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Abstract—This paper proposes a deep learning approach to
channel sensing and downlink hybrid beamforming for massive
multiple-input multiple-output systems operating in the time
division duplex mode and employing either single-carrier or
multicarrier transmission. The conventional precoding design in-
volves a two-step process of first estimating the high-dimensional
channel, then designing the precoders based on such estimate.
This two-step process is, however, not necessarily optimal. This
paper shows that by using a learning approach to design the
analog sensing and the hybrid downlink precoders directly from
the received pilots without the intermediate high-dimensional
channel estimation, the overall system performance can be
significantly improved. Training a neural network to design the
analog and digital precoders simultaneously is, however, difficult.
Further, such an approach is not generalizable to systems with
different number of users. In this paper, we develop a simplified
and generalizable approach that learns the uplink sensing matrix
and downlink analog precoder using a deep neural network that
decomposes on a per-user basis, then designs the digital precoder
based on the estimated low-dimensional equivalent channel.
Numerical comparisons show that the proposed methodology
results in significantly less training overhead and leads to an
architecture that generalizes to various system settings.

Index Terms—Deep learning, hybrid precoding, mas-
sive multiple-input multiple-output (MIMO), millimeter wave
(mmWave), time division duplex (TDD).

I. INTRODUCTION

Millimeter wave (mmWave) communication has attracted
significant interest as means of addressing the increasing
demand for faster data rates in future cellular networks [2]–
[4]. As compared to the traditional sub-30GHz communication
bands, wireless transmissions at mmWave frequencies experi-
ence more severe path and penetration loss. Fortunately, the
poor channel conditions of mmWave communications can be
effectively mitigated through the use of massive multiple-input
multiple-output (MIMO) antenna arrays [5]. However, despite
the advantages of utilizing large antenna arrays, the practical
deployment of the fully digital massive MIMO is hindered by
the excessive power consumption associated with the large
number of radio frequency (RF) chains. To overcome this
limitation, several alternative solutions have been proposed to
permit the use of large antenna arrays while reducing the high
power consumption. In this paper, we focus on the so-called
hybrid beamforming architecture [6], [7] wherein the fully
digital beamformer is replaced by an analog beamformer that
maps the received signal on the antennas into a small number
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of RF chains using a network of phase shifters, followed by
a low-dimensional digital beamformer.

This paper considers the problem of constructing the hybrid
beamformers from imperfect channel state information (CSI)
in massive MIMO systems for frequency-flat as well as
frequency-selective propagation environments with a limited
number of scatters. We focus on the time-division duplex
(TDD) operation so that channel reciprocity can be exploited
in order to efficiently acquire the CSI at the base station
(BS) using uplink pilots [5]. The existing hybrid precoding
strategies for TDD massive MIMO systems follow a two-step
methodology that decomposes the overall precoding procedure
into a channel sensing and estimation step followed by a
subsequent downlink precoding step. In the channel sensing
and estimation step, the spatial and frequency characteristics
of the mmWave channel are often exploited to facilitate the
estimation of the channel parameters, e.g., [8]–[11]. Then, in
the downlink precoding step, the BS constructs the precoding
matrices using algorithms that treat the estimated CSI as
perfect CSI.

This work is motivated by the key observation that the above
conventional paradigm is not necessarily optimal, especially
in the short pilot regime. This is because the conventional
channel estimation process typically uses a specific distance
metric, such as the square loss (possibly with a regularizer
on the model parameters), without accounting for the effect
of channel estimation errors in the subsequent precoding
step. Consequently, such a metric may not exactly match the
ultimate goal of maximizing the overall system performance
(e.g., sum rate). The main point of this work is that by adopt-
ing an end-to-end design that directly constructs the hybrid
precoders from the received pilots without the intermediate
channel estimation step, we can overcome the drawbacks of
the conventional precoding framework, thereby enhancing the
overall system performance.

A. Main Contributions

This paper proposes a joint channel sensing and downlink
precoding approach that bypasses explicit channel estima-
tion. Driven by the success of deep learning in tackling
intricate optimization problems, we advocate the use of a
deep neural network (DNN) to model the end-to-end massive
MIMO system encompassing channel sensing, estimation, and
downlink precoding, and to learn a direct mapping for the
hybrid precoding matrices. A main contribution of this paper
is that we highlight the inherent limitation of the conventional
channel estimation based precoding and demonstrate how a
learning based strategy is well suited to bypass this limitation.
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The first part of this work considers a frequency-flat
mmWave propagation model. In this case, the precoding prob-
lem involves the design of the analog precoding matrix and a
single digital precoding matrix. However, it turns out that using
the naive approach that simultaneously learns the analog and
digital precoders is infeasible due to high training complexity
and the fact that it is not easily generalizable to systems with
different number of users. To circumvent these limitations,
we develop an alternative semi-direct strategy that bypasses
explicit channel estimation for the analog precoding design. In
particular, we decompose the overall precoding design into two
phases in which we separately construct the analog and digital
precoding matrices. In the analog precoding design phase, a
DNN is employed to map the received pilots directly into the
analog precoders. The proposed DNN architecture decomposes
across the users and the per-user DNNs have weights tied
together in order to simplify the training complexity. Further-
more, to avoid the metric mismatch problem, the training of
this DNN is performed so as to minimize a simplified loss
function derived from the rate expression. Once the analog
beamforming matrix is determined, the end-to-end hybrid
precoding system can be transformed into a low-dimensional
fully digital system, thus allowing the digital precoding matrix
to be designed based on the estimated equivalent channel
from a few additional pilots using conventional techniques.
Numerical results indicate that the proposed approach signifi-
cantly outperforms the conventional framework that separates
channel estimation and downlink precoding.

The second part of this paper is concerned with a frequency-
selective propagation environment. In this case, the BS utilizes
multicarrier techniques, e.g., orthogonal frequency division
multiplexing (OFDM), to transmit several data streams over
different subcarriers. A major challenge in the design of hybrid
precoders for OFDM systems is that the analog precoder
is common to the channels across subcarriers, whereas the
digital precoder is different for every subcarrier. This phys-
ical limitation suggests a different treatment for the analog
and digital design stages and can be seen as an additional
motivation behind the proposed scheme of separating the
designs of the analog and digital precoders. Specifically, such
decoupling allows the previous semi-direct approach to be
extended naturally, i.e., we design the analog precoder using
a DNN based on the received pilots on all subcarriers and
design the digital precoders for every subcarrier based on
the corresponding estimated equivalent channel. Further, to
ensure modest training complexity that does not grow with the
number of subcarriers, we incorporate a convolutional stage in
the neural network architecture that offers dimensionality re-
duction and summarizes the information in correlated received
pilots over different subcarriers.

In practice, a wireless environment is inherently non-static
and the channel parameters are always changing. A major con-
cern in using data-driven solutions in communication systems
is how robust such solutions are to changes in system param-
eters. As such, this paper also investigates the generalizability
of the proposed approach in different system parameters. We
use experimental case studies with varying number of channel
paths, uplink signal-to-noise ratio (SNR), and number of users,

to demonstrate the ability of the proposed scheme to maintain
good performance even when the training and test sets are
different. Further, we also provide a realistic single-cell sim-
ulation and use a general utility function (e.g., weighted sum
rate) as a means to measure the system-level performance. The
numerical findings indicate that the proposed approach is able
to provide fairness among the different users.

B. Related Works

Earlier works on hybrid precoding design typically assume
full CSI knowledge at the BS. The main focus of these works
is to devise low-complexity algorithms that can approach
the performance of the fully digital massive MIMO system
for both cases of single-carrier and OFDM transmissions.
Most existing algorithms involve heuristic designs for the
analog precoder and conventional linear precoding for the
digital precoder. Examples of these analog heuristic designs
include matching to the channel phases [12], [13], matching
to the channel strongest path [14], and iterative coordinate
ascent [15] for single-carrier systems as well as channel
covariance averaging [16], [17] and time-domain matched
filtering [18] for multicarrier systems. Another interesting line
of work is presented in [19] in which the precoder for a fully
digital system is decomposed into analog and digital precoders
using alternating minimization.

In practice, the CSI is not readily available at the BS and it
must be estimated. The most widely common approach for
channel estimation is to take advantage of the sparsity of
the mmWave channels in the angular domain [8]–[11], [20].
For the single-carrier setup, [8] develops a channel estimation
algorithm inspired by the greedy orthogonal matching pursuit
(OMP), while [9] presents a multi-resolution codebook design
for channel sensing and parameter estimation. Further, the
work in [10] formulates the channel estimation as a sparse
recovery problem from noisy measurements, for which the
generalized approximate message passing (GAMP) is used to
retrieve the channel parameters. For the multicarrier setup, [20]
develops a matching pursuit algorithm for environments with
line-of-sight conditions, whereas [11] further exploits the fre-
quency correlation of the channel across subcarriers to devise
a low-complexity variant of the OMP, named simultaneous
weighted OMP (SW-OMP).

Recently, deep learning has attracted significant interest in
the wireless research community. In most hybrid precoding
works, the domain of application for deep learning is restricted
to replacing key system components with a neural network.
This includes replacing channel estimation [21]–[23], down-
link precoding with the input being either perfect/imperfect
CSI [24]–[26], or both [27]. The main limitation of all
these works is that they admit the traditional separation of
channel estimation and precoding and do not exploit the
ability of data-driven approaches to model the end-to-end
system. For instance, in [27] two separate neural networks
are employed for channel estimation and analog downlink
precoding. Therefore, it still adopts the traditional approach
that separates channel estimation and precoding. In contrast,
our work proposes to combine both modules into one that
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maps the received pilots directly to the analog precoding
matrix. We remark that several recent works have proposed
the idea of bypassing channel estimation in related wireless
communication settings in order to optimize some system-
wide objective, e.g., for scheduling in ad-hoc networks [28],
and for transmission design in systems involving intelligent
reflective surfaces [29] and fully digital massive MIMO in
frequency division duplex mode [30].

Finally, we remark that the prior works [31], [32] also pro-
pose to design the hybrid precoders from the received pilots.
However, the main focus of these works is quite distinct from
ours. In [31], only a single-user setup is considered, whereas
the work presented herein considers the more challenging
multiuser setup where the hybrid precoders are designed in the
presence of user interference. Moreover, the main goal of [31]
is to mimic the solution of the existing precoding design using
supervised training while alleviating the computational burden
after training. In contrast, the proposed work aims at end-
to-end modelling of the mmWave system using a realistic
system-level objective such as the overall achievable rate.
Likewise, [32] considers a beam selection method to design the
analog precoder from a fixed codebook of finite size using a
non-trainable approach, whereas the present work investigates
the use of deep learning to construct a direct mapping for
the analog precoder without restricting to a certain codebook
construction. In addition to these works, the very recent and
parallel work [33] considers the multiuser setup, but proposes
a learning-based design with a training complexity that is
only suitable when the number of users is fixed and small. In
particular, the dimensions of some layers in the neural network
architecture of [33] grow quadratically in the number of users.
In contrast, the proposed solution maintains the same layer
dimensions and training complexity regardless of the number
of users, and can further generalize to an arbitrary number of
such users without retraining.

C. Paper Organization and Notation

The rest of the paper is organized as follows. Section II
presents the massive MIMO system model with hybrid ar-
chitecture in its most general form as an OFDM system
assuming a frequency-selective propagation environment. Sec-
tion III considers the special case of a single-carrier setup
and develops the proposed semi-direct approach that bypasses
explicit channel estimation for the analog precoding design.
We then discuss the extension of the proposed approach
to the multicarrier setup in Section IV. In Section V, we
provide extensive numerical simulations that demonstrate the
performance of the proposed precoding approach and examine
its generalizability aspects. Finally, conclusions are drawn in
Section VI.

This paper uses lower case letters, lower case boldface
letters, and upper case boldface letters to denote scalars,
vectors, and matrices, respectively. We use [·]i, [·]ij to denote
the i-th element of a vector and the element in the i-th row
and j-th column of a matrix. We use diag (A1, . . . ,An) to
denote a block diagonal matrix with the matrices A1, . . . ,An

on the diagonal. Further, Cm,n denotes an m by n dimensional

complex space, and CN (0,R) represents the zero-mean circu-
larly symmetric complex Gaussian distribution with covariance
matrix R, In addition, ⊗ is the Kronecker product operator,
and (·)H denotes the Hermitian transpose of matrices. The
operators | · |, ‖ · ‖, log2 (·), E [·] , and Tr(·) represent the
absolute value, `2 norm, base-2 logarithm, expectation, and
trace, respectively. Finally, IM is the identity matrix of size
M .

II. PRELIMINARIES AND SYSTEM MODEL

A. System Model

Consider a TDD massive MIMO system operating in a
frequency-selective mmWave environment in which a BS with
M antennas and NRF < M RF chains employs OFDM
transmission over Nc subcarriers to serve K single-antenna
users. Since the number of RF chains at the BS is limited,
downlink precoding is split between the analog and digital
domains. Specifically, let sk[j] be the intended symbol for
user k over subcarrier j. To send a downlink data stream
of symbols s[j] = [s1[j], . . . , sK [j]]

T , the BS precodes the
symbol vector s[j] using a per-subcarrier digital precoder
VD[j] ∈ CNRF×K , ∀j. Then, it appends a cyclic prefix of
length LCP > dmax, where dmax is the maximum delay spread
of the channel, and subsequently applies an inverse fast Fourier
transform (IFFT) operation. Finally, the BS employs a wide-
band analog precoding matrix VRF ∈ CM×NRF . Note that
because the analog stage takes place after the IFFT module,
we cannot design the analog matrix on a per subcarrier basis.
In addition, since the analog precoding stage is typically
implemented using a network of phase shifters, the elements
of VRF must satisfy a constant modulus constraint, i.e.,
[VRF]mn = eıφmn , where ı is the imaginary unit.

Upon receiving the signal, each user applies an FFT oper-
ation followed by cyclic prefix removal. Mathematically, the
equivalent model is given by:

yk[j] = hHk [j]VRFVD[j]s[j] + nk[j],

= hHk [j]VRFvDk
[j]sk[j]

+
∑
i 6=k

hHk [j]VRFvDi
[j]si[j] + nk[j], (1)

where yk[j] and hk[j] are respectively the received signal and
frequency-domain channel of user k at subcarrier j, vDk

[j]
is the k-th column of VD[j], and nk[j] ∼ CN (0, σ2) is
the downlink Gaussian noise. We impose a power constraint
on the transmitted signal by taking E[s[j]s[j]H ] = IK and
‖VRFVD[j]‖2F ≤ PD, where PD is the per-subcarrier power
budget in the downlink.

For such a system, the overall achievable downlink rate for
user k is given by the sum of rates across subcarriers, i.e.,

Rk =

Nc∑
j=1

log2

(
1 +

|hHk [j]VRFvDk
[j]|2∑

i 6=k|hHk [j]VRFvDi [j]|2 + σ2

)
. (2)

The main objective in this paper is to design the hybrid
precoding matrices so as to maximize the sum rate

∑
k Rk.

To do this, the BS must obtain information about the channels.
In this paper, we assume that the BS has no prior knowledge
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Fig. 1: The orthogonal uplink pilot scheme shown for the k-th user. In the
figure, we denote the element of X[j] in the m-th row and n-th column by
Xmn[j].

of the channels, but it can acquire noisy measurements of
the channels through a pilot phase. Further, we assume that
channel reciprocity holds [34] and the downlink CSI can be
acquired in the uplink direction in a TDD operation. We adopt
an uplink pilot transmission scheme that takes place over L
time frames each spanning K OFDM symbols. In particular,
during a single time frame, the users send orthogonal pilots
given by the rows of the matrices X[1], . . . ,X[Nc] over the K
OFDM symbols, where each pilot matrix is a K ×K unitary
matrix. Fig. 1 illustrates this pilot scheme for the k-th user.

Since the number of RF chains is limited, the BS senses
pilot transmission in the `-th time frame using an analog
sensing matrix W

(`)
RF ∈ CNRF×M , where the matrix elements

satisfy [W
(`)
RF ]mn = eıψmn . After that, it right-multiplies

the received signal at the j-th subcarrier by X[j]H . Due to
the orthogonality of the pilots (i.e., X[j]X[j]H = IK), the
resulting NRF× 1 received vector for the k-th user in the `-th
time frame is given by:

ỹ
(`)
k [j] =

√
PUW

(`)
RF hk[j] + z̃

(`)
k [j], (3)

where z̃
(`)
k [j] ∼ CN

(
0, σ2W

(`)
RF

(
W

(`)
RF

)H)
is the equivalent

uplink noise, and PU is the users’ power budget per subcarrier
in a single time frame. Define Hk , [hk[1], . . . ,hk[Nc]] ∈
CM×Nc as the overall channel matrix for user k over the entire
frequency band and

Ỹk ,


ỹ

(1)
k [1] . . . ỹ

(1)
k [Nc]

...
. . .

...
ỹ

(L)
k [1] · · · ỹ

(L)
k [Nc]

 ∈ CLNRF×Nc (4)

as the aggregate received matrix for user k in L time frames
over the entire frequency band. Based on (3), we can write:

Ỹk =
√
PUWRFHk + Z̃k, ∀k ∈ {1, . . . ,K} (5)

where WRF,

[(
W

(1)
RF

)T
, . . . ,

(
W

(L)
RF

)T]T
is the over-

all sensing matrix and Z̃k is a noise matrix whose
columns are distributed as CN

(
0, σ2AAH

)
with A ,

diag
(
W

(1)
RF , . . . ,W

(L)
RF

)
.

For the described system, the hybrid precoding design prob-
lem can be stated as follows. Given the noisy measurements
{Ỹk}Kk=1 obtained through the sensing matrix WRF at the BS,
we seek to construct the analog and digital precoding matrices
according to:

(VRF,VD[1], . . . ,VD[Nc]) = F
(
Ỹ1, . . . , ỸK

)
, (6)

so as to maximize the sum-rate expression, where F(·) is a
function that maps the received pilots into the hybrid precoding
matrices. Mathematically, this can be expressed in terms of the
following optimization problem:

maximize
WRF,F(·)

K∑
k=1

Nc∑
j=1

log2

(
1 +

|hHk [j]VRFvDk
[j]|2∑

i 6=k|hHk [j]VRFvDi [j]|2 + σ2

)
subject to (VRF,VD[1], . . . ,VD[Nc]) = F

(
Ỹ1, . . . , ỸK

)
,

|[WRF]mn| = 1, ∀m,n,
|[VRF]m′n′ | = 1, ∀m′, n′,
Tr
(
VH

D [j]VH
RFVRFVD[j]

)
≤ PD, ∀j. (7)

Note that the overall sensing matrix WRF is incorporated in the
above problem as an additional optimization variable because
it serves the critical role of summarizing the information about
the user channels. We remark that solving the optimization
problem in (7) directly using conventional optimization based
methods is challenging due to the nonconvexity of the ob-
jective and constraints. Accordingly, the traditional precoding
schemes seek to heuristically solve this problem by adopting
a two-step process in which the user channels are first esti-
mated and the downlink precoding matrices are subsequently
designed based on the estimated channels. We demonstrate in
the next section that this approach is far from optimal and it
is advantageous to bypass the channel estimation step.

B. Channel Model

The mmWave environment is modeled as a frequency-
selective channel. In particular, the channel of the k-th user
at the j-th subcarrier is expressed as the Nc-point discrete
Fourier transform (DFT) of its impulse response:

hk[j] =

Nc∑
n=0

rk[n]e
−ı 2πjnNc =

dmax∑
n=0

rk[n]e
−ı 2πjnNc , (8)

where rk[n] is the discrete-time impulse response of the
channel for user k at time index n and the second equality
follows from the assumption that the channel response has
a maximum delay spread dmax. Further, we assume that the
discrete-time channel response follows a sparse model as the
sum of Lp dominant paths. Accounting for the effects of pulse
shaping [11], we have:

rk[n] =
1√
Lp

Lp∑
`=1

α`,kprc(nTs − τ`,k)at(θ`,k, φ`,k), (9)

where Ts denotes the sampling period, prc(·) denotes the
normalized raised cosine pulse-shaping filter (i.e., prc(0) = 1),
and for simplicity Lp is assumed to be the same for all users.
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In addition, α`,k ∼ CN (0, 1) is the complex path gain, τ`,k is
the path delay, θ`,k and φ`,k are the uniformally distributed
angles of departure (AoDs) in the elevation and azimuth,
and at(·, ·) denotes the array response vector. These channel
parameters are generated independently and identically for
every user. In addition, we assume that the BS is equipped
with a two-dimensional uniform planar array (UPA) with Mh

and Mv antennas in the horizontal and vertical directions,
with M = MhMv . Moreover, the antenna separations in both
directions are ∆h and ∆v , where ∆h = ∆v = ∆. The array
response vector for such configuration is given by [35]:

at (θ, φ) = ah (θ, φ)⊗ av (φ) , (10)

where ah(·, ·) and av(·) are respectively the array response
vectors of a uniform linear array in the horizontal and vertical
directions, i.e.,

ah (θ, φ) =

[
1, eı

2π
λ

∆ cos(φ) sin(θ), . . . , eı
2π
λ

∆(Mh−1) cos(φ) sin(θ)

]T
,

av (φ) =

[
1, eı

2π
λ

∆ sin(φ), . . . , eı
2π
λ

∆(Mv−1) sin(φ)

]T
,

and λ is the wavelength.

III. HYBRID PRECODING DESIGN FOR FREQUENCY-FLAT
SINGLE-CARRIER SYSTEMS

To fix ideas and to gain more insight, we begin by consider-
ing the simpler problem of hybrid precoding design in single-
carrier systems. For a single-carrier mmWave massive MIMO
system, the hybrid precoding problem entails the design of
the analog precoding matrix VRF ∈ CM×NRF and a single
digital precoding matrix VD ∈ CNRF×K . The uplink baseband

received signal ỹk =

[(
ỹ

(1)
k

)T
, . . . ,

(
ỹ

(L)
k

)T]T
∈ CLNRF for

each user is given by:

ỹk =
√
PUWRFhk + z̃k, (11)

where hk is the channel vector and z̃k ∼ CN
(
0, σ2AAH

)
is the effective uplink noise for user k. As a result, the
optimization in (7) boils down to:

maximize
WRF,F(·)

K∑
k=1

log2

(
1 +

|hHk VRFvDk
|2∑

i6=k|hHk VRFvDi
|2 + σ2

)
subject to (VRF,VD) = F(ỹ1, . . . , ỹK),

|[WRF]mn| = 1, ∀m,n,
|[VRF]m′n′ | = 1, ∀m′, n′,
Tr
(
VH

D VH
RFVRFVD

)
≤ PD. (12)

In effect, we assume dmax = 0. This leads to a narrow-band
frequency-flat channel. In this case, τ`,k = 0 and the channel
for the k-th user becomes:

hk , rk[0] =
1√
Lp

Lp∑
`=1

α`,kat(θ`,k, φ`,k). (13)

We now discuss the motivation behind the proposed approach.
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Fig. 2: Performance comparison of a single-carrier system. We set M = 64,
NRF = K = 1, and uplink/downlink SNR = 10dB.

A. Motivation

The hybrid precoding problem in (12) is non-trivial to solve,
because the objective and some constraints are nonconvex. To
tackle this problem, the conventional method is to assume a
mathematical model of the channel and proceed to estimate the
model parameters. Subsequently, the channel is reconstructed
and the rate maximizing downlink precoding matrices are
obtained based on the channel reconstruction. In the channel
estimation step, this conventional paradigm needs to introduce
a metric to measure the distance between the true channel and
the estimated counterpart. The hope is that by minimizing such
a metric, the estimated channel would accurately approximate
the true channel well enough for precoding purposes. The
problem is, however, such a metric (e.g., regularized square
loss for mmWave channels) is chosen for the purpose of
estimating the channel parameters of the assumed model
without directly accounting for the effect of estimation errors
in the subsequent precoding step. This implies that minimizing
such a metric in the channel estimation step may not exactly
match the ultimate goal of maximizing the system performance
(i.e., the sum rate). We argue that this possible mismatch in
design metric is the main limitation of the conventional design,
but is otherwise necessary to ensure that the conventional
design problem is tractable.

The advent of data-driven techniques shifts the paradigm
toward a new possibility. Specifically, it is no longer necessary
to adhere to the previous separation of channel estimation
and downlink precoding, i.e., it may be beneficial to bypass
the explicit CSI estimation altogether and to directly design
the hybrid precoders from the baseband received pilots. In
other words, because of the power of DNN as a universal
function approximator, it is now possible to pursue an end-to-
end design encompassing both channel sensing/estimation and
hybrid precoding. To illustrate the preceding concepts and to
quantify the impact of metric mismatch that may arise due to
channel estimation, we compare the performance of different
precoding schemes in the simple scenario where K = NRF =
1. We choose this simple case here since the interference
term vanishes and the digital beamformer reduces to a scalar
whose value can be predetermined based on the downlink
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power PD. Further, the rate maximizing analog precoder has
a simple optimal structure that we denote by phase matching
(denoted as “PM” in the figures) [13]. This comparison is
shown in Fig. 2. The proposed precoding scheme (described
in Section III-B) is a data-driven approach that maps the
received pilots directly into the analog precoding vector. The
two baseline schemes estimate the channel parameters using
either the OMP [8] or a neural network [27] and subsequently
apply phase matching on the estimated channels. From this
figure, we can observe sizable gain due to bypassing channel
estimation. We emphasize that such gain manifests itself when
the resources for CSI acquisition are limited, e.g., when
the pilot length is short. For sufficiently long pilot lengths,
accurate channel estimation is possible and the conventional
channel recovery based scheme is near optimal.

The discussion so far highlights the advantage of directly
designing the hybrid precoding matrices and advocates the
use of data-driven approaches to undertake this task. However,
for the multiuser hybrid precoding problem in (12), a direct
application of a data-driven approach is cumbersome. Consider
a naive implementation in which we seek to learn the mapping
F(·) directly using a DNN. For simplicity, we assume in this
example that the analog sensing matrix WRF is given. Hence,
the task is reduced to that of learning F(·) only. Let Θ be
the parameter set of the DNN architecture that models this
downlink precoding system, the sum rate optimization problem
can now be stated as follows:

minimize
Θ

EH,Z̃

[
K∑
k=1

log2

(
1 +

|hHk VRFvDk
|2∑

i 6=k|hHk VRFvDi |2 + σ2

)]
(14)

subject to (VRF,VD) = FNN (ỹ1, . . . , ỹK ; Θ) ,

where FNN( · ; Θ) represents the input-output relationship of
the DNN and the expectation is taken over both the channel
H = [h1, . . . ,hK ] and the uplink noise Z̃ = [z̃1, . . . , z̃K ]
in the sensing stage due to the dependence of VRF and VD
on the noise realizations through ỹ1, . . . , ỹK . We can learn
the DNN parameters by replacing the expectation with the
empirical average over some training set T and subsequently
employing a stochastic gradient descent (SGD) algorithm.

While it is easy to see that this method bypasses the channel-
recovery step and avoids the limitations of the traditional
precoding scheme, it turns out that such an approach suffers
from a number of drawbacks. First, the training process is
severely hindered by complexity due to the multiplicative
interaction between the analog and digital precoding matrices.
Second, the input and output dimensions of this DNN depend
on the number of users. This implies that a different DNN
needs to be trained for systems with different number of
users. For these reasons, this naive approach is difficult to
implement in practice and is not generalizable. Thus, an
alternative learning strategy is needed.

B. Proposed Precoding Design

This section develops the proposed semi-direct data-driven
scheme that overcomes the limitation of channel recovery
based approaches while enabling simpler training and better
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Fig. 3: Block diagram of the proposed approach for designing the hybrid
precoding matrices in a single-carrier TDD system.

generalizability than the aforementioned naive application of
the DNN. The key idea behind the proposed approach is two-
fold. First, we decouple the design of the analog and digital
precoding stages and learn a direct mapping for the analog
precoder only. This reduces the training complexity of the
DNN as compared to the one that simultaneously designs the
hybrid precoders. Second, we decompose the overall DNN
architecture into several per-user DNNs, each outputting one
column of VRF. Further, we tie the weights of all the per-user
DNNs together and show that training one per-user DNN using
the training data of all users is sufficient to learn a universal
mapping for all users. This allows us to train one per-user
DNN, but employ any number of copies of the trained DNN to
serve an arbitrary number of users during the actual operation
of the system.

In order to decouple the design of VRF and VD, we propose
to split the overall pilot phase of L frames into two separate
phases of lengths La and Ld, where L = La +Ld. To design
the analog precoder, we map the pilots received in the first pilot
phase into the analog precoding matrix using a DNN. Then,
we fix the analog beamformers and initiate the second phase of
pilot transmission. The pilots received in the second phase are
then used to estimate the low-dimensional equivalent channel
and to design the digital precoding matrix using a conventional
approach that requires no further training. The block diagram
of the proposed scheme is shown in Fig. 3.

C. Analog Precoding Design

We assume that K = NRF so that VRF has K columns.
This assumption is made in most hybrid precoding works [13],
[27] due to the fact that a fully loaded system maximizes
the overall multiplexing gain. Let us denote the received
pilot from the k-th user in the first pilot phase by ỹak ,[(

ỹ
(1)
k

)T
, . . . ,

(
ỹ

(La)
k

)T]T
, then using (11), we may write:

ỹak =
√
PUWa

RFhk + z̃ak, (15)
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where Wa
RF ,

[(
W

(1)
RF

)T
, . . . ,

(
W

(La)
RF

)T]T
and z̃ak ∼

CN
(
0, σ2BBH

)
is the corresponding uplink noise with B =

diag
(
W

(1)
RF , . . . ,W

(La)
RF

)
. We seek to determine the analog

precoder directly from the received pilots in (15) using a DNN
on a per-user basis. To accomplish this, we decompose the
overall DNN architecture into K non-interconnected branches.
In the k-th branch, we have a single-user DNN (SU-DNN),
with parameters Θk, that determines the k-th analog precoding
vector v

(k)
RF from ỹak using the following direct mapping:

v
(k)
RF = GNN(ỹak; Θk), ∀k. (16)

We make the design choice to construct the analog precoding
vector on a per-user basis in order to simplify the training
process and to further ensure that the proposed scheme can
generalize to systems with any number of users. Based on (16),
the goal is to find the DNN parameters in each branch Θk and
the sensing matrix Wa

RF so that some average loss function is
minimized:

minimize
Wa

RF,{Θk}Kk=1

EH,Z̃a [L(VRF)] (17)

subject to v
(k)
RF = GNN(

√
PUWa

RFhk + z̃ak; Θk), ∀k.

where Z̃a , [z̃a1 , . . . , z̃
a
K ] ∈ CLNRF×K . Strictly speaking,

since the ultimate goal is sum rate maximization, the loss
function should be defined in terms of the maximum sum
rate optimized over all choices of the digital precoder. In
other words, for a given VRF, the loss function should be
the negative of the optimal value obtained from solving the
following optimization problem:

Lopt (VRF) =

− maximize
VD:‖VRFVD‖2F≤PD

K∑
k=1

log2

(
1 +

|hHk VRFvDk
|2∑

i 6=k|hHk VRFvDi
|2 + σ2

)
(18)

However, this problem does not have a closed-form solution;
it is nonconvex so even a numerical solution is nontrivial.
Instead, we obtain a simplified closed-form approximation to
Lopt (VRF) based on the following steps: (i) we ignore the
interference term in the denominator of the objective of (18),
and (ii) we simplify the resulting expression into a per-user
form.

We remark that ignoring the interference in the design of
analog precoder is a common heuristic in hybrid precoding
literature, e.g., see [13], [27]. This is because the subsequent
digital precoder is typically designed to alleviate the effect of
interference, e.g., using zero forcing (ZF). With the interfer-
ence term removed, the optimization problem then becomes:

maximize
VD:‖VRFVD‖2F≤PD

K∑
k=1

log2

(
1 +

∣∣hHk VRFvDk

∣∣2
σ2

)
. (19)

The solution of this optimization problem has a closed-
form structure, given by maximal ratio transmission V∗D =

VH
RFHD, where D = diag

( √
d1

‖VH
RFh1‖

, . . . ,
√
dK

‖VH
RFhK‖

)
and dk

is the power allocated to the k-th user. With this structure
of VD, we approximate the power constraint as follows:

Tr
(
V∗HD VH

RFVRFV
∗
D

)
≈MTr

(
V∗HD V∗D

)
= M

K∑
k=1

dk ≤ PD, (20)

where the approximation VH
RFVRF ≈ MI follows from

Lemma 1 in [16]. For simplicity, we adopt an equal power
allocation, i.e., d1 = ... = dk = PD

KM , which is near optimal
at high SNR. In this case, the loss function becomes:

L̃ (VRF) = −
K∑
k=1

log2

(
1 +

PD

MKσ2
‖VH

RFhk‖2
)
. (21)

We can further simplify (21) by noting that v
(k)
RF is a

function of hk only, according to (16). Assuming that the
user channels are independent, we note hHk′v

(k)
RF ∼ CN (0,M)

whenever k′ 6= k since the elements of v
(k)
RF act as random

phase rotations for the elements of hk. It then follows that
1
M |h

H
k′v

(k)
RF |2 ∼ exp(1), where exp(λ) is an exponential distri-

bution with parameter λ. On the other hand, the distribution of
1
M |h

H
k v

(k)
RF |2 can be described in terms of the SNR distribution

of equal-gain combining, which is known to have drastically
improved statistics with increasing M [36]. Hence, in the
massive MIMO regime where M is large, we can approximate
1
M ‖V

H
RFhk‖2 = 1

M

∑
j |hHk v

(j)
RF |2 ≈ 1

M |h
H
k v

(k)
RF |2. As a

result, the loss function becomes:

L (VRF) = −
K∑
k=1

log2

(
1 +

PD
MKσ2

|hHk v
(k)
RF |

2

)
. (22)

We propose to train the DNN using (22).
We remark that the loss function (22) bears some similarity

to the metric of [27] for analog precoding design. Specifically,
both metrics encourage the analog precoder phase shifters
to match the channel phases. The key difference is that we
propose to construct the analog precoder directly from the
received pilots. In contrast, the work [27] estimates the channel
first and uses this estimate to determine the analog precoder.
The limitation of separating channel estimation and precoding
modules has already been discussed in Section III-A. In par-
ticular, most channel estimation schemes aim to estimate both
the channel gains and phases. In contrast, the loss function (22)
suggests that only the channel phases are important in so far as
the analog precoding design is considered, but not the channel
gains. Hence, it can be seen that bypassing channel estimation
has the potential to yield a better analog precoder in the short-
pilot regime. This can be seen as the main advantage of the
proposed design as compared to [27].

In terms of training, the key benefit of (22) is that it consists
of K independent terms each of which is a function of a single
analog precoding vector v

(k)
RF . In other words, the objective of

the optimization problem (17) decouples over the users, i.e.,

EH,Z̃a [L(VRF)] =

−
K∑
k=1

Ehk,z̃a
k

[
log2

(
1 +

PD

MKσ2

∣∣∣hHk v
(k)
RF

∣∣∣2)] . (23)
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To further simplify training, we propose to tie the parameters
of the per-user DNNs together, i.e., set Θ1 = . . . = ΘK = Θ.
In this case, all SU-DNNs (16) become identical. As a result,
the optimization problem becomes:

minimize
Wa

RF, Θ
− Eh,z̃a

[
log2

(
1 +

PD

MKσ2

∣∣hHvRF
∣∣2)] (24)

subject to vRF = GNN(
√
PUWa

RFh + z̃a; Θ),

where we define a new channel vector h to have a mixture dis-
tribution 1

K

∑
k fhk

(h) with fhk
(·) denoting the distribution

of the k-th user channel and z̃a and vRF are defined similarly.
We interpret (24) as learning the parameters {Wa

RF,Θ} of
“one” SU-DNN whose input is given by the channel plus noise
and output is vRF. In effect, the training of the overall DNN
for K users can be performed by training a single SU-DNN
using a training set whose samples are drawn from the mixture
distribution. To construct this training set, we treat a batch of
K-user channel realizations B = {H(1), . . . ,H(B)} of size B
as a new batch B̃ = {h(1), . . . ,h(BK)} whose elements are
taken columns-wise from all H(i) ∈ B with random shuffling.

The main advantage of learning a common set of parameters
in (24) is that it allows us to train one SU-DNN based on the
samples of all possible realizations of user channels, then to
deploy copies of the trained SU-DNN for systems with an
arbitrary number of users during the actual operation. This
ensures that the proposed approach does not require retraining
when the number of users changes. We emphasize here that
this method is applicable even if the users experience different
channel distributions and different noise levels.

D. SU-DNN Architecture

The proposed SU-DNN that learns the analog sensing
matrix Wa

RF and the parameter set Θ is depicted in Fig. 4. This
architecture consists of a sensing stage, a set of intermediate
layers, and an entry-wise normalization layer.

1) Sensing stage: The sensing stage is a trainable stage that
models the sensing operation:

ỹ(`) =
√
PUW

(`)
RF h + z̃(`), ` ∈ {1, . . . , La}, (25)

where z̃(`) ∼ CN
(

0,W
(`)
RF

(
W

(`)
RF

)H)
. This can be imple-

mented by expressing z̃(`) = W
(`)
RF ñ(`) for a noise vector

ñ(`) ∼ CN (0, IM ) and using a fully-connected (FC) lin-
ear layer with input as the channel vector plus noise (i.e.,√
PUh + ñ(`)), output as ỹ(`), and trainable weights given by

the sensing matrix W
(`)
RF . The elements of W

(`)
RF are restricted

to have a unit modulus. To enforce such constraint on these
elements, we take the trainable parameters to be the phases of
[W

(`)
RF ]ij . By using La such FC layers in parallel, we model the

sensing operation (25). The different outputs ỹ(1), . . . , ỹ(La)

are then concatenated to form ỹa.
2) Intermediate Layers: The intermediate stage is a net-

work of layers that, together with the normalization layer
in (26), models the direct map from the received pilot to the
precoding vector, (i.e., GNN (·; Θ)). In other words, this stage
combines implicit channel estimation with analog precoding.

To implement this stage, we consider a cascade of FC layers
that model the direct mapping from the received pilots ỹa

to the unnormalized precoding vector ṽ. The input-output
relationship in this case is given by:

ṽ = WRR (. . .R (W1ỹ
a + b1) . . .) + bR,

where R is the number of intermediate layers, R(·) =
max(·, 0) is the ReLU activation, which is applied to all layers
except the last one, and Θ = {Wr,br}Rr=1 is the set of
trainable parameters.

3) Normalization Layer: The output of the intermediate
stage cannot be taken as the analog precoding vector since the
elements of ṽ do not satisfy the unit modulus constraint. The
purpose of the normalization layer is to enforce this constraint
on the elements of the output vector. This is accomplished
by applying the map N (x) , x

|x| component-wise on the
elements of ṽ, i.e.,

[vRF]i = N ([ṽ]i) , ∀i. (26)

In our prior work [1], we propose to output the phases of
the analog precoding vector Φ in the intermediate stage and
apply the component-wise exponential map [vRF]i = eı[Φ]i

in the subsequent layer to ensure that the analog constraint
is met. However, our numerical experiments indicate that the
normalization method (26) can achieve better performance.

4) Training and Post-Training: The training of the pro-
posed DNN is performed offline in an unsupervised fashion
to minimize the average loss function in (22). After training,
we use K copies of the SU-DNNs for operation wherein the
sensing stage is used as the analog sensing matrix in the
uplink pilot phase and the received pilot signal is fed into the
intermediate layers to produce the downlink analog precoder.

Finally, we remark that the analog precoding and sens-
ing stages discussed herein are assumed to be of infinite-
resolution. In practice, the analog stage is often implemented
using finite-resolution phase shifters, which implies that the
phases take on values over a discrete set. A particular case
of interest is when the elements have the form [URF]mn =

e
ı
2πq
Q , where URF ∈ {VRF,WRF} and Q is an integer with

q = 0, . . . , Q − 1. To produce analog precoding/sensing
matrices adhering to this restriction, we use the previous DNN
architecture to determine the matrices with unrestricted phases
then round the phases to the nearest value in the discrete set.

E. Digital Precoding Design

In the digital precoding design, we seek to design the
digital precoder VD, given a predetermined VRF and using
a second pilot phase of length Ld time frames. We propose to
construct the digital precoding using the traditional approach
that separates the channel estimation and precoding modules
since the performance loss due to the metric mismatch is
negligible for low-dimensional channels.

For a fixed analog precoder, the low-dimensional equivalent
channel seen by the digital precoder is Heq , VH

RFH. To
estimate the equivalent low-dimensional channel Heq, we use
the second pilot transmission phase, where the received pilot
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Fig. 4: The proposed SU-DNN for uplink sensing and downlink analog precoding design in single-carrier systems.

matrix Υ̃(`) ∈ CM×K for all K users in the `-th time frame
is given by:

Υ̃(`) ,
[
ỹ

(`)
1 , . . . , ỹ

(`)
K

]
=
√
PUW

(`)
RF H + Z̃(`), (27)

where ` = La + 1, . . . , L. Here, W
(La)
RF , . . . ,W

(L)
RF represent

the sensing matrices that can be designed. We enforce the
choice:

W
(`)
RF = VH

RF, ` = La + 1, . . . , L, (28)

so as to make the useful signal term in (27) identical to Heq.
In particular, this choice transforms the end-to-end massive
MIMO system into a fully digital low-dimensional MIMO
system whose channel is Heq. Indeed, by (28), the received
pilots can now be expressed as:

Υ̃(`) =
√
PU

Heq︷ ︸︸ ︷
VH

RFH +Z̃(`), ` = La + 1, . . . , L, (29)

where (29) can now be regarded as repeated transmissions
of the pilots through the equivalent channel. As a result, the
estimate Ĥeq can be determined directly from the received
pilots Υ̃(La+1), . . . , Υ̃(L), e.g., using the traditional linear
minimum mean squared error (LMMSE). Assuming that the
channels across the different antennas are uncorrelated (i.e.,
E[hkh

H
k ] = IM ,∀k), the LMMSE estimator for the equivalent

channel is given by:

Ĥeq =

√
PU

PULd + σ2

L∑
`=La+1

Υ̃(`). (30)

Having estimated Heq, we proceed to determine VD us-
ing conventional linear precoding schemes. Two common
choices for digital precoding design are the ZF and the
iterative weighted minimum mean squared error (WMMSE)
technique [37]. For ZF, the digital precoder is VD =
Ĥeq(ĤH

eqĤeq)−1DZF, where DZF is the power allocation diag-
onal matrix. Despite its simplicity and its ability to mitigate in-
terference, ZF suffers from noise enhancement. The WMMSE
approach is an iterative strategy that reduces the combined
effect of noise and interference. The WMMSE procedure for
digital precoding design in hybrid systems is summarized
in [16].

F. Pilot Allocation

There is a natural trade-off between the number of pilots
allocated to the analog precoding design and those allocated

to the digital precoding design. In particular, for a fixed L,
allocating more pilots to the analog precoding design ensures
a good analog precoder but may hurt the design of the digital
precoder and vice versa. In general, the numerical simulations
suggest that employing a larger La (i.e., at the cost of reducing
Ld) benefits the system more. This is because there are more
degrees of freedom in the analog precoding stage than that
in the digital precoding stage. Hence, it is more beneficial
to allocate more resources to designing the analog precoder.
In the simulations, we search for the optimal choice of La,
starting from La = L− 1 and Ld = 1.

IV. HYBRID PRECODING DESIGN FOR
FREQUENCY-SELECTIVE OFDM SYSTEMS

We now turn the attention to the more general OFDM
based massive MIMO system. The extension of the proposed
algorithm to the multicarrier case should be made with the fol-
lowing considerations: (i) A common analog precoder should
be designed for all channels over Nc subcarriers, and (ii)
Digital precoding should be performed on a per-subcarrier
basis.

As before we divide the overall precoding design into an
analog precoding design, in which the analog precoder is
determined using a direct mapping from the baseband signal
received in the first La pilot transmissions, and a digital
precoding design that entails estimating the low-dimensional
equivalent channel followed by linear precoding design. To
ensure that a common analog beamformer is appropriately
designed for the channels over the entire band, the SU-DNN is
trained to learn a mapping from the baseband received pilots
matrix over the entire frequency band (i.e., Ỹk in (5) for
the k-th user) into the corresponding analog precoding vector.
Further, since digital precoding takes place on a per-subcarrier
basis, the low-dimensional channel for each subcarrier is esti-
mated and the corresponding digital precoder is subsequently
determined using linear precoding. The details of the proposed
scheme are provided in Algorithm 1.

Analogous to the SU-DNN for the single-carrier case, the
network architecture in the OFDM case consists of a sensing
stage, an intermediate stage and a normalization layer. The
main difference is that the DNN in the OFDM case is
designed to map the received pilots across all frequencies into
a single analog precoder. To accomplish this, we propose an
intermediate stage consisting of a convolutional layer followed
by an FC stage. We utilize a convolutional layer to reduce the
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Fig. 5: The proposed SU-DNN for uplink sensing and downlink analog precoding design in multicarrier systems. For simplicity, the operation of the convolution
stage is shown when Nf = 1.

Algorithm 1: Hybrid Precoding for OFDM Systems
Input: Number of pilot time frames La, Ld, uplink and

downlink powers PU, PD, noise variance σ2, pretrained
sensing matrices in the analog precoding design phase
{W(`)

RF }
La
`=1, and pretrained SU-DNN GOFDM (·;ΘOFDM).

Output: The analog precoder VRF and the digital precoders
VD[1], . . . ,VD[Nc].

Analog Precoding Design:
for ` = 1 . . . , La do

- BS sets the analog sensing to W
(`)
RF ;

- Users send pilots X[1], . . . ,X[Nc] across subcarriers
over K OFDM symbols;
- BS receives Ỹ

(`)
k =

√
PUW

(`)
RF Hk + Z

(`)
k ;

end
for k = 1 . . . ,K do

- BS constructs Ỹk =

[(
Ỹ

(1)
k

)T
, . . . ,

(
Ỹ

(La)
k

)T ]T
;

- BS computes v
(k)
RF = GOFDM

(
Ỹk;ΘOFDM

)
;

end
- BS determines VRF =

[
v

(1)
RF , . . . ,v

(K)
RF

]
;

Digital Precoding Design:
- BS sets the analog sensing matrix to VH

RF;
for ` = La + 1 . . . , L do

- Users send pilots X[1], . . . ,X[Nc] across subcarriers
over K OFDM symbols;
- BS receives
Ỹ

(`)
k =

[
ỹ

(`)
k [1], . . . , ỹ

(`)
k [Nc]

]
=
√
PUVH

RFHk + Z
(`)
k ;

end
for j = 1 . . . , Nc do

- BS forms Υ̃(`)[j] ,
[
ỹ

(`)
1 [j], . . . , ỹ

(`)
K [j]

]
, ∀`;

- BS determines the LMMSE estimate

Ĥeq[j] =

√
PU

PULd + σ2

∑L
`=La+1 Υ̃(`)[j];

- BS determines VD[j] using ZF or WMMSE on Ĥeq[j].
end

input dimension and to exploit the correlation of the channel
across the subcarriers, thereby reducing the computational
complexity of the subsequent FC stage. In particular, we apply
Nf < Nc convolutional filters to the columns of the recieved
pilot matrix Ỹk, where each convolutional filter is a 1-D
horizontal stripe with length Nc and trainable parameters.
Each filter output is then followed by a ReLU activation. This
produces a convolution output consisting of Nf feature vectors
each of length LNRF. The feature vectors are then mapped
into the unnormalized precoding vector using the subsequent
FC stage. The overall DNN architecture is illustrated in Fig. 5,

where the sensing stage and normalization layer are analogous
to their counterparts for the DNN of single-carrier systems.
Finally, we use the following loss function:

L(VRF) = −
K∑
k=1

Nc∑
j=1

log2

(
1 +

PD
MKσ2

∣∣∣hHk [j]v
(k)

RF

∣∣∣2) , (31)

which generalizes the loss function (22).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
hybrid precoding scheme against existing benchmarks and in-
vestigate its ability to generalize in various system parameters.

A. Parameter Configuration and Implementation Details

We consider a massive MIMO system in TDD where the BS
is equipped with NRF = 4 RF chains and a two-dimensional
UPA with Mh = Mv = 8. Thus, the total number of
BS antennas is M = 64. The antenna separation in both
directions is set to λ/2. For OFDM systems, the user channels
follow the model introduced in Section II-B with Lp = 4
paths, a maximum delay spread dmax = 4, and Nc = 128
subcarriers. The pilot matrices for different subcarriers have
the form X[j] = eıφ[j]X with a randomly chosen rotation
phase φ[j] and X set to be a K × K DFT matrix. The
same φ[j]’s are used across all the time frames in the entire
pilot phase. The channel paths are assumed to be independent
and identically distributed (i.i.d.) with complex Gaussian path
gains α`,k ∼ CN (0, 1) and uniform path delays τ`,k over the
interval [0, dmaxTs], where Ts = 1

1760µs [11]. The azimuth and
elevation AoDs follow a uniform distribution over the interval
[−π/2, π/2] and the pulse shaping filter is raised cosine with a
roll-off factor of 0.8. For the single-carrier system, we adopt
the frequency-flat mmWave model introduced in Section III
by setting dmax = 0 and Nc = 1. Finally, we define the
uplink SNR as SNRUL = 10 log PU

σ2 and the downlink SNR
as SNRDL = 10 log PD

σ2 .
We implement the proposed DNNs using TensorFlow [38].

Since most deep learning libraries do not support complex
operations, we represent all complex quantities using their real
representations and implement complex multiplications using
real addition and multiplication. We set the number of FC
intermediate layers of the single-carrier/OFDM SU-DNNs to
R = 3, with dense layers of widths 1024, 512, and 256, respec-
tively. For faster convergence, each dense layer is preceded
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by a batch normalization layer. In addition, for the OFDM
neural network, we set the number of convolutional filters
Nf = 16, which leads to a dimensionality reduction of the
input space by a factor of 8 for a system with Nc = 128. We
train the models using Adam optimizer [39] with minibatches
of size B = 500 over many (∼ 1000) epochs. The learning
rate is initialized at 10−3 and progressively decreased by a
factor of 2 every 100 epochs. The size of the training set is
set to be 50,000 channel realizations, where each realization
corresponds to the channels of K = 4 users. Hence, for the
purpose of training a single SU-DNN, the overall training set
size equals 200,000. We use a validation set of size 1000 to
monitor the performance and keep the model parameters that
achieved the best generalization. Finally, the test set used in
the simulations consists of 10,000 channel examples.

B. Sum-Rate Performance Analysis

We first analyze the performance of the proposed hybrid
precoding scheme which bypasses the channel estimation step
for the analog precoding design in a multiuser setup with
K = 4 users and SNRUL = SNRDL = 10dB. In Fig. 6(a),
we plot the sum rate against the number of pilot frames L
assuming a single-carrier mmWave massive MIMO setup. For
the proposed approach, we indicate the values of La and Ld on
the figure. As benchmarks, we consider downlink precoding
using phase matching [13] for analog precoding and ZF for
digital precoding using perfect/imperfect CSI. For the channel
estimation schemes in the imperfect CSI case we use either the
OMP algorithm [8] or the deep learning compressed sensing
(DLCS) approach [27]. It can be seen in Fig. 6(a) that the
proposed scheme significantly outperforms channel recovery
based counterparts. For example, the proposed approach with
L = 8 achieves over 85% of the total sum rate of the full CSI
systems, while the DLCS does so with L = 10. This indicates
over 20% saving in pilot overhead relative to the conventional
channel recovery based schemes. This supports the main claim
that the performance of the hybrid precoding system can be
enhanced by bypassing explicit channel estimation for the
analog precoding design. In addition, we show the variations
around the mean for the proposed scheme using error bars
that represent one standard deviation from the average rate.
Finally, we also plot the performance of the proposed scheme
when: (i) the sensing Wa

RF is random and (ii) each user uses
a different DNN with different parameters Θk. From these
comparisons, it is observed that the effect of optimizing Wa

RF
is noticeable only at a very short pilot length. Further, tying
the DNN parameters does not result in performance loss in
the i.i.d. channels case.

To examine whether the proposed scheme is always better
than the channel estimation schemes for all channel realiza-
tions, in Table I, we report the relative frequency of the event
that the sum rate of the proposed scheme exceeds the sum rate
of the DLCS scheme for different values of L. From the table,
it is seen that the proposed scheme is superior a majority of
the time.

Next, we consider the sum-rate comparison for the mul-
ticarrier setup. This comparison is shown in Fig. 6(b). For

the baselines, we perform channel estimation according to
SW-OMP [11] and the data-driven LAMP network [23], and
utilize the covariance averaging scheme of [16] for analog
precoding and WMMSE for digital precoding. From Fig. 6(b),
we again observe that the performance of the proposed data-
driven scheme is superior to the channel recovery based ones.
Further, we also plot the sum rate of the proposed precoding
approach assuming finite-resolution phase shifters. We observe
that the performance of the proposed approach with only
2-bit phase shifters can already exceed the performance of
the channel recovery based approaches with infinite-resolution
phase shifters. Moreover, the performance of the proposed
method with 3-bit phase shifters already approaches that of
the infinite-resolution counterpart.

Finally, we examine the performance of the proposed
scheme under different pilot allocation settings. In Fig. 6(c),
we set L = 8 and plot the sum rate against the downlink SNR
for the cases of La ∈ {1, 3, 6, 7}, where it can be seen that
the case of La = 6 corresponds to the best performance. The
cases La ∈ {4, 5} exhibit roughly the same performance as
the La = 6 case, and are omitted from the figure for clarity.
In this example, it can be observed that the proposed scheme
incurs a performance loss whenever the pilots are not allocated
optimally. Moreover, it is observed that allocating more pilots
to the analog precoding design yields better performance.

C. Generalizability Results
In this section, we seek to examine how well the system

performs under parameter settings other than the ones used
for training. This is crucial because wireless communication
systems are typically far from static and their parameters
constantly change over time. The main goal of this section
is to show that the proposed data-driven scheme can maintain
a robust operation against variations in system parameters.

First, we investigate the generalizability of the proposed
scheme in the number of paths. To this end, we consider
two scenarios for the proposed approach. In the first scenario,
the DNN is trained and tested using datasets generated from
the same distribution. This experiment is repeated for dif-
ferent values of the number of paths, i.e., Lp ∈ {2, . . . , 8}.
Hence, this scenario represents an unrealistic baseline where
a different DNN is trained for different values of Lp. In the
second scenario, which represents the actual performance of
the proposed approach, we train the DNN using a training set
with Lp = 4 and evaluate the performance on the test sets with
Lp ∈ {2, . . . , 8}. We set La = 6 and Ld = 2 for the single-
carrier setup and La = 8 and Ld = 4 for the multicarrier
setup. All other parameters remain the same as those given in
Section V-B. We plot the sum rate against the number of paths
in Fig. 7(a) for the single-carrier case and in Fig. 8(a) for the
multicarrier case. For comparison purposes, we also include
the performance of the perfect CSI case and the imperfect
CSI case with OMP for channel estimation in the single-
carrier system, and SW-OMP in the multicarrier system. It can
be seen that there is no tangible loss in the performance of
the proposed approach relative to the baseline. This indicates
that the proposed DNN is able to maintain a robust operation
against variations in Lp.
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TABLE I
RELATIVE FREQUENCY OF THE EVENT THAT THE SUM RATE OF THE PROPOSED SCHEME EXCEEDS THAT OF [27].

Pilot Length (L) L = 2 L = 4 L = 6 L = 8 L = 10

Analog Pilot Phase (La) La = 1 La = 3 La = 4 La = 6 La = 7

Pr
(∑

RProposed >
∑

RDLCS
)

69.6% 78.2% 91.5% 91.7% 91%

2 3 4 5 6 7 8 9 10

Pilots Length (L)

4

6

8

10

12

14

16

18

20

22

24

26

S
u

m
 R

at
e 

(b
it

s/
s/

H
z)

Perfect CSI + PM + ZF

Proposed Approach (w/ ZF + optimized sensing)

Proposed Approach (K-branch DNN)

Proposed Approach (w/ ZF + random sensing)

OMP Channel Estimation + PM + ZF

DLCS Channel Estimation + PM + ZF

L
a
 = 7

L
d
 = 3

L
a
 = 1

L
d
 = 1

L
a
 = 3

L
d
 =1

L
a
 = 6

L
d
 = 2

L
a
 = 4

L
d
 = 2

(a) Sum rate vs pilot length for a single-carrier system
with SNRDL = 10 dB.

4 5 6 7 8 9 10 11 12 13 14

Pilot Length (L)

13

14

15

16

17

18

19

20

21

A
v

g
. 

S
u

m
 R

at
e 

p
er

 S
u

b
ca

rr
ie

r 
(b

it
s/

se
c/

H
z)

Proposed Approach + WMMSE

LAMP Ch. Est. + Analog Precoding [16]  + WMMSE

SW-OMP Ch. Est. + Analog Precoding [16] + WMMSE

Proposed Approach + WMMSE (Q = 4)

Proposed Approach + WMMSE (Q = 8)

L
a
 = 3

L
d
 = 1

L
a
 = 7

L
d
 = 3

L
a
 = 6

L
d
 = 2

L
a
 = 8

L
d
 = 4

L
a
 = 10

L
d
 = 4

L
a
 = 4

L
d
 = 2

(b) Sum rate vs pilot length for a multicarrier system with
Nc = 128 subcarriers.

0 2 4 6 8 10 12 14 16 18 20

DL SNR (dB)

0

5

10

15

20

25

30

S
u

m
 R

a
te

 (
b

it
s/

s/
H

z
)

L
a
 = 1, L

d
 = 7

L
a
 = 3, L

d
 = 5

L
a
 = 6, L

d
 = 2

L
a
 = 7, L

d
 = 1

(c) Effect of pilot allocation in a single-carrier system with
L = 8.

Fig. 6: Performance analysis of the proposed approach when K = NRF = 4 and SNRUL = 10dB.
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Fig. 7: Generalizability of the single-carrier DNN in different parameters. We set NRF = 4, and SNRDL = 10 dB.

Next, we numerically study the degradation in performance
due to mismatch in the uplink SNR. Analogous to the previous
simulation, we consider two scenarios in this experiment.
Specifically, in the first scenario, representing the baseline,
the DNN is retrained as the uplink SNR is varied between
0 − 20dB. In the second scenario, representing the actual
performance of the proposed scheme, the DNN is trained using
a training set generated for a fixed uplink SNR of 10dB. The
results are shown in Fig. 7(b) for the single-carrier system and
in Fig. 8(b) for the multicarrier system. Once again, we see
that there is only a negligible loss in the performance of the
proposed scheme relative to the baseline, thereby indicating
that the proposed design is able to perform well even in the
presence of variations in the uplink SNR.

Finally, we demonstrate the applicability of the proposed
approach to systems serving different number of users. First,
we study the case where all the users share the same channel
distribution, the more general case in which the users do
not share the same channel distribution is discussed in the
next subsection. In the former case, we train one single-user

neural network on the channel examples of all K users for
the proposed scheme. After training, this SU-DNN is then
duplicated across the K branches of the overall DNN. We
examine the single-carrier case in Fig. 7(c) with L = 3,
La = 2 and Ld = 1, and the multicarrier case in Fig. 8(c)
with L = 7, La = 5 and Ld = 2. In both simulations, we set
the number of paths Lp = 4, and SNRUL = SNRDL = 10dB.
To ensure that the number of RF chains is always equal to the
number of users, we select only K RF chains for downlink
precoding. This assumption is needed for the proposed scheme
as well as the PM design. In both cases, we observe that
the proposed approach provides better performance than the
channel recovery based approaches, regardless of the number
of users.

D. System-Level Performance

The simulation results presented so far pertains to the sum
rate objective. To evaluate the system-level performance of
the proposed algorithm and to account for fairness across the
users, we examine the performance of the proposed approach
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Fig. 8: Generalizability of the multicarrier DNN in different parameters. We set NRF = 4, Nc = 128, and SNRDL = 10 dB.

in an urban micro cell with 200 meters radius and 2000
potential users. The users are placed randomly in a circular
region within distances between 30 to 200 meters from the
BS. The antenna gain and transmit power at the BS are 0dBi
and 40dBm. Similarly, the antenna gain and transmit power
at the users are 15dBi and 30dBm. Further, it is assumed
that the users experience both large-scale fading and small-
scale fading. The small-scale fading component follows the
frequency-selective mmWave model presented in Section II-B
with Lp = 4, whereas the large-scale fading component
follows the floating intercept model derived in [40] from
38 GHz empirical measurements. The allocated bandwidth is
10MHz and the noise spectral density is −173.8 dBm/Hz.

We assume that communication occurs in a time slotted
fashion. In each time slot, NRF = K = 4 users are scheduled
randomly. Further, we consider weighted sum rate as the
metric of performance, i.e.,

∑
k wkRk, where the weights

w1, . . . , wk are inversely proportional to the long term average
of the scheduled users’ rates in previous time slots. That is,
wk = 1

R̄t
k

, where R̄tk is the average rate of user k up to the
t-th time slot. For the proposed design, we choose La = 10
and Ld = 4, and set L = 14 for the other precoding schemes.
Moreover, for the analog precoder design we train one SU-
DNN (using the loss function in (31)) on a training set sampled
randomly from the channel distributions of all users in the
cell. After that, we evaluate the performance using 4 identical
copies of the trained DNN. Finally, we use WMMSE to design
the digital precoder for both the proposed and the baseline
approaches.

Fig. 9 shows the empirical cumulative distribution function
(CDF) of the average rate per user for different hybrid pre-
coding schemes. It can be observed that the average user rate
under the proposed scheme is much higher than the average
user rate under the channel recovery based precoding schemes.
This suggests that the SU-DNN with sufficient complexity can
generally learn a good mapping for the analog precoding de-
sign despite being trained under different channel conditions.
In other words, sharing the weights across the branches of
the DNN architecture can still ensure generalizability in the
number of users even when the users do not share the same
channel distribution. Moreover, the superior performance of
the proposed scheme suggests its suitability for maximizing
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Fig. 9: Empirical CDF of the average user rate under different hybrid
precoding schemes in an urban cell scenario. We set M = 64, NRF = K = 4,
La = 10, Ld = 4, and L = 14.

not only the sum rate but a more general network utility
function. This fact can be seen by noting that the loss function
in (22) can be regarded as a universal measure of performance
for the analog precoding design since it encourages the analog
beamformer to match the channel phases, while allowing the
subsequent digital precoder to alleviate the interuser interfer-
ence. Finally, comparing the CDF curves of the proposed
approach when La = 10 and Ld = ∞ indicates that the
proposed design can be further improved by employing longer
Ld.

E. Performance when NRF > K

As a final simulation, we investigate the performance of the
proposed approach when the number of RF chains exceeds
the number of users. To this end, we fix NRF = 8 and plot
the performance for different values of K ≤ 8. We remark
here that because of our initial assumption that NRF = K,
we can only utilize K out of NRF RF chains for downlink
precoding using the proposed design. In contrast, the channel
recovery based approaches can utilize all NRF RF chains for
downlink precoding since the covariance averaging approach
of [16] does not require this assumption. Fig. 10 shows the
comparison for different precoding schemes. We observe that
the proposed scheme can eventually outperform the channel
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Fig. 10: Performance of the proposed scheme when NRF ≥ K. We set M =
64 and L = 7, with La = 5 and Ld = 2.

recovery based approaches when the system is fully loaded,
but it achieves a lower sum rate when K < NRF. This is
because the channel recovery based schemes can take advan-
tage of the increased degrees of freedom (offered by utilizing
all NRF chains) when the number of users is small. This is
a limitation of the proposed scheme. However, in practice,
network operators typically set NRF ≈ K to maximize the
throughput of the overall system. This is exactly the scenario
where the proposed approach has significant advantage over
the channel recovery based counterparts.

VI. CONCLUSION

This paper addresses the design of hybrid analog and digital
precoding matrices in a mmWave TDD massive MIMO em-
ploying single-carrier or multicarrier transmission techniques.
The proposed learning based precoding strategy overcomes
the limitations of the existing schemes by constructing the
analog precoding matrices directly from the received pilots
without the intermediate step of estimating the high dimen-
sional channel. Further, the design of digital precoder follows
from estimating a low-dimensional equivalent channel using
a relatively small number of pilots. In contrast to the fully
direct approach of jointly learning the analog and digital
precoding matrices, the proposed approach significantly sim-
plifies the training process and can generalize to systems
with an arbitrary number of users. Numerical evaluations
indicate significant gains in spectral efficiency relative to the
channel recovery based schemes and further demonstrate the
ability of the proposed scheme to generalize in various system
parameters.
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[3] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10,
no. 3, pp. 436–453, Apr. 2016.

[4] P. Wang, Y. Li, L. Song, and B. Vucetic, “Multi-gigabit millimeter
wave wireless communications for 5G: From fixed access to cellular
networks,” IEEE Commun. Mag., vol. 53, no. 1, pp. 168–178, Jan. 2015.

[5] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590–3600, Nov. 2010.

[6] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based
RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4091–4103, Oct. 2005.

[7] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, “Spatially
sparse precoding in millimeter wave MIMO systems,” IEEE Trans.
Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[8] J. Lee, G. Gil, and Y. H. Lee, “Channel estimation via orthogonal
matching pursuit for hybrid MIMO systems in millimeter wave com-
munications,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2370–2386,
June 2016.

[9] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Channel estimation
and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.

[10] F. Bellili, F. Sohrabi, and W. Yu, “Generalized approximate message
passing for massive MIMO mmWave channel estimation with Laplacian
prior,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3205–3219, May 2019.

[11] J. Rodrı́guez-Fernández, N. González-Prelcic, K. Venugopal, and
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