Following this formulation, the RPN
enhanced by the AAM allowed a higher recall using a com-
pressed backbone.

Yu et al. [243] geared towards an anchor-free fully-
convolutional detector in which it is not needed to define
any anchors a priori. Defects are located by selecting a
center point and back-mapping it onto the input image to
regress bounding boxes directly. Cheng and Yu [233] devel-
oped an evolutionary algorithm to iteratively optimize ratios
and scales of anchor aimed at maximizing the overlap of
ground truth boxes and proposed anchors. The best solution
is searched starting with five ratios and three scales according
to defects distribution in the image.

The most suitable depth of feature maps for anchors refine-
ment is automatically selected during the training phase:
Lv et al. [244] evaluated a set of boxes with different aspect
ratios at each depth; these boxes are matched with the ground
truth and the network predicts both the offsets and the confi-
dences for each category.

Wei et al. [245] refine detection bounding boxes substitut-
ing the quantization operation with a weighted bilinear inter-
polation of feature. Floating vertices of boxes are mapped to
corresponding floating points in feature maps, each of which
is calculated as a weighted average of feature values of the
closest points, named Weighted ROI pooling.

b: ONE-STAGE APPROACHES
In the one-stage approach, the generation of proposals is
skipped but anchors are still used, like in DenseBox [246].
RetinaNet [222] improves foreground to background imbal-
ance, adopting focal loss and feature pyramid network.
YOLOv3 [247] adopts a multi-scale prediction to improve
sensitivity for small defects, and deepens the network to
improve accuracy being, at the same time, quicker than
Faster-RCNN. Li et al. [248] optimize YOLOv4 with
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channel-wise attention and feature pyramid to increase effi-
ciency in small defects detection, and exponential mov-
ing average to stabilize network training, thus obtaining
42 frames processed for second. Chen et al. [249] pro-
posed a network to perform the detection of low-contrast
defects on blurred surfaces by using their constructed
ECANet-Mobilenet SSD model. A module that combine
channel and spatial attention was included to better extract
discriminative features. Singh et al. [250] devised aYOLOv5-
based system that is capable of processing High Dynamic
Range (HDR) images, which are single images with a wider
range of brightness and detail in both the shadows and
highlights. More specifically, the system employs a tech-
nique that involves capturing nine images with varying expo-
sure levels and subsequently merging them for each object.
Zhang et al. [61] developed a lightweight detection model for
PCB that reached almost the samemean Average Precision of
different YOLO architectures but with a fraction of FLOPs,
allowing it to run on a video-stream. Instead, Liang et al. [62]
used a YOLOX-tiny model as baseline and included different
modules to capture shallow features importance and propa-
gate the most useful ones to the network’s head. Their method
requires only 3.44 gigaFLOPs while resulting the most accu-
rate in terms of Average Precision among different detection
frameworks. Lim et al. [251] improved a YOLOv5 model
by adding a new feature pyramid network to better detect
small-scale object by applying the feature fusion approach.
Themodel performed slightly better than a standard YOLOv5
model while keeping an acceptable number of gigaFLOPs.

Wu et al. [252] improved the YOLOv3 architecture with
K-means clustering of anchor boxes; this is used to obtain
a skimming of more likely defect sizes, in correspondence
of a multi-scale fusion prediction feature map, instead of
considering three different feature maps at three different
scales. Given a numberm of clusters, similar boxes are aggre-
gated using average Intersection Over Union metric, and
finally m cluster centroids will be used for further evaluation.
Zhang et al. [2] improved backbone MobileNetV2 [253] with
K-means clustering to optimize parameter selection of candi-
date boxes for each of the dataset tested in the framework.
They obtained real-time inference with competitive accuracy
in order to deploy this architecture on edge devices. Only
one work has employed two-stage detectors using K-means
clustering: Zhang et al. [91] optimized the number of m
clusters; if they were enough, bounding boxes were more
precise and accuracy was preserved, whilst ifmwas too high,
the network did not get a consistent advantage in terms of
speed.

Song et al. [254] adopted a lightweight detector of the
EfficientNet [255] family, which is made up by one-stage
and scalable models with eight possible depths of layers
performing deep separable convolution to ease computational
burden. Their model EfficientDet (D0 up to D7)meets several
edge device resource constraints. This example of edge com-
puting helps overcoming problems like transmission latency
between end-devices and the cloud and bandwidth demands,

limiting transfer of large amount of data towards the cloud
platform. In addition, Naddaf-Sh et al. [256] use a single
hyperparameter that determines both width and depth of
backbones (b0, b1, b6, b8) of EfficientNet family, thus hold-
ing the trade-off between accuracy and inference time.

Unlike the one-stage detection methods, Wang et al. [257]
developed an anchor free end-to-end architecture based on
ResNet18 that uses only the center point of the target to
generate a bounding box, allowing for faster detection speed.
During the training, the network learns to output three differ-
ent information regarding the defect: the center, the size, and
the class.

c: EXPLAINABILITY
A comparison of backbone efficacy is visualized through
Grad-CAM which localizes areas determining final network
decisions. Providing a sequence of activated features at dif-
ferent depths, the gradual network convergence is explained.
Nguyen et al. [258] conduce a comparison study on the
feasibility to train and deploy YOLO one-stage pre-trained
detectors (YOLOv5, YOLOX, YOLOv7) on GPU-enhanced
embedded devices.

d: CLOUD-EDGE COLLABORATIVE APPROACHES
Cloud resources are employed for network parameters selec-
tion, base-training on images transferred from the edge and
for performance validation. Once network performs well,
it is downloaded on an edge device and deployed directly on
the production chain (on-premise). Further refinements can
be successively uploaded: for example, when new labelled
images are added to the training set.

An example of two-stage detector by Faster-RCNN applied
in an edge-cloud flexible setup is proposed by Wang
et al. [259]. Their evolving algorithm covers several produc-
tion plants and inspection lines for different products; in these
lines distributed hardware sensors (cameras) are connected
through edge nodes to software elaboration unit for a constant
and agile upload of data sources and services. Faster-RCNN
with ResNet50 backbone, pre-trained on ImageNet, requires
at most 0.1 seconds per image to detect defects [260].

Currently, smart cameras allowing to acquire, store
and transmit images are being commercialized, and their
resources can even allocate network inference calculation
on test images. For example, Zhu et al. [261] modified
the DenseNet architecture and deployed lightweight trained
model on an intelligent smart camera, placed on a scalable
production chain for real-time defect detection. There is no
need to download the trained model on the edge device and
the overall cycle includes image acquisition, image process-
ing, and edge response.

e: EXPLOITING TRANSFORMERS
Considering the shortcomings related to the use of trans-
formers in the industrial defect recognition field, the authors
can find different transformer-based approaches applied
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TABLE 9. Summary of the surveyed articles dealing with the detection task.
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TABLE 10. (Continued.) Summary of the surveyed articles dealing with the detection task.
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TABLE 11. (Continued.) Summary of the surveyed articles dealing with the detection task.

to the defect detection task. Both Gao et al. [283] and
Zhang et al. [269] proposed a swin-transformer model. The
former designed a new window-shift scheme that further
strengthened the feature transfer between the windows.
Therefore, a Variant-Swin transformer was used as the back-
bone and the extracted features are provided into a fusion
module that feeds a detection framework; this latter consists
of an RPN used for bounding box detection and classifica-
tion, and an instance segmentation network used to high-
light all the defective pixels. Cas-VSwin performed better
when pre-trained. Zhang’s work is a student-teacher model
whose backbones include a Swin-transformer, various pre-
trained YOLOv5 C3, a feature fusion system working with
a dual attention module, and various decoupled detectors as
the head. The dense stacking of multiple decoupled detec-
tors helps the models to detect objects of different scales.
In addition, Guo et al. [267] developed a framework based on
YOLOv5, where some convolutional blocks were replaced by
transformer encoders. A transformer like feature extraction
stage allows the larger collection of neighborhood informa-
tion related to the defect, and thus improves the accuracy of
detection.

f: CASCADED DETECTION AND SEGMENTATION
The field of precision manufacturing is demanding to mea-
sure defects not only through their detection and localization,
but also with pixel-wise segmentation in market-attractive
solutions. The network proposed by Yang et al. [215] imple-
ments two cascaded phases, which are detection of scratches
on steel based on SSD, and a growing segmentation algorithm
within the selected box, whose seeds are the Principal Com-
ponent points of defect. Similarly,Wu et al. [214] developed a
two-stage pipeline: the first stage involves data augmentation
with a novel GAN to generate realistic images with defects;
the second stage aims to detect the defect areas through a light
and coarse detection network, and segment them through a
segmentation network. Moreover, Xiao et al. [236] proposed
a pyramid CNN, which is an improvement of Mask R-CNN
model. ResNet101 was used to extract features, which are then
fused and processed using a feature pyramid network. The
result is sent into an RPN and a Fully Convolution Neural
Network (FCNN) separately. The RPN takes care of the
bounding box and classification process, whereas the FCNN
performs instance segmentation for each proposal passed by
the RPN.
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4) WEAKLY-SUPERVISED DETECTION
Weakly-supervised detection requires image-level annota-
tions. It focuses on improving training efficiency while
maintaining the same performance level of more labeling
expensive architectures. Real-time inspection capabilities
are becoming increasingly required in industry. However,
small- andmedium-sized companies lack sufficiently suitable
performance frameworks in the production line to achieve
real-time inspection [284].

Only two works found belongs to this category.
Zhang et al. [282] proposed a Category-Aware defect Detec-
tion Network (CADN) that uses only image-level annota-
tions. They used a student-teacher model to force the outputs
of a lighter CADN (student) to mimic the results of a larger
CADN (teacher) in the student’s training process. This is done
owing to knowledge distillation based on heatmaps, which
helps improve both accuracy and speed. Heatmaps are chosen
mainly for two reasons: they contain more explicit spatial
information, and are computationally less expensive. They
also contribute to trust the network once it effectively focuses
on the defective areas of the image. Li et al. [281] also made
use of heatmaps enhanced by spatial attention to perform
detection of tiny defects. Along with a standard CNN based
on ResNet101, two modules supported by one CNN each help
the training process to perform better: the former focuses on
the defective part, whereas the latter focuses on the leftover
portion of the image.

5) SEMI-SUPERVISED DETECTION
Semi-supervised detection uses mixed annotations (e.g., few
bounding box and few image-level labels). At this time, only
one work, belonging to active learning, satisfies the labels
requirements.
Active learning selects the effective data for annotation

and represents a valuable alternative for reducing the labeling
efforts. Since the process starts from unlabeled data, the
annotator needs to work only on uncertain images, which are
used to retrain the entire system. Only one work is found: Lv
et al. [280] proposed a framework based on YOLOv2, pre-
trained on ImageNet, which consists in a loop of three main
modules, that are detection model, active strategy to sample
uncertain images, and annotations update.

6) UN-SUPERVISED DETECTION
Un-supervised detection trains a model without labeled data.
Currently, the authors have found one-class approach that
uses only defect-free images to locate and delimit the defec-
tive area with a bounding box. Dong et al. [7] developed
a multitask learning method with an AE and a one-class
classifier. The total loss takes into account losses in both
image reconstruction andminimum hypersphere volume esti-
mation. Since the encoder included in the one-class classifier
comprises a fully connected layer, it can only be used to
classify the entire input image. Then, they used a moving
window strategy that cuts out patches from the input image,

feds the network, and gets an anomaly score for each patch.
Using a threshold, patches that scored higher were selected
as anomalous. Arima et al. [134] adopt a CAE to recon-
struct, learning from defect-free samples, the input image,
and take the absolute value of the difference between images
to retrieve a defect localization.

VI. DISCUSSION
The ever-rising throughput in the manufacturing industry is
striving to enhance products quality evaluation and precise
repairing decision-making even in complex scenarios; there-
fore image- or video-based defect inspection systems boosted
by accurate, fast, and explainable DL have a pivotal role. The
large diversity of defects encourages cross-domain research
to cope with data scarcity and over-dependency from specific
operating conditions.

The reviewed publications have addressed surface defects
recognition with three specific issues (segmentation, detec-
tion, and classification), together with a range of learning
methods (including fully-supervised, semi-supervised, unsu-
pervised and, except for classification, weakly-supervised
approaches) depending on the available data and research
objectives. The following section summarizes the DL meth-
odswhich endeavour to recognize surface defects while coun-
teracting some of the challenges presented in Section III,
whose relationships are illustrated in the Venn diagram of
Fig. 10. We review the approaches crossing the overlapping
areas with a devoted subsection and in the Table 12.

A. DISTRIBUTION OF LITERATURE
The barplot in Fig. 7 reveals that some implementations have
been employed more than others in the related literature. The
defect classification task is the widest adopted objective task
in the reviewed works even because its miniaturization is
applied to the prediction of image sub-regions (e.g., image
patches). Moreover, defects classification and detection are
the most pursued in the fully-supervised setting. Classifi-
cation can be used to recognize defects, their severity or
functional anomalies in the focused portion of products:
chronologically, the classification task was the first to be
explored in the field of defect recognition, followed in second
instance by segmentation and, finally by detection, as shown
in Fig. 8a. In particular, the latter saw a slow development,
surging only since 2019, because it was subject to topologies
advances to accommodate real-time and adequate inference
demands on the production lines. In fact, although R-CNN
dates back to 2015, it produced satisfactory results at the
expense of a relatively low speed (about 10 fps). Only with
the introduction of YOLOv3, and subsequent versions, the
performance in terms of inference time (more than 30 fps) and
accuracy have started to be suitable for defect recognition in
the industrial sector. Defect detection gives a more flexible
localization with regression of bounding boxes. A reason
is the feasibility of annotations because both image-level
and bounding box annotations require less expensive human
effort even when the dataset is acquired directly from the
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FIGURE 8. Line charts displaying the number of paper publications over
the years for (a) objective tasks and (b) learning methods.

production line. Conversely, the segmentation task is the less
affordable in the fully-supervised setting, since dense and
pixel-wise annotations are required: actually, weakly super-
vision for segmentation task employs the same labels used
for fully-supervised classification or detection (image-level
and box-level labels respectively) in addition to scribbles;
hence, after the fully-supervised approach, it is the widest
adopted learning method for segmentation. Semi-supervised
and unsupervised approaches are roughly equally used for
classification and segmentation, and more than for detection.

Furthermore, grouping the articles by learning methods,
it can be noted that fully-supervised setting is still the most
explored in the industrial field, since it is compliant with easy-
to-use software with estimated performance and additional
implementation costs that are lower than the annotation ones.
On the other hand, softly-supervised approaches are progres-
sively gaining ground, as can be seen in Fig. 8b, because
they allow more flexible solutions in dynamic environments
and are keeping pace of state-of-art performance. However,
they are at the forefront of the current research, and involve
less costs for the annotation phase but higher framework
development costs, with a delayed but effective return-on-
investment. Considering this, the authors investigate whether
these distributions depend on the annotations provided along
with public and large-scale datasets.

1) OPEN SOURCE DATASETS FOR BENCHMARK
Large-scale datasets lead to advancement in many areas of
image-based DL research, and provide a common benchmark
for fair comparisons and quantification of performance. At a
first glance, an objective task can be performed if the network
output can be directly compared with the available ground
truth. In addition, a range of different ground truths can
address an objective task, which is consistent with authors’
initial hypothesis.

Among the reviewed papers, even if several works are
trained on in-house labelled datasets, the most referenced
public datasets include theMVTec AD dataset [53] which col-
lects 5,354 RGB images of 15 categories with pixel-precise
ground truth for textured and defects on foreground objects.
Defect types mimic real-world industrial occurrences and
are subdivided into training set, which contains only defect-
free images, and test sets with both defects and defect-
free images. DAGM 2007 is a synthetic grayscale dataset
containing 10 defect classes in 575 training images and
575 test images on various textured backgrounds. It pro-
vides dense ellipses coarsely overlapping defective areas
both on the training and test set. The NEU dataset collects
6 surface defect classes on metal workpieces, each entailing
300 grayscale images and provide ground truth bounding
box [37]. The Severstal dataset contains 12,568 training and
5,506 test images roughly balanced between defective and
non-defective classes of four types of strip steel surface
defects provided with pixel-wise masks.

The authors remark that, up to date, no public datasets
provides scribble-based image annotations; probably because
it might require some strategies to enrich annotations with
finer details, with the aim of reducing defects scale uncer-
tainty [285].

The authors have found the upgrade of one type of class
label to a more specific one to allow fully-supervised learn-
ing [202], [276]. For instance, MVTec AD is tailored for
unsupervised learning, but is also found in the fully- and
semi-supervised setting by undertaking manual additional
labelling. On the other hand, each of the four datasets in Fig. 9
would provide a fully-supervised setting for classification.
In this case, a labelled image takes the tag associated with
a defect mask, bounding box or delimiting ellipse. Figure 9
reproduces the number of papers per each objective task,
grouped by the learning methods explained in Section IV and
using these public datasets. NEU-Det is the widest adopted
for defect detection with full-supervision. Bounding boxes
represent weak supervision for the segmentation task, while
a fully supervised setting can be available for this task by
adding precise-pixel mask for defects.

B. IMPROVING THE GENERALIZATION ABILITY OF
MODELS
1) TACKLING IMBALANCE AND SMALL DATA PROBLEM
Training a supervised DL system heavily rely on the avail-
ability of big data regarding the application field of interest
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TABLE 12. Comparison of advantages and disadvantages of the most common DL methods addressing the challenges in the industry defect recognition
field.

to avoid overfitting. Although the recent advancements in
the generation of images by sampling the manufacturing line
products, the assembly of huge datasets inevitably requires
time and human effort during collection and labeling, that
leads to the small sample problem [49]. The data imbalance
problem escalates the recognition effort when dealing with
fine-grained defects, since they require a dense visual recep-
tivity [39]. On the other hand, there exist intrinsic factors of

imbalance in the application itself since industrial processes
are continuously improved to avoid anomalies. Real-world
datasets suffer from several forms of imbalance: an image-
level imbalance for a skewed ratio between image classes;
an object-level imbalance when the distribution of object
occurrences is skewed (e.g., due to occlusions) and pixel-
wise imbalance between background and foreground pixels.
However, even in the case of an almost balanced dataset, there
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FIGURE 9. Papers publications per each objective task (Classification,
Segmentation and Detection grouped by the learning methods explained
in Section IV (colors blue for fully-supervised, green for
weakly-supervised, fuchsia for semi-supervised and orange for
un-supervised), using each public dataset (DAGM2007, MVTec AD,
NEU-DET, and Severstal).

could be imbalance between subgroups of defect classes as
well as scale imbalance of defects due to intra-class variabil-
ity. In the sequel we summarize the methods to relieve from a
small or imbalanced dataset with the aim to allow robust train-
ing and fair testing of the DL recognition systems; indeed, the
performance in case of overfitting must be sensitive to data
distribution. They aims at:

• Rebalancing the dataset by operating from the root
of the problem, hence directly on the dataset. The data
augmentationmethods encounter image wrapping based
on several possible manipulations and oversampling
approaches that preserve the label.Data generation con-
sists in synthetic data generation with AE and adversar-
ial networks (i.e., GAN based).

• Enhancing the feature extraction to overcome overfit-
ting, acting on the feature engineering (e.g., feature pyra-
mid fusion and feature weighting or selection through a
feature attention mechanism [39]), or on the information
flow like residual networks (e.g., ResNet backbone),
dropout and batch normalization.

• Strengthening the training through semi- and un-
supervised learning methods, which circumvent the
class imbalance by leveraging the majority class sam-
ples. An optimized loss function should introduce a
cost-sensitive penalty or a regularization term to penal-
ize missed defects recognition. Furthermore, the transfer
learning helps in reducing the amount of defective train-
ing images. It is often adopted to generate well trained
networks when few-shot of target defects are collected
and labelled [51]. Otherwise, the few-shot algorithms
adopt a base training (e.g., on augmented data) and

fine-tuning resorting on the few available samples to
resolve the imbalance and the volume of annotated data
required [239].

2) TACKLING DATA ANNOTATIONS WITH NOISE
DL-based visual pattern recognition relies on a high-quality
data preparation but in real conditions it may be impaired
by annotations often inadequate. In situations where a small
training dataset is available, the collection of additional sam-
ples of different sources may lead to varying levels of label
quality. The noisy or inconsistent labels can largely degrade
the model training by confusing the model, which worsen the
decision boundaries fitted on the clean data samples [286].
The overfitting is more likely to occur since, in a situa-
tion where labels are noisy, the patterns to learn raise and
more channels will be activated [58]. The methods used to
overcome the issue of noisy labels towards a robust training
includes:

• Architecture strengthening by adding a noise adap-
tation layer which consists in weighting the model’s
prediction by the label transition matrix which is learnt
during training. Moreover, dedicated architectures are
used to tackle more complex noises. As instance,
Yu et al. [262] designed an auxiliary inference model
that compares the mapping functions developed within
a labelled dataset having label noise and unlabelled
dataset. The consistency of the sample predictions
between the two datasets is used to handle inaccurate
annotations.

• Modifying loss function to automatically ignore or to
weak the emphasis on mislabeled samples along with
the model training [287].

• Label smoothing and refurbishment: the former trans-
forms the hard label y (e.g., one-hot encoded for a
K-class classification) to a soft target ys acting as a
regularization technique [288]: ys = (1 − α)y +

α
K ,

where α parameter modulates the level of confidence
during training thus avoiding over-fitting predictions.
The latter consists in replacing the original given noisy
label with a refurbished one; Gao et al. [289] adopted a
plug-and-play additional module with Bayesian statistic
and a time-weightingmodule for optimal label selection.

• Sample bootstrapping which provides a selection
method for clean samples to update the model by
recognizing clean samples as the small-loss training
samples [287]:

• Active learning corrects noisy labels graded by eval-
uating the confidence level expressed by the network,
refining labeling at each iteration with pseudo-labeling;
it may rely on processing engineers as oracle to verify
the annotations given for some uncertain samples that
will help the model to better generalize [280], [290].

• Confident learning improves the training by estimating
sample confidence levels to characterize the suspected
wrong-labeled pixels, pruning the mislabeled samples
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FIGURE 10. Venn diagram illustrating the relationships between the DL methods employed to recognize industrial surface
defects and the counteracted challenges presented in Section III. Some methods fall into more than one category.

to choose the clean data, and re-training models on the
purified dataset [55].

• Meta-learning regresses an implicit rule to update the
learning process aimed to consistently tolerate the noise
presence and get the underlying knowledge from data.
For instance, Li et al. attach to training images different
synthetic generated labels as perturbations and enforce
the network to be consistent with the prediction of a
teacher network trained only on clean samples, by updat-
ing the gradient before the conventional update [57].

C. KNOWLEDGE TRANSFER, REUSE AND DISTILLATION
1) TRANSFER LEARNING
Throughout the analysis of works applied to various DL
surface defects applications, the efficacy of the backbone
has proved to have a leading role in the comprehensive
understanding of training data distribution. Designing and
engineering the architecture – regarding depth, width, and
cardinality of layers and additional modules, both train-
able or not (e.g., multi-scale convolution, implementing fea-
ture fusion, channel and position attention maps, feature
pyramid concatenation and residuals additions) – enable
defects recognition because it shrinks the receptivity for the
over-stuck or noisy irrelevant areas. However, the model is
made obsolete by any change in the test distribution due
to ‘‘domain shift’’, such as changing operating conditions,
inclusion of new production units, and new defects [291].

Hence, a new training phase to update the model is required,
but overfitting can incur unless a sufficient number of novel
samples has been acquired. Moreover, this constraint delays
the point at which the model is put in operation [190].
Transfer learning encompasses these shortcomings and can
help boost training, which becomes more robust against
image perturbations of various kinds [84]. The literature con-
tains several contributions using transfer learning paradigm
to acquire source knowledge from either close or unre-
lated domains, and optionally fine-tuning it with a bunch
of target images [292]. Given a powerful pre-trained deep
network on huge available dataset (e.g., ImageNet), the
knowledge reused across domain-specific industrial plants
relieves human labor costs and supervision. The most appro-
priate pre-trained network for a given application depends on
the adaptation of features in the same latent space. In addi-
tion, several alternatives exist to import pre-trained layers in
the context of the model, like freezing and re-training from
different network checkpoints [83], [95]. The authors summa-
rize the key findings listing that pre-trained networks are used
in the encoder part instead of training from scratch mainly
for: coping with difficulty in capturing enough information
due to few samples availability; speeding-up the training
process, and thus reaching earlier the optimum convergence
for the same benchmark problem. Moreover, transfer learn-
ing is a widely used technique for model compression
[82], [151], [293].
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2) INCREMENTAL LEARNING
The generalization ability of a DL defect inspector is cur-
rently verified upon a dynamically assembled test set, which
belongs to the real-world industrial application. The DL
model struggles with the recognition of new defect types that
were absent in the training and validation set and that occur
along with the production process. Therefore, it is asked to
expand the acquired capabilities and update the decision rule
by perceiving the alarming samples as those foreign to the
familiar ones and by modifying the feature extractor, eventu-
ally after a labelling phase, without overwriting or hindering
the prior knowledge. Such a ‘‘catastrophic forgetting’’ must
be avoided in order to preserve the recognition accuracy on
old classes while being able to recognize new defects as
well [294]. Specifically, this feat is to be achieved without
using the data of the previous training or in the hypothesis
to have just few prototypical samples of the new classes.
The incremental learning approach, thus, endows the DL
network with the ability to constructively merge the expertise
in different defects and tasks emerged in several stages, with-
out the need to retrain it from scratch [295]. Therefore, the
incremental or continual learning updates the model under
the stability-plasticity trade-off constraint [296]; remarkably,
it copes with the risk of obsolescence of the trained networks
and counteracts the consequent tuning for tightly specific
applications. Two main approaches hold the goal by:

• Replaying prior sampleswith amemory-auxiliary gen-
erative network that reconstructs prior training samples
distribution to add them to the novel data when retrain-
ing [297].

• Introducing a regularization term to avoid a noisy
or hasty update of weights, thus consolidating previous
knowledge while learning on the new task [296].

Rosenfeld et al. [298] managed to reuse the existing weights
forcing to fine tuning on the new defects data through a linear
combination of the original filters in the corresponding layer.
They achieved better results than simple transfer learning or
learning from scratch.

3) KNOWLEDGE DISTILLATION
The knowledge distillation enables to ameliorate the perfor-
mance of a lightweight model by using as supervisory signals
the salient teachings learnt by a bigger network [82], [264].
The low-complexity model (i.e., the student) exploits both
the pseudo-labels generated from the bigger model (i.e., the
teacher) and the real labelled data. Therefore, it has strong
recognition capability even though the number of its param-
eters is reduced, and its performance are comparable or even
better than those of the teacher. In so doing, the knowledge
distillation is a class of algorithms devoted to model compres-
sion and fusion; among these, there exist also methods that
make usage of low-rank factorization, parameters pruning
and sharing or pre-trained convolutional filters, as reported
by Cheng et al. in their survey article [299].

The work of Hinton et al. [300] sheds light on the distilla-
tion of knowledge alongside the transfer of weights from the
teacher to the student network to compensate for the lack of
supervisory annotation data for training. The student training
process is supervised by the teacher distilled knowledge that
allows to obtain high performance with less annotation effort.
For instance, when dealing with unlabelled data, the teacher
helps the student network with different approaches:

• Employing several channel-level losses to capture the
normal feature distribution of intermediate layers [205],
[301];

• Using a multi-task loss to check segmentation, contour,
and distance map performance [177];

• Providing pseudo-labels in order to train the student
network along with real labelled samples [125].

The pseudo-labels are the output probabilities from the
teacher and these concur to guide the student learning process
along with the hard (i.e., real) labels. During training, the
student model endeavours to match the teacher output prob-
abilities regulated by the shared weights; thus, a ‘‘distilla-
tion loss’’, sometimes assisted by an attention module [269],
steers the probability distribution generated by the student
model towards that provided by the teacher model. The loss
minimization process can be related to a network-level, when-
ever the knowledge is optimized only by the last layers or to
a channel-level if knowledge is optimized at different levels
of feature maps, de facto computing multiple losses at time.

As a result of gathering the attention to a compressed
model, the frameworks that use knowledge distillation
approach can meet real-time predictions in the order of mil-
liseconds: Kim et al. [82] proved their student network has
inference time reduced by 97.43% with respect to the teacher
ones.

D. EXPLAINABLE ARTIFICIAL INTELLIGENCE
End-to-end systems leverage self-adaptation of DL but,
do not use hand-crafted knowledge. Although several studies
have innovated systems and performance of surface defects
detection, their black-box behaviour hampers the technol-
ogy transfer to industry. Therefore, a DL network should be
intelligible and describe the connections between inputs and
outputs or a mapping function for the model [119].

Authors investigated how XAI methods are used for indus-
trial defect recognition and how they could endorse trust and
knowledge; Fig. 11 illustrates the undertaken workflows in
the field. An input image is processed by a backbone that
extracts local and semantic features during forward infor-
mation flow. During information stacking, pictures of the
intermediate convolutional activations describe how
the model is being trained and how straight it goes towards
the discrimination of a defective pattern. For example, a back-
bone can perform feature extraction differently, according to
the number of layers, kernel size and depth, and number of
training epochs: CAM images can help optimize architec-
ture based on what the network has learnt, and these maps
can confirm whether they delineate progressively defective
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FIGURE 11. Use of XAI in DL-based industrial defect recognition. After an
information extraction process, the knowledge can be used mainly via
mathematical structures to improve a model by hyperparameter tuning
and visualizing the latent space distribution (i.e., with t-SNE), alternatively
perceptive methods can be used to segment defective areas through
thresholding of the fused CAM, and to trust a network decision by
overlapping the defective score map with the input.

areas [239], [254]. A new loss function term, supporting a
faster training convergence, can prove to be useful by compar-
ing the activation maps extracted from the same architecture
when the baseline loss implementation is employed [121].
A parametric evaluation to compare models consists in the
visualization of inner states when different sized bunches of
target training images or an augmented dataset are provided
for fine-tuning the defect recognition. Furthermore, visual-
ization is used to prove an enhanced discriminative ability that
can be ascribed to spatial or attention module [270], multi-
scale feature fusion [205] or feature regularization [179].
Visualizing feature response maps, which are generated when
pre-trained weights are transferred, qualitatively emphasizes
the advantages in terms of convergence with lower number of
parameters [82] and training images required [95]. Response
maps at different depths can be upsampled and averaged to
obtain the aggregate defects score map, whose dimensions
are the same as input image [3]. The last step in the encoding

path contains latent decomposition of the image, which is
summarized in vectors that have lost the spatial reference.

Following the taxonomy provided by Tjoa et al. [302],
the authors identified works belonging to the percep-
tive explanation and explanation via mathematical struc-
tures. Perceptive explanation consists in saliency maps
reflecting the contribution of input pixels for final deci-
sion. These weights are mapped into probabilities or
super-pixels magnitude importance, such as heatmaps. The
class activation map (CAM) is widely adopted to generate
heat/saliency/relevance-maps. Explanation via mathematical
structures analyzes the representability of concepts provided
by the extracted features whether separate or similar, through
clustering metrics that attempt to show similarities or dis-
tance in the low-dimensional latent space. Such algorithms
as t-SNE arrange the latent space in two or three-dimensions
to intuitively figure out feature embeddings.

Furthermore, the authors found that perceptive explana-
tions methods could be deeper divided according to their
linking with defect recognition result: a direct link consists
in achieving the segmentation output consisting in a dense
and pixel-wise mask for defects when the saliency map cov-
ers defects with accurate localization and fine boundaries,
instead of demanding network to make a prediction for each
pixel. Several segmentation works use feature mapping in
conjunction with adaptive thresholds to segment the defective
pattern [173], [174]. This step is found in several segmen-
tation networks guided by weak annotations; remarkably,
7/10 unsupervised studies that used XAI also inferred masks
thanks to anomalies or residual scores [205]. Secondly, super-
imposing heatmaps on the initial images shows how success-
fully the model converts the input image in hierarchical and
meaningful features; it is an auxiliary result which is a proof
of trustworthiness when detecting defects.

Latent space embeddings can be managed to develop
a disentangled samples representations and t-SNE is the
correspondent most used method to render the improve-
ments [142], [238]. The latent space encodes image proto-
types and several studies using AEs consider the distance
between vectors of two distinct classes to maximize the inter-
class margin. Visualizing the t-SNE plot for latent features
has been employed in the ablation studies of several articles
while testing a number of training conditions; these tests have
to prove that the proposed implementation leads to better a
performance with respect to other options. Moreover, t-SNE
has been employed to choose from the available datasets the
most suitable one for base learning, in order to subsequently
transfer response maps into the target domain with an optimal
adaptation by selecting the nearby points to target data [15].
Graphically, t-SNE renders similar samples with short dis-
tance in some measurement space, hence an improved model
has clustered latent vectors with low intra-class dispersion
and high inter-class sparsity.

Exposing most relevant features and weights is becoming a
straightforwardmethod. Besides telling ‘‘where’’ the network
looks at during the inference stage, a post-hoc explanation can
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help to understand ‘‘why’’ the network fails if there are some
correlation patterns in the dataset acting as confounding fac-
tors. For example, a dataset in which an occurring defect-class
appears in combination with some constant characteristics
could be prone to mis-classify during testing. Consequently,
visualizing internal states of a CNN can effectively diagnose
reasons behind a biased learning. Addressing low-contrast
and tiny defects, visualization methods have been compared
visually according to their catching finer details in con-
strained architectures (Grad-CAM++ [66], Spatial Attention
CAM [176], bi-CAM [10], Score-CAM [303]).

Explaining and debugging the DL model can lead to an
easier and faster adoption on the production line [304]. Acti-
vation maps are used to denote defects and can assist in the
reverification process [122]. When false negative errors must
be prevented with a special care, some studies could relax
the fully-automatic evaluation for an operator-assisted post-
evaluation in which unclear predictions are further exam-
ined [305], [151].

E. REAL-TIME AND DECENTRALIZED RESOURCES
Real-time is one of the most crucial challenges that
researchers are attempting to achieve. Usually it is difficult
to deploy DL vision systems on resource-constrained devices
such as the Internet of Things (IoT) and smart devices. Cur-
rently, two main solutions can be found in the literature,
which are use of lightweight and efficient networks beside
the use of decentralized and scalable resources. Increasing
efficiency meets compatibility criteria with the constrained
computational availability of edge devices, which are usually
deployed directly on the production line. Heavier and more
estabilished networks can achieve very good performance at
the expenses of longer computational time. Cloud resources
are quite affordable and provide a good workload collabo-
ration with the edge of inspection systems; moreover, they
are almost indefinitely scalable. However, relying totally on
cloud platforms on which upload databases and networks for
training and inference on new acquired images or videos may
overwhelm the bandwidth, create traffic jams with increased
latency, and is exposed to security breaches.

Furthermore, DL networks that utilize images for quality
inspection tasks require intermittent stopping of the industrial
chain, such as a conveyor belt, to enable cameras to capture
images of the object being inspected. This intermittent pro-
cess necessitates a synchronization mechanism to ensure that
images are captured at the right moment. Conversely, video-
based networks capture a continuous stream of data, allowing
for greater speed and accuracy in detecting defects, albeit at
the expense of increased computational and datamanagement
requirements.

In this context, high-speed cameras play an important role
into constraint strengthening since most of current localiza-
tion models can not run over 60 frame per second [147],
[176], [182], [224], [248]. Moreover, not all papers focus on
this aspect in a comprehensive manner (e.g., reporting both

FPS performances and full hardware settings [62]), making
a fair comparison more difficult. Some quality inspection
tasks require to check the object from multiple sides; for
instance, this can be achieved by letting a cylindrical object
rotate on a conveyor chain, leaving the camera fixed in the
same position [263]. However, beside the acquisition speed,
a performing data management and processing is required.
The authors compared a desktop-based solution with respect
to a web-based ones and showed how handling data with
javascript was more efficient with respect to OpenCV, allow-
ing them to use a 120 FPS camera on a MobileNet smoothly.

In the defect detection task, 80% of works compliant
to data processing and inspection in real-time makes use
of one-stage flexible architectures: EfficientNet [77], [254],
[256], YOLOv3 [268], [272], SSD [270], DenseNet [261],
instead of two-stage detectors with additional RPN network.
This latter are rarely employed for real-time inspection,
although their backbone can be modified and compressed
due to pre-trained layers benefit [259], [275] and can be
fine-tuned with few shots [240]. In addition, having com-
pressedmodels in result of knowledge transfer and distillation
may lead to a faster and better training. A growing interest
is within detection and tracking systems in edge-cloud col-
laborative resources towards the continuous monitoring of
products and processes directly inline.

F. FUTURE OUTLOOK
This section stems from the literature analysis and aims to
propose current and outlook research synergies. Despite sev-
eral progresses have been traced, the main feasible avenues
in the field consist in the following. 1) Coping with the mis-
match between convolutional kernel dimensions and defect
scales, in addition with saving computational resources for
edge devices capability. 2) Improving strategies for dynamic
inter-domain alignments of pre-trained layers through fine
tuning, combining complementary training datasets. While
benefitting from using pre-learnt deep features, it is challeng-
ing to fine-tune layers using small datasets due to overfitting.
3) Registration and fusion of RGB with depth cross-modal
information to enrich the differences between defective and
normal patterns [306]. 4) Increasing reasonableness of the
system by inserting parameters coming from the process and
proving the collaborative interplay of physics-based features
with deep features extraction [42]. In some critical appli-
cation scenarios it can be a step toward the evidence-based
prediction which could increase the interpretability of inner
states [15]. 5) Continue research on latent space disentan-
glement factors and saliency map generation, for qualified
and accurate defect predictions strengthened in ‘‘softly’’
supervised setting [307]. 6) Creation of public available
dataset for algorithms benchmarking.

In the near future, the authors believe time-saving, flex-
ible and explainable solutions would exert a turning force
towards best practices for competitive computer vision sys-
tems, especially for the industrial field. These technologies
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are expanding the scales and scopes progressively, advancing
cross-domains knowledge aggregation and distillation within
wide and public datasets to reach a robust validation.

VII. CONCLUSION
This survey has evaluated promising deep learning (DL)
frameworks addressing surface defects recognition on indus-
trial manufactured products and components. The three main
objective tasks (segmentation, detection, and classification)
for products quality assessment count a plethora of works.
In this article, the authors emphasize the different learning
methods to train DL systems depending on the available
knowledge listed in the training dataset. To explore this
hypothesis, the selected publications were firstly grouped
into different objective tasks to further analyze how they
were achieved with different training supervision. A detailed
description of each publication was provided, extracting the
required benchmarking to highlight relevant research trends
towards the improvement of surface inspection systems in
the rapidly-changing industry 4.0 revolution. The reader was
gradually involved into the main challenges during the explo-
ration of targeted solutions alongside with their strengths
and weaknesses. Thanks to this analysis the authors have
discussed how some possible solutions are being realized and
are more explored in some learning methods and/or objective
tasks than in others. Common vision architectures were stud-
ied to provide interested readers with an effective guide to
approach both academic and industry research starting from
a compound and recent overview. Inspection tasks based on
Convolutional Neural Network (CNN) are extensively used
due to their effectiveness in capturing not only detailed and
semantic, but also either local or long range patterns. In the
tables CNN-based frameworks processing various image data
types and patch sizes, sources (RGB cameras, X-Rays, ther-
mal, IR thermography, CT-scan) and number of channels
(RGB, grayscale) are reported. Deployed architectures such
as CNNs, as well as data pre-processing, augmentation, fea-
ture engineering, and loss functions have been constantly
improved considering class imbalance and subtle differences
between classes, in order to catch multi-level defects appear-
ance, detect new defects, and become more efficient by mak-
ing full use of features and training on a reduced number of
images.

This work is aimed to overcome narrowed conclusions
concerning a specific vision DL-based defect diagnosis, and
to encourage a synergistic further research.

APPENDIX A
BACKGROUND ON DEFECT RECOGNITION METHODS
The aim of this Appendix is to provide useful theoretical
concepts on defect recognition methods to the reader, thus
allowing a comprehensive understanding of the in-depth anal-
ysis reported throughout the paper.

A. MULTI-SCALE IMAGE REPRESENTATIONS
In defect recognition tasks, many researchers explored the
aggregation of multi-level features, which is apt to enrich

local information and boost the performance in defects
localization [308], [309]. Performing convolution on the
image realizes several downsampling operations, which
are defined by the stride of convolution and pooling lay-
ers. As a result, this significantly reduces the resolution
of feature maps while augmenting abstraction and feature
depth layer by layer [308]. Convolutional Neural Networks
(CNNs) recover full resolution and original image size
through Atrous or Deformable convolution, which is fol-
lowed by bilinear interpolation as upsampling filter. Instead
of using deconvolutional layers, this approach limits the
number of learning parameters as well as the computational
burden.

A Spatial Pyramid Pooling (SPP) module absolves the
mismatch between input image size and dense-connected
neurons. This module generates fixed-size vector from arbi-
trary sized input image by pooling within spatial bins, whose
resolution is proportional to the image size. SPP module
enables to compare pooled features from locally-connected
regions. The existence of objects with different sizes makes
defects recognition an evenmore challenging task. A standard
way to tackle this issue is to extract different CNNs intermedi-
ate representations of images, to recovers the original image
resolution, and fuse them. As shown in Fig. 12, multi-scale
feature are resized to target dimensions and concatenated
to realize an overall perception of context through feature
pyramid fusion.

However, fusion does not take into account feature impor-
tance; to help propagating effective information throughout
layers, a trainable layer called feature attention mechanism
weights the extracted features and enhances simpler defects
discrimination before features fusion. Deeper models with
high-level or semantic features are proved to be useful for
classification task and less for localization of defects in
images. In fact, a smoother feature response can help in the
coarse localization but not for delineate boundaries. To this
purpose, boundary refinement module is a residual struc-
ture that inserts shortcut connection between shallower (fine-
grained or edge contrast) features and deeper (contextual)
features, thus helping in preserving salient details.

B. AUTO-ENCODERS
An overall structure of an Auto-Encoder (AE) consists of
three main components, which are an encoder, a bottleneck
configured with latent space embeddings and a decoder,
as shown in Fig. 13. Thanks to this configuration, AE can
first learn a low-dimensional encoded representation of the
input image, and then use this information to reconstruct
back the original input. The encoder path reduces the input
dimension and extract data informativeness into a restricted
latent vector containing abstracted knowledge. The aim of the
bottleneck is to let only the most essential information pass
from the encoder to the decoder. Finally, the decoder consists
of upsampling and up-convolutional blocks that reconstruct
the output from the bottleneck.
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FIGURE 12. Multi-scale feature fusion technique with optional channel
and spatial feature attention mechanism for information enrichment.

FIGURE 13. Auto-Encoder sample scheme for defect segmentation task
(input, output, and defect mask from KolektorSDD [151]).

In defect recognition tasks, AEs can be trained in super-
vised learning (Variational-AE) to generate images contain-
ing a specific type of defect, or in un-supervised learning
with only defect-free images whose possible applications can
be grouped in: 1) reconstruction of input image and 2) its
denoising; both tasks are possible if an accurate description
of salient normal class features is pursued. During inference,
an input defective image is poorly reconstructed because
defects disappear; consequently, subtracting the input image,
defects can be perceived and quantified through residuals.
The anomaly score is often linearized in a standard range
(e.g., [0, 1]) and compared with a threshold to obtain the final
prediction. To enlarge the decision margin with a remarkable
reconstruction error, AEs need to capture only those patterns
present in the normal class and not in the anomalous class,
otherwise they could fail in distinguishing two different types
of samples. A topic of interest is to balance reconstructive
power of an AE with latent space dimension.

C. VISION TRANSFORMERS
Transformers are ever more used in image defect recognition
tasks. Basically, they are composed by an encoder–decoder
architecture. The encoder represents input data in a latent
space, while the decoder takes all the encodings and their

FIGURE 14. Vision Transformer sample scheme with 3 patches (input
image from KolektorSDD [151]).

enclosed contextual information to generate the output
sequence. Both these components comprise a variable num-
ber of blocks with the same composition: a multi-head atten-
tion layer, a shortcut connection, a feed-forward neural net-
work, and a layer normalization block.

More specifically, in the context of Computer Vision it is
worth to mention Vision Transformers (ViT) [310], which
is a pure transformer that directly acts on the sequences of
image patches. It follows the original design of the trans-
former as much as possible. The number and dimensions of
patches can be easily modified. The self-attention mechanism
owned by transformers can perfectly address the different
tasks in the industrial defect recognition field. In fact, after
being applied originally in the Natural Language Processing
field, researchers demonstrated how transformer-based mod-
els show excellent performance on a wide range of visual
tasks, including high/mid-level vision, low-level vision, and
video processing [311]. The head of a ViT can differ depend-
ing on the objective task to be accomplished. For instance,
a decoder can be present in a segmentation task, whereas in
a classification task a Multi Layer Perceptron could provide
the desired image-level tag. A sample configuration of a ViT,
with 3 equal-size patches, is shown in Fig. 14.

Transformers for object detection can be used in several
ways [312]: transformer backbones for feature extraction,
with a R-CNN-based head for detection; CNN backbone for
visual features and a Transformer-based decoder for detec-
tion; a purely transformer-based design for end to-end object
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FIGURE 15. Generative Adversarial Network (GAN) sample scheme.

detection. However, transformers have some disadvantages.
For example, if the image resolution is high, the transformer
requires significant computational power; the computational
complexity of its self-attention is quadratic to the image size.
Swin-transformers [313] reduce the computational burden by
shifting window partitions to calculate self-attention, thus
making the complexity linear with the image size.

The original vision transformer is good at capturing
long-range dependencies between patches but disregards the
local feature extraction, as the 2D patch is projected onto a
vector with a simple linear layer [311]. Compared to CNNs,
pure transformers lack inductive biases and rely heavily on
massive datasets for large-scale training [310]. Consequently,
the quality of data has a significant influence on the general-
ization and robustness of transformers [311].

D. GENERATIVE ADVERSARIAL NETWORK
The original Generative Adversarial Network (GAN) archi-
tecture by Goodfellow et al. [314] in 2014 is shown in Fig. 15,
and comprises two main components, which are a generator
network and a discriminator network. The former network
takes as input random noise and generates new examples,
while the latter takes both real examples from the dataset
and examples generated by the generator, and tries to deter-
mine which are real and which are fake in an un-supervised
way. The two networks are trained together in an adversarial
manner, according to which the generator tries to output
an undistinguishable image from the one given as input,
by decoding the latent-space in order to fool the discriminator,
while the discriminator tries to correctly identify the fake
images. A basic GAN architecture. Over training epochs,
the generator becomes better at producing realistic examples,
and the discriminator becomes better at identifying the fake
examples, thus generating high-quality, expanded data.

Training a GAN does not require a balanced dataset, and it
is often trained only on anomaly-free images. The informa-
tion flow through the GAN can be sampled in a mid stage,
meaning that the latent space contains the generative and
reconstructive potential that is skimmed from the input and
will be developed by the decoder. Conditional Generative

FIGURE 16. Siamese Networks sample scheme.

Adversarial Network (cGAN) is trained in a supervised set-
ting to guide the generation of specific categories of defective
images; thus performing augmentation to tackle the imbal-
ance of training data [315].

E. SIAMESE NETWORKS
Siamese networks are a class of architectures designed to
compare two inputs to determine their similarity, and is
showing sterling performance in the visual few-shot learn-
ing [52]. They consist of two identical branches, each one
composed by several convolutional filters, that are trained
on distinct inputs coming from the same or different classes,
and are called the query set and the support set; the Fig. 16
illustrates that the weights of the two branches are shared
in order to represent similar samples in contiguous vectors
in the latent space while maximizing the distance between
disjoint patterns, as objective function [240]. At inference
time, the defect is recognized by querying the most similar
example among those previously stored and labelled. In so
doing, the siamese network allows the recognition of novel
classes of defect without retraining and by only storing few
representative (i.e labelled) examples to unravel decisions for
test samples.

F. TRANSFER LEARNING
In the actual production process, labeling high volume and
high quality images for DL training is difficult and costly.
Besides the scarcity of defective samples, the operating con-
ditions change and even a well-trained model can have a
poor performance when deployed on test data (real-world,
target data), whose distribution is different from that of data
on which it was trained. Hence, the distribution change
or domain-shift problem hampers reusability of existing
methods [316].

Transfer learning can address domain-shift problem and
improve the performance of models by converging the
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knowledge acquired from auxiliary systems, which are
trained with a large availability of images (from one or
more dataset) [317]. Transfer learning is an effective opti-
mization method for trainable parameters especially when
ambiguous edge and low contrast defects occur [43]. This
transferable knowledge enhances a disentangled representa-
tion with a reduced overlap among concepts and classes in
deep feature extraction and weighting [29]. Deep features
are hierarchically organised and shallower features are easier
to transfer with an optimal domain adaptation than those
with higher semantic content [318]. Heterogeneus transfer
learning projects source and target features in a common
space; the number of dimensions is adapted, as well as, other
parameters (e.g., the number of classes). Shi et al. [128]
recently improve the projection of source and target features
with a Center-based Transfer Feature Learning, in which both
mean value of distributions (location parameter) and variance
(scale parameter) are considered in order to reduce distri-
bution difference and improve robustness of classification
adaptation.

Transfer learning is commonly deployed with supervi-
sion and fine-tuning, but there exists unsupervised transfer
learning in which source data is labelled and target data
is unlabelled. Knowledge is transferred into domain spe-
cific applications with usually few categories (than ImageNet
dataset [319] with 1000 classes, which is widely adopted in
many image-based defect recognition tasks [81], [224], [242],
[275], [276], [277], [278]) by importing trained weights as
warm or frozen checkpoints in the new backbone. In the
first case network re-weights all layers back-propagating the
error on the handful target images; in the second case, freezes
shallower layers and fine tunes only deeper ones. Pre-trained
feature transfer is equivalent to taking the outcome of convo-
lutional learners as a shortcut towards a well-posed DL sys-
temwith a leap towards convergence in feature representation
(more intra-class compactness and inter-class discrimination
than training network from scratch). The fully connected
neurons, as well as the input and output image size have to
be adapted to the model requirements and defect recognition
classes.

G. MAKING THE NETWORK DECISION
HUMAN-INTERPRETABLE
In contrast to linear models, in which decision bound-
aries seem transparently determined from updated learning
weights, deep neural networks are black-box decisors both
in feature selection and class representation [17]. Supervised
learning lies in finding patterns inside given correspondence
of data with ground truth, whilst softly supervised systems are
more free to represent data. Nevertheless, in both cases, but
especially the latter, they should be interpretable suggesting
explanations based on causal relationships. In defect recog-
nition tasks, the explanation of the network output consists
in extracting information from a learned model; a post-hoc
analysis is developed by visualizing latent representations

FIGURE 17. Methods used for explanation in defect recognition tasks.

that are conducive for the prediction [320]. An overview of
themethods found in the surface defects literature is proposed
in Fig. 17 to elucidate the functioning of the model.

To qualitatively assess the effectiveness of training rules,
the visualization of high-dimensional features in a manifold
reduced latent space is provided from T-distributed Stochas-
tic Neighbor Embedding (t-SNE). This algorithm projects
similar features as spatial clustered points and viceversa.
A good feature extractor (e.g., having good discrimination
ability) has a t-SNE plot, in which nearby features are for
those samples that not only belong to the same class, but are
also sufficiently separated from sample features belonging to
other classes.

Another popular post-hoc qualitative analysis computes
saliency maps and visualizes areas locally relevant for
network decision: the so-called Class Activation Mapping
(CAM)method. It performs global average pooling on the last
feature map of the network before the softmax decision func-
tion. However, this procedure is only applicable if the archi-
tecture has a suitable layer. To expand bilinear architectures
for CAM definition, bi-CAM gets weights from the eigen
decomposition approach [10]. Gradient-based methods use
backpropagation to compute the derivative of class score with
respect to the input image, acting as weighting coefficients
for internal feature state, thus allowing to quantify the impor-
tance of each pixel for the output. Grad-CAM has a good
trade-off between semantic and spatial information since it
results from the linear combination of weighted sum of con-
volutional feature maps, followed by ReLU function usually
fed by the last convolutional layer. Grad-CAM does not
weight average partial derivatives, which leads to represent-
ing only partially objects and defects where network looks
on, lowering trust in the output [321]. Grad-CAM++ is an
effective generalization to cope with poor object localization,
which computes the CAM-weights as a weighted average
instead of a global average. When Grad-CAM is point-
wise multiplicated by Guided back-propagation, Guided-
GradCAM is obtained, which presents some finer details that
are useful for both localization and texture description.
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The attention mechanism is a module aimed to empha-
size or suppress data representations in correspondence of
any convolutional layer depth, as illustrated in Fig. 12. It is
extensively studied in many vision tasks [52], [66], [270]
since it gives twofold advantages in features of interest rep-
resentation. In fact, while focusing on the discriminative
inter-channel or inter-spatial relationships among features,
it performs adaptive features refinement [67], thus suppress-
ing noisy information and boosting the performance. Channel
attention is a 1-dimensional vector weighting each channel
in correspondence of a feature map, whilst spatial attention
module is a 2-dimensional vector weighting (enhancing or
suppressing) regions of a single channel according to their
representation power. In these attention mechanisms, which
can be performed sequentially through element-wise multi-
plication, channel attention weights are broadcasted along
spatial dimensions, and viceversa. Attention weights are
trained to let the network focus on features that are important
for the application scenario, thus exploiting well latent space
dimensions. These salient features can be visualized through
such model as Grad-CAM and compared with the baseline
feature representation, which are commonly shaped by the
expressiveness of the loss function.

H. PERFORMANCE METRICS
The performance metrics are used to evaluate the mapping
function between the feature space and the ground-truth label
learnt during either the supervised and the un-supervised
settings. In fact, even in this latter case the test samples are
labelled and used to evaluate the quality of the model predic-
tion. The four main outcomemeasures are: true positive (TP),
which stands for a correct classification or a thorough local-
ization of defect, while a wrongly recognized defect where it
is absent results in a false positive (FP); a true negative (TN)
is derived when a defect is not present and, concordantly,
not recorded; lastly, a false negative (FN) stands for a missed
defect recognition, when defect is actually present, or for an
incomplete localization of its extent. According to the level
of detail of the network decision, these metrics are suitable
to compare image-level, region-level, and pixel-wise predic-
tions with the ground truth. Specifically, defined TP, FP, FN,
and TN, further indicators like accuracy, recall, precision,
and F1score (i.e., the harmonic mean of recall and precision)
follow, and are described in (1):

Recall (True Positive Rate,TPR) =
TP

TP+ FN

Precision =
TP

TP+ FP

False Positive Rate,FPR =
FP

FP+ TN

Error Rate =
FP+ FN

TP+ FP+ TN + FN

F1score =
2 ∗ TP

2 ∗ TP+ FP+ FN

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(1)

In the defect detection and segmentation, the Intersection
over Union (IoU) measures the degree of overlap between the
ground truth and the predicted bounding box or mask.

IoU =
TP+ TN

TP+ FP+ FN
(2)

The mean IoU (mIoU) is calculated as the average IoU across
the K classes: 1

K

∑K
i=1 IoUi. The model binarizes the predic-

tion probability (i.e. likelihood) for a defect presence through
a threshold that balances the trade-off between recall and
precision. Therefore, the threshold becomes an independent
variable for the model decision and a curve can be drawn
by calculating the corresponding metrics for each threshold
value considered. In this context, the Average Precision (AP)
represents the area under the precision-recall curve.

AP =

∫ 1

0
p (r) dr (3)

The mean AP (mAP) is calculated as the average across the
K classes: 1

K

∑K
i=1 APi. By scanning the trade-off between

TPR and FPR, the Receiver Operating Characteristic Curve
(ROC) is determined. The AUROC/AUC indicator corre-
sponds to the area under the ROC curve; high AUROC value
indicates that the model performs accurately in identifying
the anomalies whenever the selected threshold. It is worth
mentioning that in defect recognition tasks, the high number
of background pixels dominates on FPR, thus is frequent
to have a high AUROC value despite many false positive
detections [27]. Additionally, the Dice score is another com-
monly used performance indicator in segmentation tasks.
It is computed by dividing the intersection between the pre-
dicted and true segmentations by their union, and ranges
from 0 to 1, with higher values indicating better segmentation
performance.

The evaluation of the efficiency in performing real-time
recognition makes use of different metrics that measure
model performances in terms of speed; we count the number
of FLoating point Operations Per Second (FLOPs), number of
evaluated Frames Per Second (FPS), and the inference time.
While FLOPs measurement is independent of the hardware
technology, the FPS and inference time are strictly correlated
to the computational power of a calculator.
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