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Abstract— Deep learning (DL) has emerged as an effective
tool for channel estimation in wireless communication systems,
especially under some imperfect environments. However, even
with such unprecedented success, DL methods are often regarded
as black boxes and are lack of explanations on their internal
mechanisms, which severely limits their further improvement and
extension. In this paper, we present preliminary theoretical analy-
sis on DL based channel estimation for single-input multiple-
output (SIMO) systems to understand and interpret its internal
mechanisms. As deep neural network (DNN) with rectified linear
unit (ReLU) activation function is mathematically equivalent to
a piecewise linear function, the corresponding DL estimator can
achieve universal approximation to a large family of functions by
making efficient use of piecewise linearity. We demonstrate that
DL based channel estimation does not restrict to any specific
signal model and asymptotically approaches to the minimum
mean-squared error (MMSE) estimation in various scenarios
without requiring any prior knowledge of channel statistics.
Therefore, DL based channel estimation outperforms or is at
least comparable with traditional channel estimation, depending
on the types of channels. Simulation results confirm the accuracy
of the proposed interpretation and demonstrate the effectiveness
of DL based channel estimation under both linear and nonlinear
signal models.

Index Terms— Explainable deep learning, input space parti-
tion, channel estimation, ReLU.

I. INTRODUCTION

D
EEP learning (DL) is making profound technologi-

cal revolution to the concepts, patterns, methods and
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means of wireless communication systems [1]–[3]. There

have been many interesting results for the physical layer

(PHY) [4] or network layer of communications [5], including

channel estimation [6], [7], channel state information (CSI)

feedback compression [8], signal detection [9], and resource

management [10], [11], etc. Among all DL applications to

wireless communication systems, channel estimation is one of

the most widely studied issues. The first attempt has been

made in [7] to apply powerful DL methods to learn the

characteristics of frequency selective wireless channels and

combat the nonlinear distortion and interference for orthogonal

frequency division multiplexing (OFDM) systems. In [12],

a novel framework incorporates DL methods into massive

multiple-input multiple-output (MIMO) systems to address

direction-of-arrival (DoA) estimation and channel estimation

problems. In [13], DL based channel estimation is extended to

doubly selective channels and has numerically demonstrated

better performance than the conventional estimators in many

scenarios. In [14], the channel matrix is regarded as an

image and a DL based image super-resolution and denoising

technique is employed to estimate the channel. Furthermore,

a sparse complex-valued neural network structure is proposed

in [15] to tackle channel estimation in massive MIMO systems.

Another branch of research attempts to establish a novel end-

to-end deep neural network (DNN) architecture to replace all

modules at the transmitter and at the receiver, respectively,

instead of strengthening only certain modules [16]–[18].

Despite great success achieved by DL, the DNN embedded

wireless communication system is generally considered as a

black box for signal transmission/reception. Only numerical

and experimental evaluations are available to demonstrate the

powerful capability of DL in learning key functional compo-

nents of wireless systems and there is nearly no analytical

interpretation to confirm the advantages and disadvantages of

DL methods when applied to communications. It is desired

to understand why DL methods achieve astounding perfor-

mance for a wide range of tasks for further performance

improvement and extension to different environments. More-

over, the restrictions of DL methods to wireless communica-

tion systems are also very important for better understanding

which scenarios are suitable for DL embedded communication

systems.

Another important issue is how well newly emerged

data-driven DL methods are compared to the traditional expert-

designed algorithms in the field of wireless communica-

tions [19]. Impairments in PHY communications, such as

noise, channel fading, interference, etc, have been thoroughly
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understood and addressed by well-established signal and cod-

ing theories from both practical and theoretical perspectives.

It is yet unclear whether the black-box DL methods would

be able to outperform the existing white-box approaches.

In addition, the traditional ways of signal processing have been

overturned by DL methods, in which satisfactory performance

is still attainable in the absence of expert knowledge. Little

research so far has dealt with how the DL methods learn from

data and how the lack of expert knowledge affects the DL

embedded communication systems.

In fact, there exits a wealth of literature addressing the

complicated inner-workings of DNNs. The very first results

have demonstrated the universal approximation of DNNs, that

is, any continuous function defined on a compact set can

be approximated at any precision using a DNN [20], [21].

As DNNs with rectified linear units (ReLU DNNs) become

increasingly popular in recent years, the focus of study has

been shifted to analyze the powerful capability of ReLU

DNNs at function representation [22]–[24] and ReLU DNNs

are also proved to be universal approximators to a large

family of functions [25]. However, little evidence exits in

previous research to guarantee that DNNs are really capable to

rival traditional signal processing methods in communication

systems despite the universal approximation. More theoretical

support should be provided to verify the effectiveness of DL

embedded communication systems.

Recently, more and more research has indicated that DL

methods are particularly suited to channel estimation and it has

become more common to deploy ReLU DNNs into communi-

cation systems. The practical success of ReLU DNNs calls for

comprehensive understanding of their behavior on estimating

channels to provide guidance and inspiration for the further

exploitation on DL based estimation theory. In this paper,

we present an initial attempt on interpreting DL for channel

estimation in single-input multiple-output (SIMO) systems

based on fully-connected ReLU DNNs. Our contributions are

listed as follows:

• We analyze and compare the performance of the DL

based channel estimation with the conventional methods,

i.e., least-squared (LS) and linear minimum mean-squared

error (LMMSE) estimators. We demonstrate that the DL

estimator built on ReLU DNNs can well approximate the

minimum mean-squared error (MMSE) estimator in the

asymptotic limit of many training samples.

• We prove that the rate of convergence of the DL estimator

to the MMSE estimator scales polynomially fast with

the size of training samples. Such a result shows the

effectiveness of the DL estimator for channel estimation.

• We demonstrate that the DL estimator experiences serious

performance degradation and even fails to provide reliable

estimates if the statistics of training data mismatch the

deployed environments.

The rest of this paper is organized as follows. The system

model and the traditional channel estimation methods are

introduced in Section II. The DL based channel estimation

is analyzed in Section III. Robustness of the DL based

channel estimation to mismatched training data is presented

in Section IV. Simulation results are provided in Section V

followed by the conclusions in Section VI.

Notations: We use lowercase letters and capital letters in

boldface to denote vectors and matrices, respectively. The

positive integer set and real number set are denoted by N

and R, respectively. IM denotes the M × M identity matrix.

Notation (·)T represents the transpose of a matrix or a vector,

respectively. E{·} denotes the expectation, tr{·} denotes the

trace of a matrix, and vec(·) denotes the vectorization of a

matrix. The cardinality of a set is denoted by |·|. Notations ‖·‖2

and ‖ · ‖∞ represent the 2-norm and supremum-norm of a

vector or a matrix, respectively. Notation exp(·) denotes a

exponential function of e. Notation ⌈·⌉ represents the ceiling

of a real number.

II. SYSTEM MODEL AND TRADITIONAL

CHANNEL ESTIMATION

In this section, we first introduce the SIMO communication

system for channel estimation and then present the traditional

channel estimation methods.

A. System Model

Consider a SIMO communication system with d antennas

at the base station (BS) and a single antenna at the user

side. Assume the uplink channel is with block fading, that

is, channel parameters are fixed within a block but vary from

one to another. The traditional way of estimating channels at

the BS is to use uplink pilot. Let τ be the transmitted pilot

symbol with |τ |2 = 1. The received symbol at the BS can be

represented by the following d × 1 vector

x = τh + n, (1)

where h denotes the d×1 random channel vector between the

user and the BS and n is the d×1 white Gaussian noise vector

with zero-mean and element-wise variance σ2
n. We assume that

the channel vector h is with zero mean and covariance matrix

Ξ = E{hhT }.1

B. Traditional Channel Estimation

The goal of channel estimation is to extract channel vector

h from received signal vector x as accurately as possible. The

traditional estimation methods are based on the signal model

in (1).

1) LS Channel Estimator: From (1), the LS estimate of h

can be expressed as [26]

hLS =
1

τ
x = h +

1

τ
n, (2)

and the corresponding mean-squared error (MSE) is

JLS = E{‖h− hLS‖
2
2} =

d

1/σ2
n

. (3)

As shown in (3), the performance of the LS estimator

is inversely proportional to the signal-to-noise ratio (SNR)

defined as 1/σ2
n.

1In general, the complex valued signals would decompose into real values
before inputting to ReLU DNNs. For convenience, we assume that both of
input signals and channels are real values.



2400 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 4, APRIL 2021

2) LMMSE Channel Estimator: The LMMSE estimator

exploits the signal model in (1) and channel statistics to obtain

the estimation, which can be expressed as [26]

hLMMSE = Ξ

(

Ξ +
σ2

n

τ2
Id

)−1

hLS. (4)

Then, the MSE of the LMMSE estimator is computed as

JLMMSE = tr

{

Ξ

(

Id +
1

σ2
n

Ξ

)−1 }

≤ JLS. (5)

3) MMSE Channel Estimator: The MMSE estimator can be

expressed as [26]

hMMSE = E{h|x} (6)

and is optimal under the criterion of minimizing the MSE.

Generally, the MMSE estimator is different from the LMMSE

estimator. Only in some special cases, we have hMMSE =
hLMMSE if x and h are joint Gaussian distributed for linear

models, such as in (1). Therefore, the LS and LMMSE

estimators can well address the channel estimation for linear

models as in (1). However, the estimation performance of

the LS and LMMSE estimators degrades significantly for

nonlinear models since both of them are linear.

The LMMSE estimator tends to be more accurate by uti-

lizing channel statistics but is sensitive to the imperfection of

channel statistics. On the contrary, the LS estimator is easy to

implement due to no prior requirement on channel statistics,

but such simplicity is at cost of relatively low accuracy.

Recently, the DL estimator has emerged as a promising

alternative to address channel estimation in wireless com-

munication systems. The excellent generalization ability and

powerful learning capacity of the DL estimator make it a pow-

erful tool for channel estimation in imperfect and interference

corrupted systems.

III. ANALYSIS ON DL BASED CHANNEL ESTIMATION

Though DL based channel estimation has shown excellent

performance in various communication systems, it has seldom

been analyzed from a theoretical perspective. In this section,

we provide preliminary theoretical analysis on the performance

of the DL based channel estimation via statistical learning

theory. Specifically, we demonstrate the DL estimator asymp-

totically approaches to the MMSE estimator as the number of

training sample increases.

A. Basic Setting of DL Channel Estimator

Consider a DL estimator D with a fully-connected ReLU

DNN. The input and output of D are denoted by x ∈ R
d and

h ∈ R
d, respectively. In the subsequent discussion, we will

denote

Z = {(xm,hm) |xm,hm ∈ R
d, m = 1, . . . , |Z|} (7)

as input-output sample set.

The underlying DNN of D consists of the ReLU activation

function, ϕ(x) = max{0, x}, l ∈ N hidden layers, and the

neuron assignment d = (d0, d1, . . . , dl, dl+1) ∈ N
l+2 with

d0 = dl+1 = d. The number of hidden layers l is the depth

of D. The width and size of D are denoted by max{d1, . . . , dl}
and

∑l
i=1 di, respectively.

Let

Θ =
{

θ =
(

vec(W0),b0, . . . , vec(Wl),bl

)

∈ R
du

}

(8)

be the set of all parameters of D, where du =
∑l

i=0 di+1 ×
(di + 1), Wi ∈ R

di+1×di and bi ∈ R
di+1 are the weight

matrix and the bias vector of the i-th layer for i ∈ {0, . . . , l}.

For a fixed network structure d, the underlying function that

represented by D can be expressed as

fθ(x) = Al ◦ ϕdl
◦ Al−1 ◦ ϕdl−1

◦ · · · ◦ ϕd1
◦ A0(x), (9)

where Ai : R
di → R

di+1 is the affine transformation

corresponding to weight Wi and bias bi, ϕdi
: R

di → R
di

is the entry-wise ReLU activation function, and ◦ denotes

the function composition. The goal of the DL estimator is

to optimize θ in order to approximate the MMSE estimator

for given training sample set Z and network architecture d.

B. Internal Mechanism of DL Channel Estimator

Since ReLU function is piecewise linear, the neurons in

D consist of only two states: with zero output or replicating

input. When θ is fixed, all the possible activation patterns

of neurons in D can be represented by a set K ⊆ {0, 1}d̄,

where d̄ =
∑l

i=1 di is a total number of neurons in D and

each element in K is a d̄-dimensional vector with its entries

either 0 or 1. It is obvious that |K| is upper bounded by 2d̄,

i.e, |K| ≤ 2d̄. Similar to [23], the input space of a ReLU

DNN is partitioned into different linear regions according to

the corresponding activation patterns so that the ReLU DNN

turns into a linear mapping in each region. Denote X as the

input space and Xk as the input region within X corresponding

to the k-th activation pattern. It is obvious that2

Xk ⊆ X , k = 1, . . . , K = |K|, X = ∪K
k=1Xk. (10)

Let x̃i = [xi,1, . . . , xi,di
]T be the output of the i-th layer

with x̃0 = x. For any input x ∈ Xk, Ai(x̃i) in (9) is computed

as

Ai(x̃i) =

{

W0x + b0, i = 0,

W̃iAi−1(x̃i−1) + bi, i ≥ 1,
(11)

where W̃i = WiΛi and Λi is an R
di×di diagonal matrix

with the diagonal elements either 0 or 1. Note that Λ0 =
Id and W̃0 = W0Λ0. Moreover, the diagonal elements of

Λi correspond to the activation pattern of neurons at the i-th
layer with their values either 0 or 1. Since all inputs x ∈ Xk

have the same activation pattern, the set {Λi}
l
i=0 is fixed.

By recursively expanding Ai(x̃i) layer by layer, we can further

express Ai(x̃i) as

Ai(x̃i) =

i
∏

j=0

W̃jx+

i−1
∑

j=0

( j
∏

p=0

W̃i−p

)

bi−1−j +bi

= Ŵix + b̂i, (12)

where Ŵi =
∏i

j=0 W̃j is the equivalent weight

matrix with respect to (w.r.t) the input x and

2These linear regions are not necessarily disjoint.
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b̂i =
∑i−1

j=0

(

∏j
p=0 W̃i−p

)

bi−1−j + bi is the sum of

the remaining terms. Therefore, fθ (x) turns into an affine

function for x ∈ Xk and can be expressed as

fθ (x) = fXk
(x) = WXk

x + bXk
, (13)

where WXk
= Ŵl and bXk

= b̂l.

Remark 1:

• Generally, most of current state-of-the-art DNNs used

by the DL embedded communication systems are based

on fully-connected ReLU DNNs. Nearly all these struc-

tures involve the use of ReLU activation functions and

their network layers, e.g., convolutional layers, can be

regarded as variant types of dense layer with weights

regularized. Therefore, we choose fully-connected ReLU

DNNs as an example to illustrate how the perfor-

mance of channel estimation is affected by the intro-

duction of DNNs. It is an interesting topic for future

research by considering other elaborately designed ReLU

DNNs.

• If θ is fixed, the inputs belonging to the same region

have the same form of fXk
(x) and correspond to the

same activation pattern. From (13), fXk
(x) is an affine

function for x ∈ Xk, and therefore fθ (x) is an R
d → R

d

piecewise linear function over X .

• The DL estimator has the simplicity and stability of a

linear estimator, but also enables remarkable flexibility

through the piecewise linear property.

• The DL estimator can model a large family of nonlin-

ear functions by dynamically adjusting the partitioned

regions and is more general and flexible compared to

the LS and LMMSE estimators. The piecewise linear

property of fθ(x) is a critical step to interpret DL

based channel estimation and will be used in the later

analysis.

C. Performance Assessment of DL Channel Estimator

Different from the LS and LMMSE estimators, it is difficult

to derive an explicit analytical form of the DL estimate

as well as the corresponding MSE. Hence, the performance

assessment of the DL estimator and the comparison to the LS

and LMMSE estimators are not straightforward. Nevertheless,

the DL estimator can approximate to a large family of func-

tions due to its piecewise linear property. We can leverage

the universal approximation of the DL estimator to assess its

estimation performance and derive its rate of convergence to

the MMSE estimator.

Let f(x) : R
d → R

d denote a channel estimator for h and

ℓ2 be the space of f(x) with finite 2-norm defined as

‖f(x)‖2 =

[ d
∑

i=1

E
{

fi(x)2
}

]1/2

< +∞, (14)

where fi(x) is the i-th entry of f(x).
Define

J(f) = E{‖f(x) − h‖2
2} (15)

as the estimation MSE of f(x). From the orthogonal principle,

we have

J(f) = E
{

‖f(x) − hMMSE + hMMSE − h‖2
2

}

= E
{

‖f(x) − hMMSE‖
2
2

}

+ E
{

‖hMMSE − h‖2
2

}

+ 2E
{

(f(x) − hMMSE)T (hMMSE − h)
}

= E
{

‖f(x) − fo(x)‖2
2

}

+ JMMSE, (16)

where fo(x) = hMMSE denotes the channel estimate of the

MMSE estimator and J(fo) = JMMSE is the corresponding

MSE.

The first term in the right-hand side (RHS) of (16) is the

expectation of the squared 2-norm distance from the use of

f(x) to model hMMSE and is non-negative. In this respect,

the second term JMMSE, i.e., the MSE of the MMSE estimator,

in the RHS of (16) provides a lower bound on J(f), which is

independent of f(x) and is determined by the joint distribution

of x and h. The distance between J(f) and JMMSE then serves

as the evaluation criterion for the performance assessment of

the estimator f(x).
Given a ReLU DNN with parameter θ, the input-output

relation of the DL estimator can be expressed as a function

fθ(x) in (13). Then,

J(fθ) = E
{

‖fθ(x) − h‖2
2

}

(17)

is the corresponding MSE of the DL estimator with f(x)
in (15) replaced by fθ(x).

Let ΘR = {θ | ‖θ‖∞ ≤ R, R ≥ 1} be the bounded subset

of Θ, and we will analyze the performance of the DL estimator

within ΘR. Denote

θo = arg min
θ∈ΘR

J(fθ), J(fθo
) = min

θ∈ΘR

J(fθ). (18)

Hence, fθo
(x) is the optimal DL estimator, and θo is the

corresponding parameter of the ReLU DNN. It is obvious that

J(fθo
) is the minimum MSE over all θ ∈ ΘR.

Similarly, denote

θZ = arg min
θ∈ΘR

JZ(fθ), JZ(fθZ
) = min

θ∈ΘR

JZ(fθ), (19)

where

JZ(fθ) =
1

|Z|

∑

(xm,hm)∈Z

‖fθ(xm) − hm‖2
2 (20)

is the least-squared error (LSE) of the DL estimator w.r.t. Z .

In the above, fθZ
(x) is the optimal DL estimator trained by

the dataset Z using the LSE as in (20). Therefore,

hDL = fθZ
(x) (21)

is the DL channel estimate obtained in practice. The corre-

sponding MSE of hDL is J(fθZ
), which is obviously no less

than J(fθo
), that is, J(fθZ

)−J(fθo
) ≥ 0. Let us then analyze

the performance of the DL estimator through quantifying the

distance of J(fθZ
) to JMMSE.

To extend the linear model in (1) to general systems,

the following statistical model

x = fu(τh + n) (22)
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is considered for channel estimation of the DL estimator,

where fu(·) denotes the unknown distortion imposed on the

received signal, e.g., imperfect power amplifier (PA) [27],

[28] and quantization error of analog to digital converter

(ADC) [29].

First, J(fθZ
) can break into two different terms as

J(fθZ
) = J(fθo

) + [J(fθZ
) − J(fθo

)]. (23)

According to (16), the first term J(fθo
) in (23) can be

further decomposed into

J(fθo
) = E{‖fθo

(x) − fo(x)‖2
2} + J(fo). (24)

As J(fo) has the lowest MSE, J(fθo
) is determined by

E{‖fθo
(x) − fo(x)‖2

2}, which is referred to as the approxi-

mation error.

The second term, J(fθZ
) − J(fθo

), in the RHS of (23)

is non-negative and is determined by Z , which is called the

generalization error.

We will analyze the performance of the DL estimator

through quantifying the approximation error and generaliza-

tion error, respectively.

The following theorem demonstrates that the approximation

error in (24) of the DL estimator can be narrowed down with

any precision by a ReLU DNN of finite depth.

Theorem 1: If fo(x) ∈ ℓ2, then there exits an optimized

DL estimator fθo
(x) built on a ReLU DNN of θ ∈ ΘR with

sufficiently large R and at most ⌈log2(d + 1)⌉ hidden layers

such that

E{‖fθo
(x) − fo(x)‖2

2} ≤ ε (25)

for any ε > 0.

Proof: From (13), fθo
(x) is equivalent to a R

d → R
d

piecewise linear function. According to [25, Theorem 2.1],

any R
d → R piecewise linear function can be represented by

a DL estimator that is built on a ReLU DNN with no more

than ⌈log2(d + 1)⌉ hidden layers.

On the other hand, any function f(x) ∈ ℓ2 has finite 2-norm

and can be approximated by a piecewise linear function

with arbitrary precision and finite-valued parameter [30]. Let

fo,i(x) be the i-th entry of fo(x) for i ∈ {1, . . . , d} and there

exists d R
d → R piecewise linear functions to approximate

{fo,1(x), . . . , fo,d(x)} with arbitrary precision if fo(x) ∈ ℓ2.

Such a set of d piecewise linear functions can be represented

by d ReLU DNNs of θ ∈ ΘR each with at most ⌈log2(d+1)⌉
hidden layers when R is sufficiently large. Then, we can

simply put these ReLU DNNs in parallel and combine their

outputs to compose a single ReLU DNN.

The depths of these ReLU DNNs may be different and we

need to align their depths for the composition. Since the output

of any hidden layer of a ReLU DNN can be replicated by

adding hidden layers, we can simply add one or multiple of

hidden layers for each ReLU DNN to align the depths of these

ReLU DNNs. Let lmax be the maximum depth of these ReLU

DNNs and then the aligned depth is just given by lmax, which

is upper bounded by ⌈log2(d+1)⌉. Therefore, there exits a DL

estimator with parameter θε ∈ ΘR with at most ⌈log2(d+1)⌉
hidden layers such that

‖fθε
(x) − fo(x)‖2

2 ≤ ε (26)

for any x ∈ X and ε > 0. From (24), fθo
(x) has the lowest

MSE for all θ ∈ ΘR, and we have

E‖fθo
(x) − fo(x)‖2

2 ≤ E‖fθε
(x) − fo(x)‖2

2 ≤ ε, (27)

which completes the proof.

Remark 2:

• Theorem 1 shows that the approximation error in (24)

can be reduced by increasing the number of lin-

ear pieces representable by the DL estimator. More-

over, the number of linear pieces generated by the

DL estimator is increased with the network size,

i.e., the dimension of the parameter space ΘR [23]–[25].

Therefore, we can reduce the approximation error by

increasing the network size and the DL estimator

with deeper network structure typically achieve better

performance.

• Theorem 1 also indicates that the DL estimator

is powerful at function representation and does not

restrict to any type of signal models or channel

statistics. If no specific models are known a pri-

ori or complicated nonlinear systems are presented,

the DL estimator will be a preferred choice for channel

estimation.

Next, we will discuss the rate of convergence of the gen-

eralization error in (23). Some auxiliary lemmas are provided

before the main result.

Lemma 1: Let α = R‖d‖∞, β = α/(α − 1), and

µ = max
i∈{0,...,4}

{

E{(‖x‖2 + β)i(‖h‖2 − β)4−i}
}

. (28)

Assume that µ are finite. Then, for all ε > 0 and

|Z| ≥ 8µ(αl+1 + 1)4/ε2, (29)

we have

P
(

sup
θ∈ΘR

|JZ(fθ)−J(fθ)| > ε
)

≤ 4P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

4

)

,

(30)

where P denotes the distribution of the training sample in

Z and J◦
Z(fθ) = 1/|Z|

∑|Z|
m=1 ωm‖fθ(xm) − hm‖2

2 with

{ω1, . . . , ω|Z|} a Rademacher sequence.

Proof: If

P(|JZ(fθ) − J(fθ)| >
ε

2
) ≤

1

2
(31)

for all θ ∈ ΘR, then (30) holds according to [31,

Lemma 2.3.7].

Let σ2(fθ) be the variance of ‖fθ(x) − h‖2
2. Chebyshev’s

inequality [32] assures that

P
(

|JZ(fθ) − J(fθ)| ≥
ε

2

)

≤
4σ2(fθ)

|Z|ε2
(32)

for all θ ∈ ΘR. Specifically, σ2(fθ) satisfies

σ2(fθ) = E
{

‖fθ(x) − h‖4
2

}

− J(fθ)2 ≤ E
{

‖fθ(x) − h‖4
2

}

≤ E
{(

‖fθ(x)‖2
2 + 2‖fθ(x)‖2‖h‖2 + ‖h‖2

2

)2}

= E
{(

‖fθ(x)‖2 + ‖h‖2

)4}
. (33)
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Assume that the input space of fθ(x) follows the partition

in (10). Using the triangle inequality yields
∥

∥fθ(x)
∥

∥

2
=

∥

∥WXk
x + bXk

∥

∥

2
≤ ‖WXk

‖2‖x‖2 + ‖bXk
‖2

(34)

for x ∈ Xk. Moreover, ‖WXk
‖2 and ‖bXk

‖2 in (34) are upper

bounded by

‖WXk
‖2 =

∥

∥

∥

∥

l
∏

i=0

W̃i

∥

∥

∥

∥

2

=

∥

∥

∥

∥

l
∏

i=0

WiΛi

∥

∥

∥

∥

2

≤

l
∏

i=0

∥

∥WiΛi

∥

∥

2
≤

l
∏

i=0

∥

∥Wi

∥

∥

2
(35)

and

‖bXk
‖2 =

∥

∥

∥

∥

l−1
∑

i=0

( i
∏

j=0

W̃l−j

)

bl−1−i + bl

∥

∥

∥

∥

2

≤

l−1
∑

i=0

∥

∥

∥

∥

i
∏

j=0

W̃l−j

∥

∥

∥

∥

2

∥

∥bl−1−i

∥

∥

2
+ ‖bl‖2

≤

l−1
∑

i=0

( i
∏

j=0

‖Wl−j‖2

)

∥

∥bl−1−i

∥

∥

2
+‖bl‖2, (36)

respectively. Note that ‖Wi‖2 ≤ R‖d‖∞ = α and ‖bi‖2 ≤
α for i ∈ {0, 1, . . . , l}. Substituting these bounds into (35)

and (36) yields

‖WXk
‖2 ≤ αl+1 (37)

and

‖bXk
‖2≤

(

l−1
∑

i=0

αi+1
)

α+α=
αl+2 − α

α − 1
≤ β(αl+1 − 1), (38)

respectively. From (34), (37), and (38), ‖f(x)‖2 is further

bounded by

‖f(x)‖2 ≤ αl+1(‖x‖2 + β) − β. (39)

Combining (33) and (39), we have

σ2(f) ≤ E{(αl+1(‖x‖2 + β) + ‖h‖2 − β)4}

=

4
∑

i=0

(

4

i

)

αi(l+1)
E
{

(‖x‖2 + β)i(‖h‖2 − β)4−i
}

≤ µ(αl+1 + 1)4. (40)

Replace σ2(fθ) in (32) by the bound in (40) and we can

derive (30) and (31) under the condition that

|Z| ≥ 8µ(αl+1 + 1)4/ε2, (41)

which finishes the proof.

Lemma 2: Assume that both 1
|Z|

∑|Z|
m=1 ‖xm‖4

2 ≤ δ4 and

1
|Z|

∑|Z|
m=1 ‖hm‖4

2 ≤ δ4 for δ > 0. For any θ, λ ∈ ΘR,

we have

|JZ(fθ) − JZ(fλ)| ≤ 3l+12‖d‖∞α2l+1(δ + β)2‖θ − λ‖∞.

(42)

Proof: Note that

|JZ(fθ) − JZ(fλ)|

≤
1

|Z|

|Z|
∑

m=1

|(fθ(xm)−fλ(xm))T (fθ(xm)+fλ(xm)−2hm)|

≤
1

|Z|

|Z|
∑

m=1

‖fθ(xm)−fλ(xm)‖2‖fθ(xm)+fλ(xm)−2hm‖2.

(43)

From Lemma 1, ‖fθ(x) + fλ(x)− 2h‖2 is upper bounded by

‖fθ(x) + fλ(x) − 2h‖2 ≤ ‖fθ(x)‖2 + ‖fλ(x)‖2 + 2‖h‖2

≤ 2[αl+1(‖x‖2 + β) + ‖h‖2 − β].

(44)

Let Vi and pi be the weight and the bias of the i-th layer

corresponding to λ for i ∈ {0, . . . , l}. To simplify the notation,

we define the partial parameter θs and λs by

θs = (vec(W0),b0, . . . , vec(Ws−1),bs−1) (45)

and

λs = (vec(V0),p0, . . . , vec(Vs−1),ps−1), (46)

respectively, the partial network outputs by fθs(x) and fλs(x),
respectively, and the partial error es by

es = ‖fθs(x) − fλs(x)‖2 (47)

for s ∈ {1, . . . , l + 1}. Specifically, the first term in (43) can

be represented by el+1.

Using the triangle inequality, we can bound es+1 by

es+1 = ‖(Wsϕds
(fθs

(x)) + bs) − (Vsϕds
(fλs

(x)) + ps)‖2

≤ ‖Ws − Vs‖2‖fθs
(x) − fλs

(x)‖2

+ ‖Vs‖2‖fθs
(x) − fλs

(x)‖2

+ ‖Ws − Vs‖2‖fλs
(x)‖2 + ‖bs − ps‖2

≤ ‖d‖∞[res + Res + (ys + 1)r]

≤ ‖d‖∞[3Res + (ys + 1)r]. (48)

for s ∈ {1, . . . , l}, where r = ‖θ−λ‖∞ and ys = αs(‖x‖2 +
β) − β is the upper bound on fθs

(x) and fλs
(x) from (39).

We now claim that

es+1 ≤ r‖d‖∞
[

(3α)s(‖x‖2 + 1) +
s−1
∑

i=0

(3α)i(ys−i + 1)
]

(49)

for s ∈ {0, . . . , l} and prove it by induction. The base case

s = 0 holds as

e1 = ‖(W0x + b0) − (V0x + p0)‖2

≤ r‖d‖∞(‖x‖2 + 1). (50)
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For the induction step, assume that (49) is valid for s ∈
{0, . . . , l − 1}. It implies by (48) that

el+1 ≤ 3αel + r‖d‖∞(yl + 1) = r‖d‖∞
[

(3α)l(‖x‖2 + 1)

+

l−2
∑

i=0

(3α)i+1(yl−1−i + 1) + (yl + 1)
]

= r‖d‖∞
[

(3α)l(‖x‖2 + 1) +

l−1
∑

i=0

(3α)i(yl−i + 1)
]

.

(51)

Therefore, our claim (49) holds for s ∈ {0, . . . , l}. Using (39),

the upper bound on el+1 can be further written as

el+1 ≤ r‖d‖∞[
3l+1 − 1

2
αl‖x‖2 + (3α)l

+
3l − 1

2
αlβ −

(3α)l − 1

3α − 1
(β − 1)]

≤
3

2
r‖d‖∞(3α)l(‖x‖2 + β). (52)

Then, |JZ(fθ) − JZ(fλ)| is upper bounded by

|JZ(fθ) − JZ(fλ)| ≤
1

|Z|

|Z|
∑

m=1

3r‖d‖∞(3α)l(‖xm‖2 + β)

[αl+1(‖xm‖2 + β) + ‖hm‖2]

=
3r‖d‖∞(3α)l

|Z|

|Z|
∑

m=1

[

αl+1(‖xm‖2 + β)2

+ ‖xm‖2‖hm‖2 + β‖hm‖2

]

≤ 3r‖d‖∞(3α)l[αl+1(δ+β)2+δ(δ+β)]

≤ 3l+12r‖d‖∞α2l+1(δ + β)2, (53)

which finishes the proof.

Define the covering number C(ε, ΘR) as the smallest value

of C ∈ N for which there exits a collection of functions

f1(x), . . . , fC(x) ∈ D with their parameters belonging to ΘR

such that

min
j∈{1,...,C}

|JZ(fθ) − JZ(fj)| ≤ ε (54)

for ε > 0 and any fθ(x) ∈ D with θ ∈ ΘR. The following

lemma derives a bound on C(ε, ΘR).
Lemma 3: With settings of Lemma 2, for any ε > 0,

it holds that

ln C(ε, ΘR) ≤ du ln
[3l+18α2(l+1)(δ + β)2

ε

]

. (55)

Proof: Choose a collection of parameters θ1, . . . ,θC ∈
ΘR such that the balls centered at θj with radius

rb =
ε

3l+12‖d‖∞α2l+1(δ + β)2
(56)

cover ΘR for j ∈ {1, . . . , C}. Then, there exits j ∈
{1, . . . , C} such that ‖θ − θj‖∞ ≤ rb for any θ ∈ ΘR. Let

Cb = lnC and it is upper bounded by [33]

Cb ≤ du ln(4R/rb) (57)

It implies by Lemma 2 and (56) that

|JZ(fθ) − JZ(fθj
)|

≤ 3l+12‖θ − θj‖∞‖d‖∞α2l+1(δ + β)2 ≤ ε. (58)

Then, ln C(ε, ΘR) is upper bounded by

ln C(ε, ΘR) ≤ Cb ≤ du ln(4R/rb)

= du ln
[3l+18α2(l+1)(δ + β)2

ε

]

, (59)

which finished the proof.

Following Lemma 1, Lemma 2, and Lemma 3, the next

theorem demonstrates the rate of convergence of the general-

ization error in (23).

Theorem 2: With the settings of Lemma 1 and Lemma 2,

let µ1 = E{‖x‖4
2}, µ2 = E{‖h‖4

2}, δ1 = 8[(αl+1δ+β)4+δ4],
and δ2 = 3l+127α2(l+1)(δ + β)2 for any δ4 > max{µ1, µ2}.

Denote σ1 and σ2 as the variances of ‖x‖4
2 and ‖h‖4

2,

respectively. For any ε > 0, it holds that

P([J(fθZ
)−J(fθo

)] > ε) ≤ 8exp
(

−
|Z|ε2

1024δ1

)

+
8σ2

|Z|δ3
(60)

if |Z| ≥ 32µ(αl+1 + 1)4/ε2 and |Z| ≥ (1024δ1du ln δ2

ε )/ε2,

where δ3 = min{(δ4 − µ1)
2, (δ4 − µ2)

2} and σ =
max{σ1, σ2}.

Proof: From (18) and (19), J(fθZ
) − J(fθo

) is bounded

by

0 ≤ J(fθZ
) − J(fθo

)

= [J(fθZ
) − J(fθo

)] − [JZ(fθZ
) − JZ(fθo

)]

+ [JZ(fθZ
) − JZ(fθo

)]

≤ [J(fθZ
) − J(fθo

)] − [JZ(fθZ
) − JZ(fθo

)]

≤ 2 sup
θ∈ΘR

|JZ(fθ) − J(fθ)|. (61)

According to Lemma 1, the last inequality in (61) satisfies

P(J(fθZ
) − J(fθo

) > ε)

≤ P
(

sup
θ∈ΘR

|JZ(fθ) − J(fθ)| >
ε

2

)

≤ 4P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

8

)

, (62)

if |Z| ≥ 32µ(αl+1 + 1)4/ε2.

Assume that Z is fixed with 1
|Z|

∑|Z|
m=1 ‖xm‖4

2 ≤ δ4 and

1
|Z|

∑|Z|
m=1 ‖hm‖4

2 ≤ δ4 for δ > 0. Choose a collection of

functions f1(x), . . . , fC(x) ∈ D, where C = C(ε/16, ΘR),
such that

min
j∈{1,...,C}

|JZ(fθ) − JZ(fj)| ≤
ε

16
(63)

for any fθ(x) ∈ D with θ ∈ ΘR. Let f∗(x) represent fj(x) at

which the minimum value in (63) is achieved. Since

|J◦
Z(fθ)| =

∣

∣

1

|Z|

|Z|
∑

m=1

ωmJZ(fθ)
∣

∣ ≤
∣

∣JZ(fθ)
∣

∣, (64)
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we have

P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

8
|Z

)

≤ P
(

sup
θ∈ΘR

[

|J◦
Z(f∗)| + |JZ(fθ) − JZ(f∗)|

]

>
ε

8
|Z

)

≤ P
(

max
j∈{1,...,C}

|J◦
Z(fj)| >

ε

16
|Z

)

≤

C
∑

j=1

P
(

|J◦
Z(fj)| >

ε

16
|Z

)

. (65)

Hoeffding’s Inequality [31] gives the following bound

P
(

|J◦
Z(fj)| >

ε

16
|Z

)

= P
(∣

∣

|Z|
∑

m=1

ωm‖fj(xm) − hm‖2
2

∣

∣ >
|Z|

16
ε | Z

)

≤ 2exp
[

− 2(
|Z|

16
ε)2/

|Z|
∑

m=1

(2‖fj(xm) − hm‖2
2)

2
]

(66)

for each fj(x). From (39),
∑|Z|

m=1(‖fj(xm)−hm‖2
2)

2 is upper

bounded by

|Z|
∑

m=1

(‖fj(xm) − hm‖2
2)

2

≤

|Z|
∑

m=1

(‖fj(xm)‖2 + ‖hm‖2)
4

≤ 8

|Z|
∑

m=1

(‖fj(xm)‖4
2 + ‖hm‖4

2)

≤ 8|Z|[(αl+1δ + β)4 + δ4] = |Z|δ1. (67)

Replace the last term in (66) with (67) and substituting (66)

into (65) yields

P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

8
|Z

)

≤ 2exp
(

ln C −
|Z|ε2

512δ1

)

. (68)

According to Lemma 3, it holds that

ln C = lnC(ε/16, ΘR)

≤ du ln
[3l+127α2(l+1)(δ + β)2

ε

]

≤ du ln
δ2

ε
. (69)

If

|Z| ≥ (1024δ1du ln
δ2

ε
)/ε2, (70)

then ln C ≤ |Z|ε2/1024δ1 and

P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

8
|Z

)

≤ 2exp
(

−
|Z|ε2

1024δ1

)

. (71)

Integrating out P(supθ∈ΘR
|J◦

Z(fθ)| > ε
8 |Z) over Z produces

P
(

sup
θ∈ΘR

|J◦
Z(fθ)| >

ε

8

)

≤ 2exp
(

−
|Z|ε2

1024δ1

)

+ PZ , (72)

where

PZ =P
( 1

|Z|

|Z|
∑

m=1

‖xm‖4
2≥δ4

)

+ P
( 1

|Z|

|Z|
∑

m=1

‖hm‖4
2 ≥ δ4

)

.

(73)

If δ4 > max{µ1, µ2}, using Chebyshev’s inequality [32]

yields

PZ ≤ P
(

|
1

|Z|

|Z|
∑

m=1

‖xm‖4
2 − µ1| ≥ (δ4 − µ1)

)

+P
(

|
1

|Z|

|Z|
∑

m=1

‖hm‖4
2 − µ2| ≥ (δ4 − µ2)

)

≤
σ2

1

|Z|(δ4 − µ1)2
+

σ2
2

|Z|(δ4 − µ2)2
≤

2σ2

|Z|δ3
. (74)

Combining (62) and (72), we arrive at

P([J(fθZ
) − J(fθo

)] > ε) ≤ 8exp(−
|Z|ε2

1024δ1
)+

8σ2

|Z|δ3
, (75)

which finishes the proof.

Together with Theorem 1, the following corollary presents

our main conclusion on the performance of the DL estimator.

Corollary 1: With the settings of Theorem 1 and Theo-

rem 2, there exits a DL estimator powered by a ReLU DNN

of θ ∈ ΘR with at most ⌈log2(d + 1)⌉ hidden layers and

sufficiently large R such that

lim
|Z|→+∞

P([J(fθZ
) − J(fo)] > ε) = 0 (76)

for any ε > 0.

Proof: According to (23) and (24), J(fθZ
) − J(fo) is

decomposed into

J(fθZ
)−J(fo)=E{‖fθo

(x) − fo(x)‖2
2} + J(fθZ

) − J(fθo
).

(77)

From Theorem 1, there exits an optimized DL estimator

fθo
(x) with sufficiently large R at most ⌈log2(d + 1)⌉ hidden

layers such that E{‖fθo
(x) − fo(x)‖2

2} ≤ ε for any ε > 0.

From Theorem 2, we have J(fθZ
) − J(fθo

)
P
−→ 0, where

the notation
P

−→ denotes the convergence in probability, that

is

lim
|Z|→+∞

P
(

[J(fθZ
) − J(fθo

)] > ε
)

= 0 (78)

for any ε > 0. Combining Theorems 1 and Theorem 2,

we have

lim
|Z|→+∞

P
(

[J(fθZ
) − J(fo)] > ε

)

= 0 (79)

for any ε > 0, which completes the proof.

Fig. 1 illustrates the relationship between fθZ
(x), fθo

(x),
and fo(x) to better understand Theorem 1 and Theorem 2.

These two theorems demonstrate that the estimate of the DL

estimator can arbitrarily well approximate to the estimate of

the MMSE estimator, i.e., fo(x) or hMMSE, as |Z| gets large

and the underlying ReLU DNN is suitably configured. We then

derive the main result on the performance of the DL estimator

based on Corollary 1 as

J(fo) ≈ J(fθZ
). (80)

Specifically, the approximation error of the DL estimator in

Theorem 1 can be eliminated in the linear systems. Suppose

that h is a d × 1 zero mean Gaussian vector and hLMMSE
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Fig. 1. The relationship between fθZ
(x), fθo

(x), and fo(x).

is simply equivalent to hMMSE, i.e., fo(x) = hLMMSE and

JMMSE = JLMMSE. Let A : R
d → R

d denote the affine

transformation with weight W ∈ R
d×d and bias b ∈ R

d. Due

to the fact that

A = (Id ◦ ϕd ◦ A) + (−Id ◦ ϕd ◦ (−A)), (81)

the RHS of (81) is equivalent to a 2-layer ReLU DNN of size

2d [25, Lemma D.4.]. Such a representation is extensible to

a wide class of the DL estimators with more than two layers,

since the output of any hidden layer of a ReLU DNN can be

repeated by adding one or multiple of hidden layers with the

identity transformation as

A = (Id ◦ · · · ◦ ϕd ◦ Id ◦ ϕd ◦ A)

+(−Id ◦ · · · ◦ ϕd ◦ Id ◦ ϕd ◦ (−A)). (82)

The width of the ReLU DNN can also be arbitrarily large

provided that its size is bigger than 2d. Therefore, any affine

transformation is representable by a suitably configured ReLU

DNN.

Let A(x) = hLMMSE and there exits a DL estimator to

represent hLMMSE from (81). As a result, the approximation

error of the DL estimator in the linear systems is equal to zero.

Moreover, Theorem 2 demonstrates that J(fθZ
)

P
−→ JLMMSE

as |Z| gets sufficiently large. Then, we reach the following

conclusion for the linear systems as

JLMMSE ≈ J(fθZ
) ≤ JLS. (83)

Remark 3:

• Corollary 1 and (83) demonstrate that the DL estimator is

able to build up a stable and precise model to estimate h

by using its universal approximation. Therefore, the DL

estimator has a great potential to combat nonlinear distor-

tion and some other unknown detrimental effects in real

world communication systems, where the performance of

the LS and LMMSE estimators degrades significantly.

• Theorem 2 implies that J(fθZ
) converges to J(fθo

)
in probability at a rate polynomially fast with |Z| if

the underlying network structure is fixed. Such a result

assures the efficiency and accuracy of the DL estimator

when applied to channel estimation problems.

• Theorem 2 also demonstrates that the generalization error

is increased with the network size if |Z| is fixed, but

the approximation error can be reduced by enlarging the

network size as indicated by Theorem 1. Hence, there

exits a tradeoff between the generalization error and

the approximation error as the network size of the DL

estimator varies.

• Owing to no assumption about underlying signal model,

the DL estimator has to take sufficiently large training

data to train an effective estimator from scratch which

is relatively inefficient compared to the LS or LMMSE

estimators. In fact, we can retrain a learned DL estimator

that is originally trained at similar scenarios to accelerate

the training process as what the transfer learning has done

in image processing [34].

• The channel estimate of the DL estimator derived through

numerical optimization is only effective for a small range

of the input space that contains training samples, though

fθZ
(x) is defined at a global scope. This phenomenon

will be discussed in Section IV.

IV. ROBUSTNESS TO MISMATCHED INFORMATION

The optimality of the LMMSE and DL estimators depends

on the perfect knowledge of channel statistics and matching

training data, respectively, while it is a typical problem that

the channel covariance matrix G is not perfectly known or the

statistics of training data do not match the deployed environ-

ments. In this section, we analyze channel estimation with

inaccurate channel statistics and mismatched training data

for the linear system model in (1) and show how these

imperfections affect the performance of the LMMSE and DL

estimators.

A. LMMSE Estimator

Denote the channel covariance matrix used by the LMMSE

estimator as Ξ1 = Ξ + Ω, where Ω is the d × d Hermitian

random error matrix independent of Ξ. Replacing Ξ by Ξ1 in

(4), the LMMSE estimator under inaccurate channel statistic

can be expressed as

hLM−ER = τΞ1(Ξ1 + σ2
nId)

−1x, (84)

and the corresponding MSE is given by

JLM−ER = tr

{(

Ξ−1
1 +

1

σ2
n

Id

)−1

− ΠΩΠT

}

, (85)

where Π = Id − Ξ1(Ξ1 + σ2
nId)

−1.

It is difficult to figure out how Ω affects the estimation

accuracy of the LMMSE estimator directly from (85). How-

ever, we can take the uncorrelated channel as an example

to demonstrate the influence of Ω on JLM−ER in general

since the channels between different received antennas are

asymptotically uncorrelated when d gets large [35].

Suppose that the covariance matrix of h is diagonal with

Ξ = σ2
cId, where σ2

c is element-wise variance. Moreover,

assume that Ω can be decomposed into

Ω = UΣUT , (86)

where U is the d × d eigenvector matrix and Σ is the d × d
eigenvalue matrix. Substituting Ξ = σ2

c Id and (86) into (84),
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we can rewrite JLM−ER as

JLM−ER = JLMMSE +
d

∑

i=1

σ4
e,iσ

4
nd

(σ2
c + σ2

e,i + σ2
n)2(σ2

c + σ2
n)

,

(87)

where σ2
e,i is the i-th diagonal element of Σ.

Reversely, if Ξ = Ξ1 +Ω and Ξ = σ2
c Id, then we can still

obtain the same form of JLM−ER in (87).

Remark 4:

• According to (87), JLM−ER is always larger than

JLMMSE and is increased with σ2
e,i. The performance

of the LMMSE estimator is mainly determined by the

accuracy of Ξ.

• The DL estimator needs to know neither the exact signal

model nor the information of Ξ to estimate h. Whether

Ξ is accurate or not does not affect the accuracy of the

DL estimator. Hence, the DL estimator will outperform

the LMMSE estimator if σ2
e,i exceeds certain threshold,

i.e., JLM−ER ≥ J(fθZ
).

B. DL Estimator

The DL estimator is data-driven with its performance mainly

determined by how well the training data matches the working

environment and mismatched training data will lead to sig-

nificant performance degradation. Furthermore, different from

the LS and LMMSE estimators defined w.r.t. the whole input

space, the learned DL estimator can only make valid channel

estimates for the inputs that are restricted to the regions where

training samples are not empty and will behave randomly

outside these regions, as discussed in Remark 3. The restricted

effective input range puts severe limit on the performance of

the DL estimator.

Let

Zk = {m |xm ∈ Xk, m = 1, . . . , |Z|} (88)

be the set of index of samples that fall into Xk. Note that
∑K

i=1 |Zi| = |Z|. Using (13), we rewrite JZ(fθZ
) as

JZ(fθZ
) =

1

|Z|

K
∑

k=1

∑

m∈Zk

tr
{

(hm − WXk
xm − bXk

)

(hm − WXk
xm − bXk

)T
}

. (89)

An important issue is that only a small number of partitioned

regions within X , where x falls into with high probabilities,

contain training samples. For the regions without training

samples, i.e., |Zk| = 0, the DL estimator is unable to optimize

its estimate through JZ(fθZ
), as shown in (89), and will

simply output a random channel estimate if x is located at

these regions. In general, this limitation has a little impact

on the performance of the DL estimator when training data

has accurate statistics since the probability that x falls into

the regions without training samples is negligible. However,

if the statistics of training data do not match real channels,

such a probability can not be ignored and the limitation on

the effective input range will lead to serious issues.

Denote by hDL−ER and JDL−ER the estimate and the

MSE of the DL estimator, respectively, when training data

mismatches real channel. The MSE of the DL estimator under

mismatched training data is discussed in the following two

separate cases.

1) Case I: Assume that her distributes in a broader range

than h, where the variance of her is larger than that of h.

The corresponding statistical models of the training data are

described as

her = h + ζ, (90)

and

xer = τher + n, (91)

where h is Gaussian distributed and ζ denotes the d × 1
zero mean random error vector that is independent of h with

covariance matrix Ωζ = E{ζζT }.

In Case 1, the probability that x falls into the regions

without training samples is still close to zero since xer is

more broadly distributed than x. From Corollary 1, the target

estimator that the DL estimator approaches to as |Z| gets

large is the MMSE estimator w.r.t. her, and the corresponding

channel estimate is given by

hMM−ER = Cherxer
C−1

xerxer
x, (92)

where Cherxer
is the cross-covariance of her and xer and

Cxerxer
is the covariance of xer. If the DL estimator is

properly configured and |Z| is sufficiently large, then we have

hDL−ER ≈ hMM−ER (93)

according to Corollary 1. From (16), the corresponding MSE

is

JDL−ER ≈ JLMMSE + ‖(Cherxer
C−1

xerxer
− ChxC

−1
xx

)x‖2
2,

(94)

where Cxx is the covariance of x.

Similar to JLM−ER in (87), how ζ affects JDL−ER is

difficult to justify from (94). To provide some insight into the

influence of the mismatched training data on the DL estimator,

we assume that Ξ = σ2
c Id. Then, the covariance matrix Ωζ

can be decomposed into

Ωζ = UζΣζU
T
ζ , (95)

where Uζ is the d× d eigenvector matrix and Σζ is the d× d
eigenvalue matrix. Substituting Ξ = σ2

c Id and (95) into (94)

yields

JDL−ER ≈ JLMMSE +
d

∑

i=1

σ4
ζ,iσ

4
n

(σ2
c + σ2

ζ,i + σ2
n)2(σ2

c + σ2
n)

,

(96)

where σ2
ζ,i is the i-th diagonal element of Σζ and quantifies

the mismatch degree between the training data and the real

systems. The obtained JDL−ER in (96) is similar to JLM−ER

in (87) and also increases with σ2
ζ,i.
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2) Case II: We consider that the input-output pair of train-

ing data is generated from the following statistical model

h = her + ζ, (97)

and

xer = τher + n. (98)

In Case II, x distributes in a broader range than xer, and

the probability that x falls at regions without training samples

is much higher than Case I. From (89), the DL estimator

is not optimized for the whole input space, and its effective

input range is dependent on the training data distribution. The

channel estimates of the DL estimator corresponding to the

inputs at empty regions are totally random and unacceptable

if the discrepancy between h and her is very large. In this case,

the DL estimator basically fails to provide a reliable channel

estimate, and its performance degrades severely.

Remark 5:

• In Case I, the probabilities that the inputs are located at

the regions without training samples are negligible. The

DL estimator can well approximate hMM−ER and provide

a stable channel estimate. Hence, the limited effective

input range has a little impact on the performance of the

DL estimator.

• In Case II, the probabilities that the inputs are located at

the regions without training samples can not be neglected.

The limitation on the effective input range of the DL

estimator gets really serious, and the DL estimator is

unable to provide a valid channel estimate when the input

is located outside the regions with training samples. The

LMMSE estimator, however, is designed over the whole

input space based on the expert knowledge, and therefore

the error introduced by the discrepancy between Ξ and

Ξ1 is controllable no matter how Ω varies. In this case,

the traditional LMMSE estimator is more robust to the

imperfect data than the DL estimator.

• An important issue for the DL estimator is to incorporate

traditional signal processing techniques to enhance its

robustness to imperfect information rather than purely

relying on training data [36]. Hence, it is a major topic

on how to take advantage of model based approaches to

improve the performance of the DL estimator .

V. SIMULATION RESULTS

In this section, computer simulation is conducted to provide

further evidence and insights into the performance assessment

of various estimators, which also verifies the advantages and

disadvantages of the DL channel estimation.

A. Linear Systems

Fig. 2 compares the MSEs of the LS, LMMSE, and DL

estimators versus SNR under linear signal model (1). The

channel, h, is assumed to be Gaussian with zero mean and

element-wise unit variance. The sizes of training and test sets

are 20, 000 and 5, 000, respectively. The underlying network of

the DL estimator has 4 layers and equal numbers of neurons at

each hidden layer, i.e., equal widths. Denote d̃ as the width of

Fig. 2. The MSE performance of the LS, LMMSE, and DL estimators versus
SNR under linear signal model.

Fig. 3. The MSE performance of the DL estimator versus d̃ under linear
signal model.

hidden layer and d̃ is set to be 40. From Fig. 2, the MSEs of the

LMMSE and the DL estimators are almost overlapped. Since

the LMMSE estimator is equivalent to the MMSE estimator

in this case, the DL estimator can well approximate hMMSE,

which confirms that J(fθZ
) ≈ JLMMSE in the linear systems.

Moreover, both the DL and LMMSE estimators outperform

the LS estimator in Fig. 2 as noted by (83).

Fig. 3 shows the MSEs of the DL estimator versus the

width of ReLU DNN, d̃, under linear signal model (1) with

fixed SNRs, sample size, and d = 2. The MSEs of the

LMMSE estimators derived under the same SNRs are used

as the benchmark. The approximation error becomes the main

factor that affects the MSE of the DL estimator in this case

since |Z| is sufficiently large. When d̃ is small, the dimension

of the parameter space Θ is very low and the approximation

error becomes relatively high. As a result, the MSEs of the

DL estimator are significantly larger than the MSEs of the

LMMSE estimator. As d̃ increases, the parameter space Θ
is enlarging and the approximation error decreases with it.
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Fig. 4. The MSE performance of the DL estimator versus |Z| under linear
signal model.

All MSEs of the DL estimator at different SNRs approach to

the MSEs of the LMMSE estimator. Such a result evidences

the conclusions in Theorem 1.

Fig. 4 shows the MSEs of the DL estimator versus the

size of training samples, |Z|, under linear signal model (1)

with fixed SNRs, network structure, and d = 2. As in Fig. 4,

the LMMSE estimator is used as the benchmark. In this case,

the generalization error determines the performance of the DL

estimator. When |Z| is small, the generalization error is very

high and the MSEs of the DL estimator are significantly larger

than the MSEs of the LMMSE estimator. As |Z| increases,

the generalization error decreases and all MSEs of the DL

estimator at different SNRs asymptotically approach to the

MSEs of the LMMSE estimator. Such a result evidences the

conclusions in Theorem 2.

B. Nonlinear Systems

In this subsection, we evaluate the performance of the

MMSE, LMMSE and DL estimators under a nonlinear signal

model. Let xin = hτ + n and the following nonlinear model

xi = xin,i

(

1 +
(xin,i

xsat

)2ω
)− 1

2ω

(99)

is adopted, where xi and xin,i are the i-th elements of x and

xin, respectively, for i ∈ {1, . . . , d}, xsat is the saturation

level, and ω is the smoothness factor. The other settings are the

same as in Section V-A. The model in (99) is typically used by

nonlinear signal detection caused by imperfection of PA and

is commonly known as Rapp model [37]. Here, we apply such

a model to illustrate channel estimation for nonlinear systems.

Fig. 5 shows the MSEs of the MMSE, LMMSE, and DL

estimators versus SNR under nonlinear model in (99), where

the saturation level, xsat, is fixed as 1.5 and the smoothness

factor ω is set be 1. Since no analytical form of hMMSE

for nonlinear model (99) is available, we use Monte Carlo

simulation to estimate hMMSE in Fig. 5 and the number of

trials is set as 2 × 107. The performance of the MMSE,

LMMSE, and DL estimators is close to each other at low

Fig. 5. The MSE performance of the MMSE, LMMSE, and DL estimators
versus SNR under nonlinear signal model.

SNRs as the noises dominate the overall MSEs. As the SNR

increases, the approximation errors to the MMSE estimator

will contribute a larger percentage of the MSEs. According

to Theorem 1, the approximation error of the DL estimator

is significantly lower than that of the LMMSE estimator for

nonlinear systems. As a result, the MSE of the DL estimator

is very close to that of the MMSE estimator and becomes

significantly better than that of the LMMSE estimator for

high SNRs.

C. Robustness to Mismatched Information

We then compare the MSEs of channel estimation using the

LMMSE and the DL estimators under inaccurate statistics of

channel and mismatched training data in the linear systems.

Assume that Ξ1 = σ2
c,1Id and Ξer = σ2

erId, where σ2
c,1 and

σ2
er are the element-wise variances. Moreover, we define the

scaling coefficient η as the ratio σ2
c,1/σ2 or σ2

er/σ2. The other

settings are the same as Section V-A. When η > 1, i.e., Case I

in Section IV-B, the performance of the DL estimator is

only affected by the degree of the mismatch for training data

with real channel statistics. When η < 1, i.e., Case II in

Section IV-B, the DL estimator may malfunction and outputs

random estimates due to the restricted effective input range.

Fig. 6(a) illustrates the MSEs of the LMMSE and the DL

estimators versus SNR under the linear signal model in (1)

with d = 1 and η = 2 that corresponds to Case I. The MSEs

of the LMMSE estimator with accurate channel statistics and

the LS estimator are served as the benchmarks. In Fig. 6(a),

both the LMMSE estimator with inaccurate channel statistics

and the DL estimator with mismatched training data perform

poorer than the LMMSE estimator with accurate channel

statistics but still better than the LS estimator. Furthermore,

under the same η, the MSEs of the LMMSE with inaccurate

statistics and the DL estimator with mismatched training data

are overlapped, which confirms (87) and (96). Specifically,

in high SNRs, the MSEs of these estimators are almost the

same and the errors of channel statistics have little impact on

the overall estimation performance.
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Fig. 6. The MSE performance of the LMMSE and the DL estimators versus SNR under inaccurate statistics of channel and mismatched training data.

Fig. 7. The MSE performance of the LMMSE and the DL estimators versus η under inaccurate statistics of channel and mismatched training data.

Fig. 6(b) illustrates the MSEs of the LMMSE and the DL

estimators versus SNR under linear signal model in (1) with

d = 1 and η = 0.2 that corresponds to Case II. When

η < 1, the MSE of the LMMSE estimator with inaccurate

channel statistics is significantly larger than those of the LS

and LMMSE estimators with accurate channel statistics. The

performance of the LMMSE estimator with inaccurate channel

statistics degrades more severely than Case I in Fig. 6(a).

The performance of the DL estimator is even worse since its

MSE is totally random and uncorrelated to the SNR. Such

phenomenon verifies the analysis in Section IV-B when the

variance of training data is lower than that of true channel,

i.e., η < 1. Therefore, the mismatch of training data with the

true environment is a serious problem if η < 1 and should be

carefully considered when applying DL methods to wireless

communication systems.

Fig. 7(a) visualizes the MSEs of the LMMSE estima-

tor with inaccurate channel statistics and the DL estimator

with mismatched training data versus η under linear signal

model (1) with d = 1 and SNR = 0 dB. We adopt the MSE

of the LMMSE estimator with inaccurate channel statistics

in (87) as the theoretical MSE. In Fig. 7(a), the MSEs of the

LMMSE estimator with inaccurate channel statistics and the

DL estimator with mismatched training data are overlapped

with the theoretical MSE and are slightly higher than the

MSE of the LMMSE estimator with accurate channel statistics

when η > 1. Such a result verifies the correctness of (87)

and (96), as (96) is equivalent to (87) under the same η.
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When η = 1, there is no error. When η < 1, the MSEs of

the LMMSE estimator with inaccurate channel statistics and

the DL estimator with mismatched training data are larger

than that of the LMMSE estimator with accurate channel

statistics. As illustrated in Fig 6(b), the MSE of the LMMSE

estimator with inaccurate channel statistics is comparable to

that of the DL estimator with mismatched training data at

low SNRs. Therefore, the gap between the MSEs of the

LMMSE estimator with inaccurate channel statistics and the

DL estimator with mismatched training data is not significant

in Fig. 7(a).

Fig. 7(b) shows the MSEs of the LMMSE estimator with

inaccurate channel statistics and the DL estimator with mis-

matched training data versus η when d = 1 and SNR = 25 dB.

When η ≥ 1, the MSEs of the LMMSE estimator with

inaccurate channel statistics and the DL with mismatched

training data are almost equal to that of the LMMSE estimator.

When η < 1, the MSE of the DL estimator with mismatched

training data is significantly larger than that of the LMMSE

estimator with inaccurate channel statistics and the theoretical

MSE. The reason for this phenomenon is that the estimate

of the DL estimator with mismatched training data gets more

random as η decreases and is nearly uncorrelated to the SNR

when η < 1, as shown in Fig. 6(b), while the MSE of

the LMMSE with inaccurate channel statistics still decreases

with the SNR. Therefore, the gap between the MSEs of the

LMMSE estimator with inaccurate channel statistics and the

DL estimator with mismatched training data becomes much

more significant at high SNRs. Such a result verifies the

analysis in Section IV-B again. Moreover, the MSE of the

LMMSE estimator with inaccurate channel statistics matches

the theoretical MSE and is slightly higher than the MSE of the

LMMSE estimator with accurate channel statistics across the

entire range of η, which shows the robustness of the LMMSE

estimator to inaccurate channel statistics.

VI. CONCLUSION

In this paper, we have made the first attempt on interpreting

DL based channel estimation under linear, nonlinear, and

inaccurate channel statistics using a multiple antenna system as

an example. We have explained that the DL estimator equipped

with a ReLU DNN is mathematically equivalent to a piecewise

linear function and can attain universal approximation to the

MMSE estimator under suitably configured structure and large

training samples. Extensive simulation results have confirmed

the performance of the DL estimator and showed that the

DL estimator is close to the LMMSE estimator under linear

systems but significantly outperforms it when the signal model

is nonlinear. However, the DL estimator is sensitive to the

quality of training data and its performance would significantly

degrade if the data in real environments distributes broader

than the training data. The benefits of the DL estimator have to

weigh against its costs when applied to the channel estimation

in real wireless communication systems. We should strike a

balance between DL based channel estimation and traditional

channel estimation. An important issue of future analysis is

to incorporate traditional signal processing techniques into the

DL estimator to alleviate the influence of imperfect training

data and improve the robustness.
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