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Deep learning for bioimage analysis in developmental biology
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ABSTRACT

Deep learning has transformed the way large and complex image

datasets can be processed, reshaping what is possible in bioimage

analysis. As the complexity and size of bioimage data continues to

grow, this new analysis paradigm is becoming increasingly

ubiquitous. In this Review, we begin by introducing the concepts

needed for beginners to understand deep learning. We then review

how deep learning has impacted bioimage analysis and explore

the open-source resources available to integrate it into a research

project. Finally, we discuss the future of deep learning applied to cell

and developmental biology. We analyze how state-of-the-art

methodologies have the potential to transform our understanding of

biological systems through new image-based analysis and modelling

that integrate multimodal inputs in space and time.
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Introduction

In the past decade, deep learning (DL) has revolutionized biology

and medicine through its ability to automate repetitive tasks and

integrate complex collections of data to produce reliable predictions

(LeCun et al., 2015). Among its many uses, DL has been fruitfully

exploited for image analysis. Although the first DL approaches that

were successfully used for the analysis of medical and biological

data were initially developed for computer vision applications, such

as image database labelling (Krizhevsky et al., 2012), many

research efforts have since focused on tailoring DL for medical and

biological image analysis (Litjens et al., 2017). Bioimages (see

Glossary, Box 1), in particular, exhibit a large variability due to the

countless different possible combinations of phenotypes of interest,

sample preparation protocols, imaging modalities and acquisition

parameters. DL is thus a particularly appealing strategy to design

general algorithms that can easily adapt to specific microscopy data

with minimal human input. For this reason, the successes and

promises of DL in bioimage analysis applications have been the

topic of a number of recent review articles (Gupta et al., 2018;Wang

et al., 2019; Moen et al., 2019; Meijering, 2020; Hoffman et al.,

2021; Esteva et al., 2021).

Here, we expand upon a recent Spotlight article (Villoutreix,

2021) and tour the practicalities of the use of DL for image analysis

in the context of developmental biology. We first provide a primer

on keymachine learning (ML) and DL concepts.We then review the

use of DL in bioimage analysis and outline success stories of DL-

enabled bioimage analysis in developmental biology experiments.

For readers wanting to further experiment with DL, we compile a list

of freely available resources, most requiring little to no coding

experience. Finally, we discuss more advanced DL strategies that

are still under active investigation but are likely to become routinely

used in the future.

What is machine learning?

The term machine learning defines a broad class of statistical

models and algorithms that allow computers to perform specific

data analysis tasks. Examples of tasks include, but are not limited

to, classification, regression, ranking, clustering or dimensionality

reduction (defined by Mohri et al., 2018), and are usually

performed on datasets collected with or without prior human

annotations.

Three main ML paradigms can be distinguished: supervised,

unsupervised and reinforcement learning (Murphy, 2012;

Villoutreix, 2021). The overwhelming majority of established

bioimage analysis algorithms rely on supervised and unsupervised

ML paradigms and we therefore focus on these two in the rest of the

article. In supervised learning, existing human knowledge is used to

obtain a ‘ground truth’ (see Glossary, Box 1) label for each element

in a dataset. The resulting data-label pairs are then split into a

‘training’ and a ‘testing’ set (see Glossary, Box 1). Using the

training set, the ML algorithm is ‘trained’ to learn the relationship

between ‘input’ data and ‘output’ labels by minimizing a ‘loss’

function (see Glossary, Box 1), and its performance is assessed on

the testing set. Once training is complete, the ML model can be

applied to unseen, but related, input data (see Glossary, Box 1) in

order to predict output labels. Classical supervised ML methods

include random forests, gradient boosting and support vector

machines (Mohri et al., 2018). In contrast, unsupervised learning

deals with unlabelled data: ML is then employed to uncover patterns

in input data without human-provided examples. Examples of

unsupervised learning tasks include clustering and dimensionality

reduction, routinely used in the analysis of single-cell ‘-omics’ data

(Libbrecht and Noble, 2015; Argelaguet et al., 2021).

Neural networks and deep learning
DL designates a family of ML models based on neural networks

(NN) (LeCun et al., 2015). Formally, an NN aims to learn non-linear

maps between inputs and outputs. An NN is a network of processing

‘layers’ composed of simple, but non-linear, units called artificial

neurons (Fig. 1A-C). When composed of several layers, an NN is

referred to as a deep NN. Layers of artificial neurons transform

inputs at one level (starting with input data) into outputs at the next

level such that the data becomes increasingly more abstract as it

progresses through the different layers, encapsulating in the process

the complex non-linear relationship usually existing between input
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and output data (see Glossary, Box 1; Fig. 1A). This process allows

sufficiently deep NN to learn during training some higher-level

features contained in the data (Goodfellow et al., 2016). For

example, for a classification problem such as the identification of

cells contained in a fluorescence microscopy image, this would

typically involve learning features correlated with cell contours

while ignoring the noisy variation of pixel intensity in the

background of the image.

Intuitively, a DL model can be viewed as a machine with many

tuneable knobs, which are connected to one another through links.

Tuning a knob changes the mathematical function that transforms

the inputs into outputs. This transformation depends on the strength

of the links between the knobs, and the importance of the knobs,

known together as ‘weights’ (see Glossary, Box 1). A model with

randomly set weights will make many mistakes, but the so-called

‘winning lottery hypothesis’ (Frankle and Carbin, 2018 preprint)

assumes that an optimal configuration of knobs and weights exists.

This optimal configuration is searched for during training, in which

the knobs of the DL model are reconfigured by minimizing the loss

function. Although prediction with trained networks is generally

fast, training deep NN de novo proves to be more challenging. A

main difficulty in DL lies in finding an appropriate numerical

scheme that allows, with limited computational power, tuning of the

tens of thousands of weights contained in each layer of the networks

and obtaining high ‘accuracy’ (see Glossary, Box 1) (LeCun et al.,

2015; Goodfellow et al., 2016). Although the idea (McCulloch and

Pitts, 1943) and the first implementations of NN (Rosenblatt, 1958)

date back to the dawn of digital computing, it took several decades

for the development of computing infrastructure and efficient

optimization algorithms to allow implementations of practical

interest, such as handwritten-digit recognition (LeCun et al., 1989).

Convolutional NN (CNN) are a particular type of NN architecture

specifically designed to be trained on input data in the form of

multidimensional arrays, such as images. CNN attracted particular

interest in image processing when, in the 2012 edition of the

ImageNet challenge on image classification, the AlexNet model

outperformed by a comfortable margin other ML algorithms

(Krizhevsky et al., 2017). In bioimage analysis application, the U-

net architecture (see Glossary, Box 1; Fig. 1B; Falk et al., 2018) has

become predominant, as discussed below.

Deep learning for bioimage analysis

DL in bioimage analysis tackles three main kind of tasks: (1) image

restoration, in which an input image is transformed into an enhanced

output image; (2) image partitioning, whereby an input image is

divided into regions and/or objects of interest; and (3) image

quantification, whereby objects are classified, tracked or counted.

Here, we illustrate each class of application with examples of DL-

enabled advances in cell and developmental biology.

Image restoration
Achieving a high signal-to-noise ratio (SNR; see Glossary, Box 1)

when imaging an object of interest is a ubiquitous challenge when

working with developmental systems. Noise in microscopy can

arise from several sources (e.g. the optics of the microscope and/or

its associated detectors or camera). Live imaging, in particular,

usually involves compromises between SNR, acquisition speed and

imaging resolution. In addition, regions of interest in developing

organisms are frequently located inside the body, far from the

microscope objective. Therefore, because of scattering, light

traveling from fluorescent markers can be distorted and less

intense when it reaches the objective. Photobleaching and

phototoxicity are also increasingly problematic deeper into the

tissue, leading to low SNR as one mitigates its effect through

decreased laser power and increased camera exposure or detector

voltage (reviewed by Boka et al., 2021). DL has been successful at

overcoming these challenges when used in the context of image

restoration algorithms, which transform input images into output

images with improved SNR.

Although algorithms relying on theoretical knowledge of

imaging systems have made image restoration possible since the

early days of bioimage analysis (Born et al., 1999; Gibson and

Lanni, 1989, 1992), the competitive performance of both

supervised and unsupervised forms of DL has introduced a

paradigm shift. Despite lacking in theoretical guarantees, several

purely data-driven DL-based approaches outshine non-DL

strategies in accurate image restoration tasks. One challenge in

applying supervised DL to image restoration is the need for high-

quality training sets of ground truth images exhibiting a reduced

Box 1. Glossary
Accuracy. Ratio of correctly predicted instances to the total number of

predicted instances.

Bioimages. Visual observations of biological structures and processes

at various spatiotemporal resolutions stored as digital image data.

Convolutional layer. A type of layer akin to an image processing filter,

the values of which are free parameters to be learnt during training. Each

neuron in a convolutional layer is only connected to a few adjacent

neurons in the previous layer.

Data augmentation. Strategy to enhance the size and quality of training

sets. Typical techniques include random cropping, geometrical

operations (e.g. rotations, translations, flips), intensity and contrast

modifications, and non-rigid image transformations (e.g. elastic

deformations).

Dense layer or fully connected layer. A type of layer in which all

neurons are connected to all the neurons in the preceding layer.

Ground truth. Output known to be correct for a given input.

Image patch. Small, rectangular piece of a larger image (e.g. 64×64

pixel patches for 1024×1024 pixel images) used to minimize

computational costs during training.

Input data. Data fed into an ML model.

Loss. Function evaluating how closely the predictions of a model match

the ground truth.

Layer. Set of interconnected artificial neurons in an NN.

Output data. Data coming out of an ML model.

Pooling. Operation consisting of aggregating adjacent neurons with a

maximum, minimum or averaging operator.

Signal-to-noise ratio (SNR). Measure of image quality usually

computed as the ratio of the mean intensity value of a digital image to

the standard deviation of its intensity values.

Style transfer. Method consisting of learning a specific style from a

reference image, such that any input image can then be ‘painted’ in the

style of the reference while retaining its specific features.

Training. Process through which the parameters of an ML model are

optimized to best map inputs into desired outputs.

Training/testing set. Collections of known input-output pairs. The

training set is used during training per se, whereas the testing set is used

a posteriori to test the performances of the ML model on unseen data.

Transfer learning.Method in which anMLmodel developed for a task is

reused for a different task. For example, an NN can be initialized with the

weights of another NN pre-trained on a large unspecific image dataset,

and then fine-tuned with a problem-specific training set of smaller size.

U-net. A highly efficient CNN architecture used for various image

analysis tasks (Fig. 1B).

Weights. NN parameters that are iteratively adjusted during the training

process.

Voxel. The three-dimensional equivalent to a pixel.

2

REVIEW Development (2021) 148, dev199616. doi:10.1242/dev.199616

D
E
V
E
L
O
P
M

E
N
T



amount of noise. A notable example of DL-based image restoration

algorithm requiring a relatively small training set [200 image

patches (see Glossary, Box 1), size 64×64×16 pixels] is content-

aware image restoration (CARE) (Weigert et al., 2018). To train

CARE, pairs of registered low-SNR and high-SNR images must

first be acquired. The high-SNR images serve as ground truth for

training a DL model based on the U-net architecture (Falk et al.,

2018) (Fig. 1B). The trained network can then be used to restore

noiseless, higher-resolution images from unseen noisier datasets

(Box 2). Often, however, high-SNR ground truth image data cannot

be easily generated experimentally. In such cases, synthetic high-

SNR images generated by non-DL deconvolution algorithms can be

used to train the network. For example, CARE has been trained to

resolve sub-diffraction structures in low-SNR brightfield

microscopy images using synthetically generated super-resolution

data (Weigert et al., 2018). More recently, the DECODE method

(Speiser et al., 2020 preprint) uses a U-net architecture to address the

related challenge of computationally increasing resolution in the

context of single-molecule localization microscopy. The U-net

model takes into account multiple image frames, as well as their

temporal context. DECODE can localize single fluorophore

emitters in 3D for a wide range of emitter brightnesses

and densities, making it more versatile compared with previous

CNN-based methods (Nehme et al., 2020; Boyd et al., 2018

preprint).

Unsupervised methods for image restoration offer an alternative

to the generation of dedicated or synthetic training sets. Some recent

denoising approaches exploit DL to learn how to best separate signal

(e.g. the fluorescent reporter from a protein of interest) from noise,

in some cases without the need for any ground truth. Noise2Noise,

for example, uses a U-net model to restore noiseless images

after training on pairs of independent noisy images, and was

demonstrated to accurately denoise biomedical image data

(Lehtinen et al., 2018) (Fig. 2A). Going further, Noise2Self

modifies Noise2Noise to only require noisy images split into

input and target sets (Batson and Royer, 2019 preprint). In these

algorithms, training is carried out on noisy images under the

assumption that noise is statistically independent in image pairs,

whereas the signal present is more structured. Alternatively,

Noise2Void proposes a strategy to train directly on the dataset

that needs to be denoised (Krull et al., 2019) (Fig. 2A). The Noise2

model family is ideal for biological applications, in which it can be

challenging to obtain noise-free images.

Image partitioning
Analyzing specific objects in a biological image generally requires

an image partitioning step; the separation of objects of interest from

the image background. Image partitioning can either consist of

detecting a bounding box around objects (object detection) or of

identifying the set of pixels composing each object (segmentation).

Although images featuring a few objects can be partitioned by hand,

large datasets necessitate automation. DL approaches originating

from computer vision have greatly enhanced the speed and accuracy

of both object detection and segmentation in biological images.

Input Output

Neuron

Layer

A  Neural network 

B  U-Net 

C  Inception V1 

1 16 16

64 32

Conv 3x3|ELU

Conv 3x3|ELU|Dropout

Max pooling 2×2 Up-Conv 2x2 

Skip connection Conv 1x1|Sigmoid 

1 32

32 32

64 64 64

16 16 1

Input

image

128

128

2X 5X 2X

Convolution

Key

Average pooling 

Concatenation Fully connected

Soft max

Max pooling 

Hidden layers

Key

Output 
image

Fig. 1. Neural networks and convolutional neural networks for bioimage
analysis. (A) Schematic of a typical NN composed of an input layer (green),

hidden layers (blue) and an output layer (red). Each layer is composed of

neurons connected to each other. (B) Schematic of a U-net architecture as

used in McGinn et al. (2021) for the segmentation of cells and nuclei in mouse

epithelial tissues. U-net is amongst the most popular and efficient CNNmodels

used for bioimage analysis and is designed using ‘convolutional’, ‘pooling’ and

‘dense’ layers as key building blocks (see Glossary, Box 1). U-net follows a

symmetric encoder-decoder architecture resulting in a characteristic U-shape.

Along the encoder path, the first branch of the U, the input image is

progressively compacted, leading to a representation with reduced spatial

information but increased feature information. Along the decoder path, the

second branch of the U, feature and spatial information are combined with

information from the encoder path, enforcing the model to learn image

characteristics at various spatial scales. (C) Schematic of an Inception V1

architecture, also called ‘GoogleLeNet’. Inception V1 is a typical CNN

architecture for image classification tasks. For example, it has been used to

classify early human embryos images with very high accuracy (Khosravi et al.,

2019). It is designed around a repetitive architecture made of so-called

‘inception blocks’, which apply several ‘convolutional’ and max ‘pooling’ layers

(seeGlossary, Box 1) to their input before concatenating together all generated

feature maps.
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Since U-net, countless customized DL models have adapted to

bioimage-specific object detection (Waithe et al., 2020; Wollmann

and Rohr, 2021) and segmentation problems have been proposed

(Long, 2020; Chidester et al., 2019; Tokuoka et al., 2020). A strong

link to computer vision remains, as many of these methods draw

from partitioning tasks in natural images. For example, algorithms

initially designed to segment people and cars from crowded

cityscapes can be efficiently exploited to segment challenging

electron microscopy datasets (Wolf et al., 2018, 2020).

The automated segmentation of cell nuclei in various kinds

of microscopy images has attracted a particular amount of attention.

Cell nuclei can be tightly packed, making nuclei and cell bodies

difficult to differentiate from neighbours. Spatial variations in marker

intensity (due to local differences in staining efficacy), chromatin

compaction or illumination fluctuations introduce further challenges.

Mask Region-based CNN (He et al., 2017) – an extension of

Fast R-CNN, first developed for the general task of object detection

in natural images – has been successfully adapted to nuclei

segmentation. Building on object detection methods, StarDist

(Schmidt et al., 2018) adds assumptions about the geometry of

nuclei shapes to improve detection performance. Relying on a U-net

model, StarDist predicts a star-convex representation of individual

object contours and can successfully separate overlapping nuclei in

2D images (Fig. 2B). A 3D version of StarDist is also available for

volumetric (e.g. light sheet microscopy) data, which is often

generated in developmental biology experiments (Weigert et al.,

2020). More recently, SplineDist extends StarDist by using a more

flexible representation of objects, allowing for the segmentation of

more complex shapes (Mandal and Uhlmann, 2021) (Fig. 2B). For

these methods, larger training sets and crowdsourced improvements

on model architecture have pushed the limits of achievable accuracy

Box 2. Case study: denoising the lateral cell faces of the

developing Drosophila wing disc with CARE
Sui and colleagues explore the role of lateral tension in the Drosophila

wing disc in guiding epithelial folding (Sui et al., 2018; Sui and Dahmann,

2020). In this example, the plane of the fly wing is mounted facing the

objective, placing the lateral sides of the wing disc cells along the z-axis.

However, image resolution in the x-y plane of a microscope (top left)

generally exceeds that of out-of-plane (z) resolution (bottom left).

Reconstructing fluorescent signals from the lateral face also requires

reconstruction of z profiles by summing together signals from multiple

depths. Furthermore, a sensitivity to light exposure of the system

imposes that imaging be carried out at low laser power and on a few z

slices, further decreasing the resolution of the lateral face.

The quality of the acquired microscopy data is successfully improved

relying on content-aware image restoration (CARE) (top right) (Weigert

et al., 2018). The CARE network is trained on pairs of low- and high-

resolution imaginal discs images. First a z-stack is acquired using low

laser power and low z sampling, followed by another z-stack acquired at

the same position in the sample with increased laser power and 4× more

imaged focal planes (n=8 stacks of average dimensions 102×512×30

with pixel size 0.17×0.17×0.32 µm, for a total dataset size of ∼1GB).

Once trained, the network is used to process low-resolution images of

other lateral markers, enabling the quantitative analysis of how protein

localization changes over time on lateral cell faces during and after

photoactivation (bottom right). Although absolute intensity

measurements extracted from images restored with DL methods

should be subject to caution, restored images in this work were only

used to track relative changes in apical, basal and lateral intensity over

time. Image adapted from Sui et al. (2018). Scale bars: 10 μm.
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Fig. 2. Deep learning methods applied to developmental biology
applications. (A) A simulated ground truth cell membrane image is artificially

degraded with noise. Denoised outputs obtained using Noise2Noise and

Noise2Void are shown at the bottom, along with their average peak signal-to-

noise values (PSNR; higher values translate to sharper, less-noisy images).

Image adapted fromKrull et al. (2019). (B) Fluorescencemicroscopy cell nuclei

image from the Kaggle 2018 Data Science Bowl (dataset: BBBC038v1;

Caicedo et al., 2019) segmented with StarDist (Schmidt et al., 2018), in which

objects are represented as star-convex polygons, and with SplineDist, in which

objects are described as a planar spline curve. Image adapted from Mandal

and Uhlmann (2021).
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and generalization. The availability of a benchmark dataset dedicated

to nuclei segmentation has played a crucial role in this success. The

2018 Kaggle Data Science Bowl dataset (Caicedo et al., 2019),

hosted as part of the Broad Bioimage Benchmark Collection, was

assembled to faithfully reflect the variability of nuclei appearance and

2D image types in bioimaging. This large dataset was designed to

challenge the generalization capabilities of segmentation methods

across these variations and has established itself as a precious resource

to objectively rank and comparatively assess algorithm performances.

An equivalent 3D or 3D+time benchmark dataset is yet to be

assembled and would be highly valuable to developmental biology

image datasets, which are often volumetric and include a temporal

component.

Cell membrane segmentation poses a more complex challenge

than nuclei. Cells can take on varying morphologies, ranging from

highly-stereotyped shapes to widely-varying sizes and contour

roughness. DL models trained on a single dataset therefore often

fail to infer accurately on different images. The true limits of the

generalization capabilities of an algorithm is furthermore hard to

assess in the absence of an established benchmarking dataset

dedicated to whole-cell segmentation. Cellpose (Stringer et al.,

2021) takes on the generalization challenge, relying on a large custom

training set of microscopy images featuring cells with a wide range of

diverse morphologies. This method relies on a U-net model

predicting the directionality of spatial gradients in the input images

and can process both 2D and 3D data. As a result, Cellpose is

generalist enough to segment cells with very different morphologies

and has been extensively reused (Young et al., 2021; Henninger et al.,

2021). In addition, Cellpose is periodically re-trained with user-

submitted data to continuously improve its performances (https://

cellpose.readthedocs.io). Finally, many types of biological questions

require organelle segmentation. Manually segmenting organelles

from 3D scanning electron microscope (SEM) images is highly time

consuming, with annotating a single cell estimated to take ∼60 years

(Heinrich et al., 2020 preprint) (Box 3). Here, DL has been

transformative as well, making it possible to automate the

segmentation and classification of a wide range of cellular structures.

Image quantification
Once objects have been detected in individual images, the subsequent

step is their quantification. Quantification can be about the number

of objects (counting), their type (categorization), their shape

(morphometry) or their dynamics (tracking), among many others.

Categorization can either be done holistically for an entire object

(e.g. wild-type versus mutant), or by looking at a specific aspect of an

object (e.g. the shape of internal components). Manual object

categorization is both time consuming and has the potential for bias,

even when carried out by experts. In addition to speeding up the

process, DL-powered image classification can limit annotation

variability. Visually assessing embryo quality, for example, is

subject to dispute between embryologists (Paternot et al., 2009).

Khosravi and colleagues have built a DL classifier of early human

embryos quality trained on ‘good quality’- and ‘poor quality’-

labelled embryos that corresponded to the score given by the majority

vote of five embryologists (Khosravi et al., 2019). Their model, based

on Google’s Inception-V1 architecture (Fig. 1C), can achieve a

95.7% agreement with the consensus of the embryologists. In a

similar spirit, Yang and colleagues proposed a supervised DL model

to assess microscopy image focus quality, providing an absolute

quantitative measure of image focus that is independent of the

observer (Yang et al., 2018). Eulenberg and colleagues used a

different technique to learn discerning features to categorize cell cycle

stages and identify cell state trajectories from high-throughput single-

cell data (Eulenberg et al., 2017). Eulenberg and colleagues’ DL

model is trained to classify raw images into a set of discrete classes

corresponding to cell cycle stages and, through the process, learn a

space of features in which data are continuously organized. When

visualized using the tSNE dimensionality-reduction method, feature

vectors that describe image data that are temporally close in their cell

cycle progression are also close in feature space. A similar strategy

has been used in a medical context to classify blood cell health and

avoid human bias (Doan et al., 2020). DL-based algorithms have also

led to improved detection of biological events, such as cell division in

the developing mouse embryo (McDole et al., 2018) (see Box 4).

However, non-DL-based ML approaches do still offer a competitive

alternative to DL; for example, in the automated identification of cell

identities (Hailstone et al., 2020). In this example, classical ML

Box 3. Case study: automatic whole cell organelle

segmentation in volumetric electron microscopy
Reconstructing the shape of internal components from focused ion beam

scanning electron microscopy (FIB-SEM) data is a complicated task

owing to the crowded cytoplasmic environment of a cell. As a result,

segmentation has been a bottleneck for understanding organelle

morphologies and their spatial interactions as observed in SEM

images at the nanometer scale. In OpenOrganelle (Heinrich et al.,

2020 preprint), an ensemble of 3D U-nets (see Glossary, Box 1) have

been trained for organelle segmentation in diverse cell types. The model

is able to segment and classify up to 35 different classes of organelle,

including endoplasmic reticulum (ER), microtubules and ribosomes. The

network is trained with a diverse dataset of 73 volumetric regions,

sampled from five different cell types, which sum up to ∼635×106 voxels

(see Glossary, Box 1). The identity of enclosed organelles in the chosen

volumes are manually annotated using morphological features

established in the literature (A). Achieving a manual segmentation of

the dense array of organelles in a single ∼1 µm2 FIB-SEM slice required

2 weeks of manual labour for an expert, meaning that manual annotation

of an entire cell (2250× larger) would take ∼60 years. In contrast, the DL

model trained on these manual annotations is able to segment individual

organelles on a whole cell volume in a matter of hours (B). Image

adapted from Heinrich et al. (2020 preprint).
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techniques trained with smaller amounts of data and requiring less

computational power than DL-based ones are shown to obtain

comparatively good results.

Although spatial tracking has been vastly studied in computer

vision applications, biological objects present unique challenges. In

addition to moving in and out of the field of view, cells divide,

merge and can alter their appearance dramatically. Moen and

colleagues proposed a dedicated supervised DL approach to identify

matching pairs of cells in subsequent video frames by incorporating

information from surrounding frames (Moen et al., 2019). The DL

model thus generates a cost matrix for all possible assignments of

objects in subsequent frames. The optimal tracking solution is

retrieved with the Hungarian algorithm, a classical combinatorial

assignment algorithm. The full pipeline (deployed at deepcell.org)

can thus automate tracking across entire populations of cells. The

ability to track individual cells and follow their state, as well as that

of their progeny, enables lineage reconstruction, a task that can

rapidly become manually intractable and thus greatly benefits from

DL (Lugagne et al., 2020; Cao et al., 2020). One obstacle to lineage

tracing is the preparation of high-quality training sets of tracks that

follow cells often over long periods of time. To address this, the DL-

based lineage-tracing method ELEPHANT (Sugawara et al., 2021

preprint) incorporates annotation and proofreading in its user

interface to reduce the need for time-consuming curated

annotations. ELEPHANT can be trained on a large dataset in

which only ∼2% of the data are manually annotated. The model

then infers on the remaining data and its predictions are validated by

the user. Other methods, such as 3DeeCellTracker (Wen et al.,

2021), rely on simulations to build large training sets with less need

for human intervention.

Although cell tracking typically consists of following a single

point, such as the centre of mass of a cell over time, tracking for

behavioural studies requires multiple landmarks on the organism of

interest. Adding landmarks to follow the movement of points on the

body with respect to others is cumbersome, time consuming and not

always an option. As a remedy, DeepLabCut (Mathis et al., 2018)

exploits DL to automatically track points on diverse organisms from

a few manual annotations. The DL model is trained on manually-

annotated labels capturing striking points (e.g. left/right ear or

individual digits) and learns to identify these labels on new image

data without the need for added markers. DeepLabCut exploits

transfer learning (see Glossary, Box 1) to achieve high accuracy

tracking with small training sets of ∼200 images. Other markerless

tracking algorithms with a focus on several animals have been

proposed to track social interactions [SLEAP (Pereira et al., 2020

preprint); id tracker ai (Romero-Ferrero et al., 2019)] or animal

posture [DeepPoseKit (Graving et al., 2019)].

Resources and tools

The bioimage analysis community has developed a strong

culture of user-friendly open-source tool developments since its

early days (Carpenter et al., 2012; Schneider et al., 2012; Eliceiri

et al., 2012). Several well-established platforms, such as Weka

(Arganda-Carreras et al., 2017) and ilastik (Berg et al., 2019),

Box 4. Case study: in toto imaging and reconstruction of the early mouse embryo
Early development is a highly dynamic process whereby there are large changes in embryo size, shape and optical properties. Capturing the movement of

cells inside the embryo and tracking cell divisions to form cell lineage maps is therefore a significant challenge, both experimentally as well as

computationally. McDole and colleagues detected cell divisions using a 10-layer 4D CNN that predicts whether each voxel (see Glossary, Box 1) includes a

cell division (McDole et al., 2018). The deep learning model is able to identify twice as many cell divisions as a human annotator, thus greatly increasing

accuracy in addition to providing automation (A). The model has been trained on 11 image volumes, in which nuclei of both non-dividing and dividing cells

have been annotated, as well as 2083 annotated divisions from the entire time series. In addition, an in toto picture of the entire early embryo as it grows over

250× in volume is achieved by coupling custom adaptive light sheet microscopy with cell tracking. Tracking to retrieve cell fate maps is performed using a

Bayesian framework with Gaussian mixture models and statistical vector flow analysis (B). Image from McDole et al. (2018). Scale bar: 10 μm.
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provide a user-friendly interface to use conventional non-DL-based

ML approaches in bioimage analysis problems. Following the

rising popularity of DL in the past decade and the difficulty for

non-programmers to adopt it, some of these platforms have been

further developed to include DL-based algorithms, and new

ones have emerged. Here, we provide an overview of selected

available open-source resources developed by the bioimage

analysis community that can be used to get started with DL

(Table 1). Lucas and colleagues also provide an excellent in-depth

discussion of open-source resources for bioimage segmentation

with DL for readers wanting to explore this topic further (Lucas

et al., 2021).

Several resources offer a direct point of entry into DL for

bioimaging without the need for any coding expertise. The most

accessible DL use-case consists of exploiting pre-trained models.

This essentially means using a model that has been already trained

on another image dataset to make predictions on one’s own data

without additional training, and requires little to no parameter

tuning. Popular standalone platforms that pre-existed the DL era,

such as CellProfiler (McQuin et al., 2018) and ilastik, now offer pre-

trained U-net models for a variety of tasks. Both are available for all

major operating systems and have their own dedicated general user

interface (GUI). As these two software packages are extremely well

supported and documented, and because they contain a wealth of

useful methods for image analysis in addition to DL-based ones,

they probably are the lowest-entry-cost options to start

experimenting with DL. Several popular pre-trained models, such

as the original U-net implementation (Ronneberger et al., 2015),

StarDist (Schmidt et al., 2018) and Cellpose (Stringer et al., 2021),

have been made available as plug-ins for ImageJ (Schindelin et al.,

2012) and napari (napari contributors, 2019). The DeepImageJ

plug-in (Gómez-de-Mariscal et al., 2019 preprint), in particular,

offers a unifying interface to reuse pre-trained models – a large

variety of models for various image restoration and segmentation

tasks is already available through it and the list is likely to grow.

Searching for model implementations and pre-trained weights may

be a daunting task. The reusability of most DL-based methods is

significantly impacted by their custom nature, often resulting in

code that is hard to distribute. The Bioimage Model Zoo

(bioimage.io) is a community-driven initiative aiming to address

this issue by centralizing and facilitating the reuse of published

models, in DeepImageJ among others. Although it is still under

development it is evolving quickly, and the Bioimage Model Zoo is

poised to become a reference resource for DL models dedicated to

bioimage analysis.

Although pre-trained models are a good starting point, their use

may not suffice to obtain good results, or worse, it may cause

serious underperformance and poses a risk of generating artefacts

due to dataset shift (discussed below). A more reliable, yet more

involved, strategy consists of training an existing model with one’s

own data, either from scratch or by fine-tuning a pre-trained model,

which is a particular feature of transfer learning. Although several

recent tools facilitate the annotation of 2D and 3D image datasets

(Hollandi et al., 2020a,b; Borland et al., 2021), the process of

manually producing high-quality ground-truth annotations for

training remains tedious, in particular for 3D+time datasets. The

web-based platform ImJoy (Ouyang et al., 2019) hosts a large

collection of plug-ins that provide interactive interfaces to generate

ground-truth annotations on multi-dimensional images and train

various DL algorithms. From ImJoy, algorithms can be run directly

Table 1. Open-source tools for deep learning in bioimaging

Tool Reference URL Type Use-case Prerequisites

CellProfiler McQuin et al.,

2018

cellprofiler.org GUI-based standalone

general bioimage

analysis software

Inference with pre-trained

models and model training

from existing ground truth

for classification

None

ilastik Berg et al.,

2019

ilastik.org GUI-based standalone

general bioimage

analysis software

Inference with pre-trained

models (fully supported)

and model training from

scratch (debug mode) for

segmentation

None

DeepImageJ Gómez-de-

Mariscal

et al., 2019

preprint

deepimagej.github.io ImageJ/Fiji plug-in

enabling the use of pre-

trained DL-based

bioimage analysis

algorithms

Inference with pre-trained

models for various tasks

Experience with

Fiji/ImageJ

ImJoy Ouyang et al.,

2019

imjoy.io Online computing

platform for deploying

DL bioimage analysis

pipelines

Inference with pre-trained

models and model training

from existing ground truth

for various tasks

None

ZeroCostDL4Mic von Chamier

et al., 2021

github.com/HenriquesLab/

ZeroCostDL4Mic/wiki

Google Colab Python

notebooks

implementing DL-

based bioimage

analysis algorithms

Inference with pre-trained

models and model training

from existing ground truth

for various tasks

None

Bioimage Model
Zoo

N.A. bioimage.io Community-driven online

repository facilitating

reuse and access to

pre-trained DL models

Retrieve models architecture

for various tasks, along

with pre-trained weights

Dependent

on the

considered

model

CSBDeep N.A. csbdeep.bioimagecomputing.com Python DL toolbox for

general bioimage

analysis

Model training from existing

ground truth for image

restoration

Experience with

Python

DL, deep learning; GUI, general user interface; N.A., not applicable.
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in the browser on a local host, remotely, or on a cloud server.

The ZeroCostDL4Mic (von Chamier et al., 2021) toolbox also

provides an excellent user-friendly solution for training DL

models through guided notebooks, requiring no programming

knowledge.

For the experienced programmer wishing to go further, many

DL models are freely available as Python libraries. However, the

level of user support may vary dramatically and can range from

undocumented code on GitHub repositories to dedicated webpages

with thorough user manuals and example data. CSBDeep

(csbdeep.bioimagecomputing.com) offers one of the best examples

of one such well-maintained resource, providing a wealth of

documentation facilitating the reuse and adoption of DL models.

Going further with deep learning

DL offers a plethora of exciting possibilities that go far beyond

automating classical bioimage analysis tasks. Here, we discuss

some DL avenues that look promising in the analysis of quantitative

biological data beyond images and for modelling.

Transfer learning
DLmodels usually require large amounts of data for training, which

requires significant annotation efforts. In many cases, such ground

truth sets cannot be easily generated, either because of technical

limitations (e.g. in the context of image restoration) or owing to the

sheer amount of manual curation required. Transfer learning thus

holds huge potential to enable the creation of all-rounder deep NN

(DNN) that can then be fine-tuned to many specific applications

relying on a few annotated data only.

In the context of image restoration, Jin and colleagues have

illustrated the benefit of transfer learning in a DL pipeline by

improving structured illumination microscopy image quality at low

light levels (Jin et al., 2020). The DNN trained with transfer learning

have been shown to perform equally well as their equivalents trained

from scratch, but require 90% fewer ground truth samples and 10×

fewer iterations to converge. Strategies aimed at reducing the

number of training samples are particularly relevant to

developmental biology experiments, which often rely on costly

protocols to harvest few numbers of samples and results in scarce

datasets. In spite of encouraging demonstrations of the benefits of

transfer learning, several questions around trust in DL-generated

results remain to be answered. Pre-trained NN must be used with

caution, because they may be subject to dataset shift when dealing

with data that are too dissimilar to what they have been trained on.

Dataset shift refers to the general problem of how information can be

transferred from a variety of different previous environments to help

with learning, inference and prediction in a new environment

(Storkey, 2008). Understanding dataset shift thus translates to

characterizing how the information held in several closely related

environments (e.g. data collected in other laboratories) can help

with prediction in new environments. Dataset shift in bioimaging

can have several origins, such as batch effects, different sample

preparation protocols or different imaging systems. Different

mitigation strategies should be used to address dataset shift

depending on its nature (Quiñonero-Candela et al., 2008), and the

topic is being actively investigated. However, because dataset shift

is a complex phenomenon that may be hard to fully characterize, one

must exercise the utmost caution when using DL models outside of

their training domain. When relying on pre-trained models,

practitioners hold responsibility to understand the strategy and

type of data that have been used to train the NN, identify the type of

shift they may be facing, and remain aware of the existing mitigation

strategies or lack thereof. In situations where the discrepancy

between the data to be processed and those used for the initial

training of the NN cannot be clearly characterized, preference

should be given to conventional ML and non-DL image processing

techniques.

Style transfer
Style transfer (see Glossary, Box 1) has been famously applied in

the context of artistic illustrations, allowing any photographs to be

turned into van Gogh paintings (Gatys et al., 2016). Similarly, it

can be used to learn the image style of different microscopy

modalities, with numerous applications from synthetic data

generation to image enhancement. For example, this strategy has

been successfully employed to adapt a nucleus segmentation task to

unseen microscopy image types (Hollandi et al., 2020a,b). In this

example, style transfer is used to synthesize different types of

artificial microscopy images from a single training set of ground-

truth labelled images. The style learned from unlabelled image

samples, which are drawn from a different distribution than the

training samples, is transferred to the labelled training samples.

Thus, for the same set of labels, new images with realistic-looking

texture, colouration and background pattern elements can be

generated. This approach outperforms fine-tuning the network

with a small set of additional labelled data and, in contrast, does not

require any extra labelling effort. The approach has been shown to

perform well on various types of microscopy images, including

haematoxylin and eosin histological staining and fluorescence.

Although this work focuses on nucleus segmentation, the

possibility to augment difficult-to-obtain data with style transfer

has enormous potential in many bioimage analysis applications

beyond this specific problem.

Although a lot of the enthusiasm for style transfer can be attributed

to its potential as a data augmentation technique (see Glossary,

Box 1), it is equally stimulating to envision it as a computational

alternative to image acquisition. Style transfer can be exploited for

synthetic image generation, for example to produce microscopy

images from different modalities, such as inferring phase-contrast

microscopy images from differential interference contrast images and

vice versa (Han and Yin, 2017). This kind of approach is appealing

for many reasons; for example, it reduces the equipment needed and

reduces image acquisition time. However, current style transfer

methods are oblivious to the physical properties of the specimens

being imaged. Despite the visually realistic and convincing images

generated for relatively simple specimens, further investigations are

needed to assess how such a method would perform for more

complex specimens. One study perfectly summarizes the underlying

dilemma: ‘the more we rely on DL the less confident we can be’

(Hoffman et al., 2021). When doing style transfer, one specifically

trains networks to lie plausibly. As such, the resulting DNN will be

able to turn any object into a realistic-looking biological structure and

will do so, regardless of the input; happily turning cat pictures into

plausible microscopy images of cells, for example. Subsequent work

is required to define confidence and uncertainty metrics for style

transfer to be used in the context of scientific discovery. When

exploiting style transfer strategies, biologists should make sure to

follow recent developments in these directions and,most importantly,

remain fully aware that a consensus of best practices on thismatter has

yet to be reached.

Natural texture generation
Related to style transfer, natural texture synthesis is an emerging and

less studied research direction with broad implications in bioimage
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analysis. Texture synthesis is a well-studied problem in computer

graphics where, broadly, one wants to algorithmically generate a

larger image from smaller parts by exploiting geometric regularly

occurring motifs (Niklasson et al., 2021). Whether concerning

histological images (Ash et al., 2021), early developmental

patterning (McDole et al., 2018) or man-made textures (such as

textiles), local interactions between smaller parts (cells,

morphogens or threads, respectively) can give rise to larger,

emerging structures. Rather than encoding the large dimensional

spaces of pixels and colours, recent DL approaches aim to describe

these images in a generative way, through feed-forward stochastic

processes (Reinke et al., 2020; Pathak et al., 2019). The most recent

approaches to generative modelling of texture synthesis are systems

of partial differential equations aimed at modelling reaction-

diffusion equations (Chan, 2020), cellular automata (Niklasson

et al., 2021; Mordvintsev et al., 2020) and oscillator-based multi-

agent particle systems (Ricci et al., 2021 preprint). Among these, the

neural cellular automata takes its inspiration from reaction-diffusion

models of morphogenesis by modelling a system of locally

communicating cells that evolve and self-organize to form a

desired input pattern. In the dynamic process of learning a pattern,

the cells learn local rules that exhibit global properties. However,

these rules are abstract and not readily interpretable biologically.

Mapping them to explicit gene modules involved in signalling

pathways or intra cellular communication is essential to making

these models useful to the developmental biological community.

Alternatively, non-black box approaches (Zhao et al., 2021) aim

to identify the physical properties that can be accurately inferred

from full images. Once parameters and physical properties are

inferred, we can naturally wonder whether these 2D abstractions

generalize, not only to 3D settings (Sudhakaran et al., 2021

preprint), but also to systems reminiscent of cellular self-

organization (Gilpin, 2019). In this context, an experimental

counterpart is provided by studies in which the problem of pattern

formation is addressed synthetically by creating morphogen systems

that yield patterns reminiscent of those observed in vivo (Toda et al.,

2020; Zhang et al., 2017).

Lessons from statistical genetics: the need for proper null models
When trying to establish whether a molecular event, such as change

in gene expression, affects cells in an observable manner, one faces

the statistical challenge of assessing significance. In past decades,

statistical genetics has developed an arsenal of tools for assessing

statistical significance in high dimensional problems, where

hypothesis correction is essential for distinguishing between true

correlation and spurious events (Barber and Candes̀, 2019; Stephens,

2017). Despite focusing on prediction, DL architectures for computer

vision do offer many recipes for probing the interpretability of a

classifier [e.g. saliency maps (Adebayo et. al, 2018)]. Additional

approaches aim to identify meaningful perturbations in training data

that can lead to misclassifications (Fong and Vedaldi, 2017), whereas

others detect subparts or prototypical parts of an image that could

impact classification (Chen et al., 2019 preprint). A good resource

and point of access into this vast community is the Computer Vision

and Pattern Recognition Conference (CVPR) series of workshops

(https://interpretablevision.github.io/index_cvpr2020.html) on

interpretable ML. However, all these approaches require a large

amount of training data, often unavailable in biological settings, as

previously discussed.

In low-data regimes, one falls back into statistician territory and

typically relies on the existence of a properly chosen null model to

evaluate significance (Schäfer and Strimmer, 2005). When testing

for the significance of an effect variable (e.g. gene expression

change) on a quantity of interest (e.g. image feature), null models

represent a way to formalize how data might look in the absence of

the effect. By comparing statistical estimates from data to statistical

estimates generated through appropriate null models, one can assess

whether an effect is spurious or real. In simple regression models,

for example, null datasets are often generated through permutation

tests where, as the name suggests, data (input and outputs) are

shuffled and their correlation contrasted with correlation from

unshuffled data. However, permutation is not always an appropriate

baseline, as illustrated in cases where data is not independently

identically distributed (Dumitrascu et al., 2019; Elsayed and

Cunningham, 2017). To mediate these issues, approaches for

creating ‘fake data’ that can represent null models have been

proposed with false discovery correction in mind (Barber and

Candes̀, 2019). Although fake data is easier to generate when

dealing with Gaussian variables, it is not clear what a proper,

highly-structured, fake image would look like. For example,

randomly shuffling the pixels of an image will just create noise.

Despite the inherent difficulties, designing appropriate visual

counterfactual and null models for bioimage data is essential in

augmenting studies that aim to relate genomics with morphology,

and is a promising area of research.

Multimodal learning
Bioimages are typically collected across multiple conditions

spanning, for example, different replicates, cell types and time

scales, as well as various perturbations, such as mechanical,

genetic or biochemical. Layering in additional molecular

information, such as gene expression, cell lineage or chromatin

accessibility (Dries et al., 2021) from high-throughput sequencing

experiments, brings the challenge of integrating data frommultiple

modalities, and the challenge of quantifying how predictive of one

another the different modalities can be (Pratapa et al., 2021).

Common tasks in multi-modal transfer learning particularly

relevant to bioimage analysis include integrating and visualizing

data from different sources (data fusion), translating between

different modes (transfer) and aligning data collected across

multiple modes (alignment). Data fusion is the challenge of

aggregating modalities in a manner that improves prediction,

especially when data might be missing or noisy. Data fusion has

been thoroughly explored in the context of single-cell batch

correction, where computational methods allow the integration of

datasets of the same kind of modality, namely single-cell gene

expression data (Argelaguet et al., 2021). However, a similar

problem can be framed for microscopy data collected using

different imaging modalities or in different laboratories.

Data from fundamentally different modalities, such as image data

accompanied by single-cell gene expression or chromatin packing

(Clark et al., 2018; Gundersen et al., 2019), poses additional

challenges. Integrating them can help in understanding whether

changes in gene expression have a direct consequence not only on

how individual cells look, but also on how they interact with their

neighbours. However, the resolution of these different data types

may be significantly different, making a direct correspondence

between modalities hard to achieve (Vergara et al., 2021). In these

situations, modality alignment becomes paramount (Lopez et al.,

2019). A recent work integrating single-cell RNA-sequencing data

and single-cell nuclear-imaging of naive T-cells (Yang et al., 2021)

has shown that DL representation of images contain signals

predictive of true fold change of gene expression between

different classes of cells.
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Conclusion

The interaction between DL and developmental biology is in its

nascent stages, but will continue to grow. As a result, it is of

increasing importance for biologists to become aware of

applications in which DL can be exploited, but also to discern its

limitations and potential pitfalls when analysing and interpreting

biological data. Although undeniably powerful in some settings, the

use of DL comes at a cost in resources (e.g. large amount of labelled

data required for training, high computational demands) and incurs

risks (e.g. the black-box nature of the algorithms and dataset shift).

For these reasons, conventional ML and non-DL-based image

processing methods should always be tried first and chosen

whenever possible. As a community, cell and developmental

biologists can make a conscious effort to support a scientifically

sound and informed use of DL through the standardization of data

acquisition, archival protocols, annotation conventions and

metadata describing image processing pipelines. There is an

opportunity for the developmental biology community to

centralize published data and analysis pipelines in an open source

and curated manner, to promote a healthy use of DL in scientific

discovery. As DL is rapidly pushing the limits of what is achievable

in science, it calls on us to reflect on our common goals and re-

evaluate how we share data and collaborate.
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Salbreux, G. andDahmann, C. (2018). Differential lateral and basal tension drive
folding of Drosophila wing discs through two distinct mechanisms. Nat. Commun.

9, 4620. doi:10.1038/s41467-018-06497-3
Toda, S., Mckeithan, W. L., Hakkinen, T. J., Lopez, P., Klein, O. D. and Lim,W. A.
(2020). Engineering synthetic morphogen systems that can program multicellular

patterning. Science 370, 327-331. doi:10.1126/science.abc0033
Tokuoka, Y., Yamada, T. G., Mashiko, D., Ikeda, Z., Hiroi, N. F., Kobayashi, T. J.,
Yamagata, K. and Funahashi, A. (2020). 3D convolutional neural networks-

based segmentation to acquire quantitative criteria of the nucleus during mouse

embryogenesis. NPJ Syst. Biol. Appl. 6, 32. doi:10.1038/s41540-020-00152-8
Vergara, H. M., Pape, C., Meechan , K. I., Zinchenko, V., Genoud, C., Wanner,
A. A., Titze, B., Templin, R. M., Bertucci, P. Y., Simakov, O. et al. (2021).
Whole-body integration of gene expression and single-cell morphology. Cell (in

press). doi:10.1016/j.cell.2021.07.017

Villoutreix, P. (2021). What machine learning can do for developmental biology.

Development 148, dev188474. doi:10.1242/dev.188474
Von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E.,
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