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Deep learning for bias correction of MJO prediction
H. Kim 1✉, Y. G. Ham 2, Y. S. Joo2 & S. W. Son3

Producing accurate weather prediction beyond two weeks is an urgent challenge due to its

ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-

scale tropical convective system, serves as a primary source of global subseasonal (i.e.,

targeting three to four weeks) predictability. During the past decades, operational forecasting

systems have improved substantially, while the MJO prediction skill has not yet reached its

potential predictability, partly due to the systematic errors caused by imperfect numerical

models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical

forecasts and observations with a Deep Learning bias correction method. With Deep Learning

bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four

weeks are significantly reduced by about 90% and 77%, respectively. Most models show the

greatest improvement for MJO events starting from the Indian Ocean and crossing the

Maritime Continent.
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A
ccurate prediction beyond the two-week limit of atmo-
spheric predictability is extremely valuable to society and
the economy. In particular, reliable forecasts in the sub-

seasonal range (i.e., timescale of 3–4 weeks) provide vital infor-
mation about hazardous weather threats, such as floods, heat
waves, and cold spells, which are extremely important for risk
managers, stakeholders, and policymakers. The value of sub-
seasonal forecasts has been recognized by society and the scien-
tific community, and tremendous international efforts towards
making reliable subseasonal forecasts are underway1,2.

One of the primary predictability sources for the 3–4 week
forecast window in the global climate system is the Madden-
Julian Oscillation (MJO)3, the dominant mode of tropical sub-
seasonal variability. The MJO is a planetary-scale organized
convection-circulation coupled system with a typical period of
30–60 days, characterized by an eastward propagation, especially
during boreal winter. As the MJO develops and propagates,
anomalous diabatic heating leads to the formation of an anom-
alous Rossby wave source. This excites the Rossby waves to
propagate into the extratropics, modulating the weather events
therein4–7. For example, studies have shown significant influences
of the MJO on tropical cyclones8,9, extreme temperature and
precipitation10–12, storm tracks13–15, atmospheric blocking
events16, atmospheric rivers17–19, tornadoes20, and weather in the
Arctic21 and Antarctic22, among many others. Due to its far-
reaching global impacts7 and quasiperiodic nature, the MJO is
recognized as one of the leading sources of global climate pre-
dictability for the subseasonal timescale that bridges the gap
between the traditional weather (i.e., from one day to 2 weeks)
and seasonal (i.e., from 2 months to 1 year) forecast ranges.

Recent advances in theoretical understanding, improved
numerical models, and international collaborative activities on
field campaigns and forecast experiments have promoted
advances in MJO forecasting23–25. Now, the state-of-the-art
dynamical forecast systems are able to predict the MJO up to
3 weeks in advance23,25, a remarkable improvement since the
early 2000s. However, due to errors originating from imperfect
numerical models, the MJO prediction skill has not reached its
theoretical predictability, which is known to be ~7 weeks26. This
indicates that there is considerable room for improvement23,25–28.
One of the greatest challenges in current dynamical forecast
systems is the fast damping of the MJO signal as the forecast lead
time increases, which results in a rapid decrease of forecast
skill25,29,30. This systematic damping of the MJO convection
signal is particularly apparent when the MJO starts over the
Indian Ocean and is expected to propagate through the Maritime
Continent and move further into the western Pacific. The fre-
quency of MJO events not crossing the Maritime Continent in
forecast models is more than twice as large as it is in
observations30, known as the Maritime Continent prediction
barrier25,29–32. Given that the MJO prediction alone presents
considerable systematic biases, the global weather forecast beyond
2 weeks is an even more daunting task.

Model deficiencies in simulating realistic MJO events are
partially due to our poor understanding of the underlying physics.
Therefore, more efforts on process-level diagnostics are suggested
to further improve MJO simulation and prediction23. Con-
currently, post-processing of numerical forecasts has been
proven to be a powerful tool to improve forecasts when models
display systematic biases33. A recent study has shown an increase
of MJO prediction skill by correcting model biases with a linear
statistical model34. Deep learning (DL) techniques have been
proven to be a powerful tool for identifying weather and
climate patterns35–37, sub-grid scale parameterizations38,39,
weather and climate predictions40–44, and post-processing of
numerical weather forecasts (shorter than 7 days43,44). However,

post-processing with DL methods has not yet been applied to
MJO forecasts.

In this study, we utilize DL as a bias correction method to
improve MJO forecasts. We demonstrate that the DL post-
processing substantially reduces the MJO forecast errors from the
state-of-the-art dynamical forecasting systems, thus making
strides towards improving global extended range forecasts.

Results
Improved MJO prediction with deep learning bias correction.
Figure 1 highlights the advantage of Deep learning bias correction
(DL-correction) for MJO forecasts. It shows the multi-model
mean of predicted Real-time Multivariate MJO indices (RMMs)
composite on a phase-space diagram45 as a function of initial
MJO phases and forecast lead days from day 1 to day 28
(4 weeks). Predictions from the original Subseasonal-to-seasonal
(S2S) reforecasts and DL-correction for each forecast target years
are composited and compared with observations (see “Methods”
section). The composite results of individual models are displayed
in Supplementary Fig. 2. Several key results strongly demonstrate
the benefit of the DL-correction on MJO forecasts throughout all
MJO phases. A large discrepancy between S2S reforecasts and
observations is clearly shown on day 1. Most S2S models forecast
either weaker (phases 2 and 3) or stronger amplitude (phases 6
and 7), or phase (θ) shifts relative to the observations on day 1.
The DL-correction reduces those systematic errors, making the
day 1 and the following forecasts closer to the observations in all
models and throughout all MJO phases (Fig. 1 and Supplemen-
tary Fig. 2).

To evaluate the forecast errors quantitatively, the bivariate
root-mean-squared error (BMSE, see “Methods” section) is
calculated as a function of initial MJO phases from the

Fig. 1 Observed and predicted Madden-Julian oscillation (MJO)

composites. Multi-model means of the Real-time Multivariate MJO indices

(RMMs) composite on the phase-space diagram in eight MJO phases for

observations (black), Subseasonal-to-seasonal (S2S) reforecasts (blue),

and Deep learning (DL) corrections (red). Forecasts on day 1 by the eight

individual models are depicted as open circles and multi-model means as

large closed circles. Small closed circles represent seven-day intervals from

day 1. A three-day moving average is applied. Note that Fig. 1 is an average

of individual model composite shown in Supplementary Fig. 2.
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composites shown in Fig. 1. The amplitude error (BMSEa)
appears in the S2S models from the beginning of the forecasts for
most phases, with predominant errors in phases 2 and 3 (Fig. 2a).
This amplitude error reduces substantially when DL-correction is
applied (Fig. 2c). Whether amplitude errors are large or small in
individual S2S models, they all become similar after the DL-
correction (Supplementary Fig. 3). For example, during the first
2 weeks, the ECMWF-Cy43r3 has the largest MJO amplitude
error in phases 2 and 3, while the NASA-GEOS5 possesses a large
amplitude error in phases 6 and 7 (Supplementary Figs. 2 and 3).
Nevertheless, these amplitude errors become negligible after DL-
correction (Supplementary Fig. 3). The BMSEa averaged over
4 weeks and eight phases is summarized in Fig. 3. After DL-
correction, BMSEa in S2S reforecasts is about 90% reduced in
multi-model mean and about 70–94% reduced in individual
models (Fig. 3).

The majority of S2S models show large errors emanating from
MJO phase (BMSEp) (Fig. 2b, Supplementary Fig. 4), indicating
the inability of current forecasting systems to predict the main
location of the MJO realistically25. The phase error reduces
substantially in all S2S reforecasts by DL-correction (Fig. 2d and
Supplementary Fig. 4). The BMSEp averaged over 4 weeks and
eight phases is reduced by about 78% after DL-correction in the
multi-model mean and by about 45–90% in individual models
(Fig. 3). This indicates that, in addition to the amplitude, the MJO
location can be better forecasted by applying the DL-correction.
Note that when the BMSE is calculated with individual MJO
events rather than the composite, the reduction of error is clearly
shown as well (Supplementary Fig. 5). Bias correction via the
multi-linear regression (MLR, see “Methods” section) model also

reduces the forecast errors (Supplementary Fig. 6), but not as
much as the DL-correction. The multi-model mean BMSE
from the DL-correction is reduced by about 65% compared to
the MLR-correction when averaged over 1 week and eight
phases and by 24% over 4 weeks (Supplementary Fig. 6).
Particularly, with DL-correction, BMSEa during the first week
reduces about 87% compared to the MLR-correction (Supple-
mentary Fig. 6a).

To assess prediction skill and predictability of the MJO, two
additional verification metrics are applied (see “Methods”
section). The multi-model mean BCOR of the DL-correction is
consistently higher than the S2S models up to 4 weeks
(Supplementary Fig. 7). An increased signal and reduced noise
after the DL-correction, which results in a higher MJO
predictability than the original ECMWF-Cy43r3 reforecasts, is
also shown (Supplementary Fig. 8).

Eastward propagation of the predicted MJO. As mentioned
earlier, dynamical forecasts have struggled to accurately forecast
the MJO propagation over the Maritime Continent, especially
when the forecast is initialized in the Indian Ocean (phases 2 and
3). Such a prediction barrier can be partly explained by the basic
state moisture biases that degrade the physical processes asso-
ciated with the eastward propagation of the MJO23,24,46,47. Even
the ECMWF-Cy43r3, the best MJO prediction model, simulates
an exaggerated Maritime Continent barrier (Supplementary
Fig. 2a). Figure 4 shows the reconstructed Outgoing Longwave
Radiation (OLR) and zonal wind at 850 hPa (U850) anomalies
obtained by projecting the RMMs starting from phase 2 onto the

Fig. 2 Forecast errors in multi-model mean S2S reforecasts and DL-corrections. Multi-model mean bivariate root-mean-squared error (BMSE) as a

function of initial MJO phases and forecast lead days for (top) Subseasonal-to-seasonal (S2S) reforecasts and (bottom) Deep learning (DL)-corrections.

BMSE is divided into (a, c) amplitude error (BMSEa) and (b, d) phase error (BMSEp) for the Real-time Multivariate MJO indices (RMMs) composite shown

in Fig. 1. Values are multiplied by 100. Note that a three-day moving average is applied.
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normalized eigenvectors used in RMM calculation45,48. Com-
pared to the well-organized eastward propagating MJO signal that
crosses the Maritime Continent and through the western Pacific
in the observations (Fig. 4a), the MJO signal in the ECMWF-
Cy43r3 shows fast damping before the convective anomaly
reaches the Maritime Continent (~120˚E) (Fig. 4b). With DL-
correction, however, the MJO anomalies become close to the
observations beyond 2 weeks by realistically forecasting both
amplitude and phase of the MJO (Fig. 4c). The improved MJO
eastward propagation is mostly due to the amplification of the
strongly damped MJO signal shown in most of the S2S models
(Supplementary Fig. 2).

Discussion
This study demonstrates the power of Deep learning to be used as
a post-processing tool to correct the systematic biases that evolve
during MJO forecasts. The errors emanating from MJO ampli-
tude and phase in the dynamical model forecasts are both
reduced substantially by DL-correction. The results show that the
performance of poor models becomes comparable to the best
model after DL-correction. This implies that the differences in the
model’s performance mainly originate from the systematic errors,
rather than the random errors, and the DL method effectively
works to minimize them regardless of their amplitude as long as
the forecast errors are systematic. Given that huge efforts have
been made in operational centres to upgrade their models to
reach the level of the world’s best model for MJO forecasting (i.e.,
the ECMWF model), our results show promise for conserving
both human and computational resources. Moreover, while the
characteristics of systematic biases can change as operational
forecast models undergo periodic upgrades, the DL-correction
method developed here can be easily adapted to appropriately

reflect the changes. Most importantly, because the model is
simple, the approach developed in this study can easily be
implemented into real-time MJO forecasts, which in turn can
help end-user preparedness and eventually protect lives and
properties vulnerable to various hazardous extreme events related
to the MJO.

However, although the Deep learning approach can assist in
correcting model biases, continuous effort towards developing the
dynamical forecast system to minimize the inherent errors is the
key for making MJO forecasts reach their potential predictability.
Note that the improved MJO prediction with DL-correction does
not guarantee an improved prediction of MJO-related phenom-
ena such as tropical cyclones, monsoons, and midlatitude tele-
connections, because they rely on both the MJO and the
background state within the model. Therefore, further improve-
ments in dynamical models and initialization are fundamental to
ultimately improve the S2S predictions.

Fig. 3 Averaged forecast errors in individual models. Bivariate root-mean-

squared amplitude error (BMSEa) (darker colours) and phase error

(BMSEp) (lighter colours) for Subseasonal-to-seasonal (S2S) reforecasts

(blue) and Deep learning (DL)-corrections (red) averaged over 4 weeks

and eight phases shown in Fig. 2, Supplementary Figs. 3 and 4. For

ECMWF-Cy43r3 and NCAR-CESM1, the orange error bar denotes the 95%

confidence interval based on the bootstrap method. NCEP-GEFS = National

Centres for Environmental Prediction Environmental Modelling Centre

Global Ensemble Forecast System; NASA-GEOS5 = National Aeronautics

and Space Administration Global Modelling and Assimilation Office

Goddard Earth Observing System; Navy-ESPC = Naval Research Laboratory

Navy Earth System Prediction Capability; RSMAS-CCSM4 = Community

Climate System Model version 4 run at the University of Miami Rosenstiel

School for Marine and Atmospheric Science; ESRL-FIM = Earth System

Research Laboratory Flow-Following Icosahedral Model; NCAR-CESM1 =

National Centre for Atmospheric Research Community Earth System Model

Version 1; KMA/UKMO-GloSea5 = Korea Meteorological Administration-

UK Met Office coupled Global Seasonal forecast; ECMWF-Cy43r3:

European Centre for Medium-Range Weather Forecasts version Cy43r3.

Fig. 4 Observed and forecasted Madden-Julian oscillation (MJO)

propagation. Reconstructed 15°S-15°N mean Outgoing Longwave Radiation

(OLR) (W m−2, shading) and zonal wind at 850 hPa (U850) (contour

interval of 0.3 m s−1) anomalies using the composite of the Real-time

Multivariate MJO indices (RMMs) starting from phase 2 shown in

Supplementary Fig. 2a for (a) observations, (b) Subseasonal-to-seasonal

(S2S) reforecasts, and (c) Deep learning (DL)-corrections. Purple lines

indicate day 14 and 120˚E. The stipples mark where the OLR anomalies

from DL-correction are significantly different from S2S results at the 95%

confidence level using the bootstrap method.
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Methods
Hindcasts and validation datasets. In this study, we use long-term reforecasts
from the international Subseasonal-to-Seasonal prediction (S2S49) and Subseasonal
Experiment (SubX50) projects, and from the NCAR Community Earth System
Model v151, which follows the SubX protocol. Hereafter, we refer to these refor-
ecasts as S2S reforecasts for convenience. Supplementary Table 1 provides infor-
mation on the eight S2S reforecast models, including initialization interval,
ensemble size, reforecast period, and sample size. Note that the reforecast period of
ECMWF-Cy43r3 and KMA/UKMO-GloSea5 are different compared to the rest of
the models (Supplementary Table 1). These eight models have shown good per-
formance in MJO prediction24,47.

To identify the MJO events, the Real-time Multivariate MJO (RMM)45 index is
calculated with the daily mean zonal wind at 850 hPa (U850) and 200 hPa (U200)
from the ECMWF Interim Reanalysis52 and Outgoing Longwave Radiation (OLR)
from the NOAA Advanced Very High-Resolution Radiometer53; these are referred
to as observation for brevity. All S2S reforecasts and observations are interpolated
onto a 1° longitude and 1° latitude grid. The method for calculating anomalies and
RMM indices follows previous studies24,30.

Deep learning bias-correction model. The Deep learning bias correction (here-
after, DL-correction) model utilizes the Long Short-Term Memory (LSTM), which
has been proven to be powerful for time sequence modelling54,55 (Supplementary
Fig. 1). It has a cell state (ct), which accumulates the information from the previous
states (t-1) up to time t. The forget gate (ft) controls the extent to which the
previous cell state (ct-1) is forgotten. The status of an input variable (X) at time t is
contained in the updated state (gt), and the input gate (it) determines how much
the updated state is retained in the cell state (ct). The cell state (ct) and the updated
status (gt) are combined and then propagate into the final state (ht), which is
further controlled by the output gate (ot).

In the training period, the input variables (X) are the modelled RMM1 and
RMM2 indices from the S2S reforecasts, and the output variables (Y) are the
observed RMM1 and RMM2. We inactivated the cell state ct-1 and hidden state ht-1
to correct the modelled data at time t, to focus on the simultaneous relationship
between the input variables (i.e., modelled RMM indices) and the output variables
(i.e., observed RMM indices). That is, while the LSTM is often used for predicting
the time sequence of the data, we utilized the LSTM to improve the quality of the
modelled data by correcting the systematic biases in the S2S models.

The LSTM is trained using the Adaptive Moment Estimation optimizer56 and
mean-square-error loss to optimize weights and biases. Here, the training and
validation sets are the same datasets. One to three hidden layers and 3-100 nodes
have been tested, while additional hidden layers and nodes did not improve the
DL-correction performance. To keep the process as simple and efficient as possible,
the final DL-correction model uses one input layer with two nodes, one hidden
layer with 10 nodes, and one output layer with two nodes. Note that adding more
input variables, such as the leading principal components of OLR and zonal winds,
degrades the skill (not shown), hence only RMMs are used for both input and
output variables.

DL-correction procedure. The leave-one-year-out cross-validation (LOOCV)
procedure is often used for making predictions on data not used in the training
period and is appropriate for a relatively small dataset. For example, to process DL-
correction on the target year 1997 in ECMWF-Cy43r3, the modelled/observed
RMMs of MJO events from the rest of 19 years (from 1998 to 2016) are used to
train the LSTM model. Then, the weighting coefficients and biases obtained during
the training period are directly applied to the modelled RMMs of MJO events in
1997 (target year). This results in DL-corrected MJO predictions in 1997. For the
target year 1998, MJO events from the rest of the 19 years (1997 and from 1999 to
2016) are used to train the LSTM model, and so on. The LSTM model is built at
every target year, forecast lead time, MJO phase, and each model individually due
to their unique systematic biases. Note that, for given input data sets that were
randomly selected, the LOOCV produces very similar results for every target year,
indicating that the LSTM model is stable.

We also perform the DL-correction in a real forecast manner. The ECMWF-
Cy43r3 reforecasts during the first 10 years (1997–2006) are used as the training
period to build the LSTM model, and the remaining independent 10 years
(2007–2016) are evaluated. In this real forecast procedure, biases are still
significantly reduced compared to the raw S2S reforecasts (not shown), but larger
than those by the LOOCV approach due to the limited training sample size.

The MJO amplitude (A) and phase (θ) for the observation (Ao and θo) and
reforecast (Am and θm) are defined as45,47:

AoðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O2
1ðtÞ þO2
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where O1ðtÞ and O2ðtÞ are the observed RMM1 and RMM2 at time t, and M1ðt; τÞ
and M2ðt; τÞ are the modelled RMM1 and RMM2 at time t with a lead time of τ
days. On the two-dimensional phase-space diagram45, the MJO phase is defined as
the azimuth of the RMM1 and RMM2 combination and is usually divided into
eight phases depending on the location of the MJO convection45. The MJO
amplitude is determined based on the distance of the azimuth point from the
origin, and an MJO event is defined when the observed MJO amplitude (Ao)
exceeds 1.0 on initial day 0. Although the MJO is most active during boreal winter
and thus has the highest forecast skill in this season25, we use MJO events from all
seasons due to the limited sample size. For the same reason, we group two MJO
phases (phases 2 & 3, 4 & 5, 6 & 7, and 8 & 1) when training the LSTM model.
Note that MJO forecasts of the grouped phases generally possess similar
characteristics of errors.

The selected MJO events differ among models due to different initialization
frequencies and reforecast periods (Supplementary Table 1). The number of MJO
events for initial MJO phases 2 & 3 used for training and target period is listed in
Supplementary Table 1 as an example, while other phases show similar event
counts. All reforecasts used here are the ensemble mean. Applying the DL-
correction to individual ensembles and then averaging the results shows lower
performance than applying the DL-correction directly to the ensemble mean (not
shown). This indicates that the DL-correction is targeted to reduce the systematic
forecast errors, and it is obscured by the random errors in the individual ensemble
members.

To establish a baseline for assessing the benefit of the DL-correction method, a
multi-linear regression (MLR) model, a standard linear approach for post-
processing, is compared. The MLR-correction is identical to the DL-correction in
that it corrects RMM1 and RMM2 separately using the modelled RMMs as input
and observed RMMs as output with the LOOCV procedure.

Assessment of MJO predictions. To evaluate the MJO forecast quality, the
bivariate correlation coefficient (BCOR)25 and bivariate root-mean-squared error
(BMSE)47 are calculated between the predicted and observed RMM indices as a
function of forecast lead days as follows:

BCORðτÞ ¼
∑

N
t¼1½O1ðtÞM1ðt; τÞ þO2ðtÞM2ðt; τÞ�
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where N is the number of MJO events. The BMSE can be separated into the error
emanating from amplitude error (BMSEa) and phase error (BMSEp)47 as:

BMSEðτÞ ¼ BMSEaðτÞ þ BMSEpðτÞ ð7Þ

BMSEaðτÞ ¼
1
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The MJO potential predictability is assessed via the signal and noise25 defined
as:

Signal ðτÞ ¼
1

N
∑
N

t¼1
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2
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2
Þ ð10Þ
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2
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2
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where overbar denotes ensemble mean and prime presents individual ensembles’
deviations from the ensemble mean. In this formulation, the signal refers to the
variability of the ensemble mean while the noise refers to the variability of
individual forecasts around the ensemble mean (i.e., the forecast spread), and both
quantities depend on the forecast lead time (τ). The ECMWF-Cy43r3 is used to
estimate the signal and noise due to its relatively large ensemble size and high
MJO skill.

Confidence interval. The statistical significance test is performed with ECMWF-
Cy43r3 and NCAR-CESM1 only, due to their relatively large ensemble sizes. The
confidence interval of DL-correction results is calculated using the bootstrap
method. We randomly select 11 ensemble members from the S2S reforecasts with
allowing overlap to calculate the ensemble-averaged BMSE. This process is repe-
ated 10,000 times and the 2.5th and 97.5th percentile values are used to define the
95% confidence interval. The ensemble-averaged BMSE of DL-correction value
(Fig. 3, Supplementary Figs. 3, 4) is significant at the 95% confidence level if it lies
outside the 2.5th or 97.5th percentile. The same process is performed for the
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reconstructed OLR and U850 to check whether the composited anomalies from
DL-correction is significantly different from the S2S forecast results (Fig. 4).

Data availability
Data related to this paper can be downloaded from: ERA-Interim, http://apps.ecmwf.int/

datasets/data/interim_full_daily; NOAA OLR, https://www.esrl.noaa.gov/psd/data/

gridded/data.interp_OLR.html; The SubX and NCAR-CESM1 reforecasts, http://iridl.

ldeo.columbia.edu/SOURCES/.Models/.SubX; The S2S reforecasts, https://apps.ecmwf.

int/datasets/data/s2s/. The data that support the findings of this study are available at

https://zenodo.org/record/4601794 and from the corresponding author upon reasonable

request.

Code availability
TensorFlow (https://www.tensorflow.org) libraries were implemented to formulate the

forecast model using the LSTM. The codes used in the current analysis are available at

https://zenodo.org/record/4601794 and from the corresponding author upon reasonable

request.
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