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Deep learning for COVID‑19 
detection based on CT images
Wentao Zhao 1,2, Wei Jiang1 & Xinguo Qiu 1*

COVID‑19 has tremendously impacted patients and medical systems globally. Computed tomography 
images can effectively complement the reverse transcription‑polymerase chain reaction testing. This 
study adopted a convolutional neural network for COVID‑19 testing. We examined the performance 
of different pre‑trained models on CT testing and identified that larger, out‑of‑field datasets boost 
the testing power of the models. This suggests that a priori knowledge of the models from out‑of‑
field training is also applicable to CT images. The proposed transfer learning approach proves to be 
more successful than the current approaches described in literature. We believe that our approach 
has achieved the state‑of‑the‑art performance in identification thus far. Based on experiments with 
randomly sampled training datasets, the results reveal a satisfactory performance by our model. We 
investigated the relevant visual characteristics of the CT images used by the model; these may assist 
clinical doctors in manual screening.

�e year 2019 witnessed the outbreak of a viral pneumonia, originating from an unknown source in Wuhan, 
China. �e virus was soon termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World 
Health  Organization1–3, and the resulting pneumonia is called Coronavirus disease 2019 (COVID-19)2–6. To date, 
more than 120 million cases have been con�rmed worldwide, and the number is still on the rise. Currently, the 
reverse transcription-polymerase chain reaction (RT-PCR) which relies on nasopharyngeal swabs to examine 
the existence of the ribonucleic acid (RNA) of SARS-CoV-27 is still a popular approach to test for the disease. 
Despite the high level of speci�city (Sp) of testing with RT-PCR, the sensitivity (Sn) of the method could be 
relatively  low8,9, and there is signi�cant variability in e�cacy depending on di�erent sampling methods and 
the time of occurrence of  symptoms9,10. Apart from the con�rmation by pathogenic labs, other useful methods 
for COVID-19 diagnosis include examination of clinical characteristics and the use of computed tomography 
(CT)  imaging11,12. Owing to its high sensitivity, CT imaging has been proposed as an essential substitute tool for 
COVID-19 screening, which is especially e�ective as a complementary method to RT-PCR, and by way of CT 
imaging was able to perform rapid prediction compared to RT-PCR. In particular, researches has shown that in 
normal CT scans conducted for non-COVID-19 reasons, such as for examination before elective operations and 
nerve system examinations, CT is considerably useful in testing for COVID-19  infection13,14. In other cases where 
CT imaging is adopted, for example, when patients su�er from worsening respiratory complications or similar 
factors, and are tested negative using RT-PCR, the clinical evidence may show patterns similar to being positive 
for COVID-19. Early research has suggested that CT images contain a great number of potential indicators of 
 infection8,10, but that the infection could also be unrelated to COVID-19. �is implies some challenges for radi-
ologists in speci�cally identifying COVID-19 infections using CT  images15,16. In addition, visual analysis of CT 
images is also time-consuming, especially in large-scale studies or with a huge number of patients. A common 
problem in the analysis of medical images has been that most of the CT images used for diagnostic purposes are 
not openly accessible owing to privacy concerns, which means that the results from neural network training on 
any particular one dataset cannot be replicated or applied in other hospitals. �e absence of open-source datasets 
on COVID-19 CT images thus presents a tremendous obstacle for the development of more advanced arti�cial 
intelligence technologies for better detection of CT on COVID-19  testing17. With the urgent need for solutions to 
cope with the COVID-19 pandemic and based on the recent e�orts among researchers to promote open-source 
data and open  access18,19, we discussed how transfer learning can improve the performance of convolutional 
neural networks on COVID-19 testing using CT images, and found that pre-trained models trained on larger 
out-of-domain datasets have better performance in COVID-19 detection. Comparing the model architecture 
which was discovered automatically via a machine-driven design exploration process using generative synthesis, 
our model performs better in each evaluation metric. We aimed to make the following contributions:
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• We used various training steps, resolutions with and without mixup to test the impact of these hyperparam-
eters on the results and discovered that a higher resolution and an appropriate number of training steps are 
e�ective in raising the model performance. As the model itself already yields excellent results, provided the 
data are su�cient, there is little impact of implementing mixup on the results.

• With �ve di�erent strategies for parameter initialization in the models, we studied the impact of initialized 
parameters on the model performance. Our results demonstrate that di�erent pre-training parameters in�u-
ence the �nal performance of �ne-tuned models. By utilizing a larger out-of-�eld dataset for pre-training, 
the model can be more e�ectively generalized.

• By comparing our results with those from previous studies, we demonstrate that our models based on trans-
fer learning are better than those based on structural design and that our models achieve state-of-the-art 
performance. Furthermore, we evaluated the performance of our model in a case in which there was a small 
quantity of downstream data and found that it still showed excellent performance in identifying COVID-19.

• With visualization, we investigated the mechanism behind the model for COVID-19 testing to better aid 
clinical decision-making.

Related work
COVID‑19 research. Currently, research on COVID-19 is being e�ectively carried out in various areas. 
 Reference20 review the various types of scalable telehealth services used to support patients infected by COVID-
19 and other diseases.  Reference21 discuss the di�erent wearable monitoring devices and respiratory support 
systems which are frequently used to assist coronavirus a�ected people.  Reference22 present an overview of the 
existing technologies, which are frequently used to support the infected patients for respiration. �ey outline a 
comparative analysis among the developed devices necessary challenges and possible future directions for the 
proper selection of a�ordable technologies.  Reference23 propose a system that restricts the spread of COVID-19 
by detecting people not wearing any facial mask in a smart city network.

In the face of the potential for using CT images as a complementary screening method for COVID-19, 
alongside the challenges of interpreting CT for COVID-19 screening, extensive studies have been conducted 
on how to detect COVID-19 using CT images. Deep learning is now widely used in all aspects of COVID-19 
research aimed at controlling the ongoing  outbreak24–28,  reference29 give an overview of the recently developed 
systems based on deep learning techniques using di�erent medical imaging modalities such as CT and X-ray. 
 Reference17 established a database of hundreds of CT scans of COVID-19 positive cases and developed a deep 
learning approach with high sample e�ciency based on self-supervision30 and transfer  learning31. In addition, 
researchers have developed an arti�cial intelligence system capable of diagnosing COVID-19 and separating 
the disease from the other common pneumonia as well as the normal  cases32. Furthermore,  reference33 created 
a library containing CT images of 1,521 pneumonia patients (including those with COVID-19), 130 clinical 
symptoms (a series of symptoms including biochemical and cellular analysis of blood and urine), as well as the 
clinical symptoms of SARS-CoV-2, and made predictions on whether each patient experienced negative, mild, 
and severe cases. With machine-driven design exploration,  reference34 proposed a deep convolutional neural 
network structure, COVIDNet-CT, based on CT images. Similarly, leveraging 104,009 CT images from 1,489 
patients collected from the China National Center for Bioinformation (CNCB) (China)32 combined with data 
cleaning and preparing in a suitable format for benchmarking, a COVIDx-CT dataset was built, along with 
explainability-driven performance validation and analysis using the GSInquire  technology35. Building upon the 
above progress, researchers proposed the COVIDx CT-2 datasets, which increases the number and diversity of 
 patients36.

Transfer learning. Transfer learning is the cornerstone of computer vision. Various categorization tasks 
related to  images37 can achieve greater performance with datasets of a limited size with transfer learning than 
using any other method. Previous work has shown that e�ective performance can be achieved through pre-
trained models �ne-tuned on speci�c  tasks38,39.

Methods
Datasets. With the global spread of the COVID-19 pandemic, accessibility of �rst-hand CT images and 
clinical data is critical for guiding clinical decisions, providing information which can deepen our understanding 
of the patterns of infection by the virus, and o�ering systematic models for early diagnosis and timely medical 
interventions. A key approach is to establish a comprehensive database with open access to CT images and asso-
ciated clinical symptoms to facilitate the global �ght against COVID-19. As mentioned in Related work section, 
several datasets have been built and are open for researchers, doctors, and data scientists for COVID-19-related 
research. Currently, although the COVIDx-CT dataset is evidently larger than many other CT datasets used in 
the literature on COVID-19 testing, a potential limitation of using COVIDx-CT for deep neural network learn-
ing lies in the limited patient demographic diversity. Speci�cally, as COVIDx-CT is collected from the CNCB, 
only information from the di�erent provinces in China is available, meaning the symptoms of COVID-19 in the 
CT images may not be appropriately generalizable to cases beyond China. Increasing the number and diversity 
of patients would make deep neural networks more varied and comprehensive, so that they can be more general-
izable and applicable in di�erent clinical environments around the world. By carefully processing and organizing 
the CT images of patients based on various CT devices, solutions, and validation abilities, previous  researchers36 
established the COVIDx CT-2A and COVIDx CT-2B datasets. COVIDx CT-2A involves 194,922 images from 
3,745 patients aged between 0 and 93, with a median age of 51. Each CT scan per patient has many CT slides. We 
use the CT slides as the input images to detect COVID-19, making the COVID-19 detection problem an image 
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classi�cation problem. �e CT images are provided as 512 × 512 pixels. �e sources of input for the images in 
COVDx CT-2A are as follows:

• China National Center for Bioinformation (CNCB) (China)32

• National Institutes of Health Intramural Targeted Anti-COVID-19 (ITAC) Program (countries unknown)40

• Negin Radiology Medical Center (Iran)41

• Liyuan Hospital and Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science 
and Technology (China)33

• COVID-19 CT lung and infection segmentation project, annotated and veri�ed by Nanjing Drum Tower 
Hospital (China)42

• Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) (countries 
unknown)43

• Open access online collaborative radiology resource (Radiopaedia) (countries unknown)44

Building upon COVIDx CT-2A, COVIDx CT-2B augmented the dataset with weak validation (MosMed) from 
the Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Health 
Care of Moscow (Russian Federation)45. �e purpose of establishing this validation set is to investigate, for 
instance, whether adding weak validation (i.e., �ndings without using RT-PCR and radiological tests) training 
data would boost the performance of the model. �is validation can further increase the breadth and diversity 
of the dataset. In view of the comparison with previous working models and the openness of data, in the pre-
sent study we employed COVIDx CT-2A for COVID-19 testing. Figure 1 illustrates the relevant examples in 
the COVIDx CT-2A dataset, including 3 types of CT scans: novel coronavirus pneumonia (NCP) infected by 
SARS-CoV-2, common pneumonia (CP), and normal controls. We applied some modi�cations to images from 
the database to facilitate our models. Speci�cally, as the potential contrast in the background of the images may 
result in biases in the models, we removed the background with an automatic cropping algorithm to standardize 
the �eld to the body area (as shown by the red frames in Fig. 1). By means of comparison across various types, we 
identi�ed the ground glass opacity (GGO), lung  consolidation46, and even the presence of white pneumonia in 
the groups of CP and NCP. However, owing to the considerably subtle visual di�erences in the images between 
those infected with common pneumonia and those infected with SARS-CoV-2, there might be tremendous vari-
ations in the ability to distinguish between the diseases, even for radiologists. Figure 2 presents the distribution 
of the di�erent types of infections and images in training, test, and validation sets.

Model selection. With the design exploration mode forming with machine-driven generation, previous 
 researchers34 have designed the deep convolutional neural network COVID-Net-CT for COVID-19 testing 
based on CT images. �e subsequent COVID-Net CT-236 was then designed using this architecture as its basis. 
In our experiment, we adopted the ResNet-v2, which is a modi�ed version from  ResNet47. Next, we substituted 

Figure 1.  Relevant examples of CT images in COVIDx CT-2. �e red frames refer to the marker frames of CT 
images in the dataset. �e �rst line shows the normal controls, the second line shows the cases with CP, and the 
third line shows the cases with NCP infected by SARS-CoV-2.
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group  normalization48 for batch  normalization49 and conducted a weight  standardization50 for all convolutional 
layers. To investigate how transfer learning utilizes external data in COVID-19 testing based on CT images, we 
incorporated the pre-training data from CIFAR-1051, ILSVRC-201252, and ImageNet-21k53 as the parameters for 
initialization to train the models.

Hyperparameter settings for training. �e general �owchart of the COVID-19 diagnosis system based 
on deep learning is illustrated in Fig. 3. �e total system contains two sections. In the training section, the train-
ing data are used to update the model parameters, and the performance of developed model is appraised by test 
data. In the test section, the model can be used to extract the feature, and �nally identify the class labels based 
on the feature. Lastly, the developed model is assessed by some evaluation metrics like accuracy, sensitivity, 
speci�city, and so on.

�e pseudocode for �ne-tuning the Convolutional Neural Network (CNN) and obtaining the accuracy can 
be seen in Algorithm 1. For each iteration, we randomly selected b CT images to calculate the gradient and 
updated the network parameters. Unlike the previous standard training process, we did not constrain the epoch 
of iteration, but constrained the training steps instead. Regarding the choice of hyperparameters, we used the 
stochastic gradient descent (SGD) and set the learning rate at 0.003, the momentum at 0.9, and the batch size 
at 64. RGB reordering was applied, and the �nal input to the proposed model was provided as 512 × 512 × 3 
image. Concerning data augmentation, for the training set we �rst tailored the images according to the annotated 
cropping frame, and then adjusted them to 512 × 512 pixels, randomly segmented them to 480 × 480 pixels, 
followed by random horizontal �ips and normalization. For the test set, we simply adjusted the images that were 
cropped according to the annotation, and then resized them to 480 × 480 . We used 10,000 training steps in our 
experiments. To �ne-tune the model, we �rst conducted a  warmup54 for the learning rate, and then reduced 
the learning rate three times at a rate of 10x during the entire training. �e details are provided in Parameter 
sensitivity section. Finally, we used mixup (Eq. (1)) for data augmentation.

A B

Figure 2.  COVIDx CT-2A dataset training, testing and validation dataset. (A) CT image distribution. (B) 
patient distribution.
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Figure 3.  A general �owchart of deep learning based COVID-19 diagnosis system.
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Here, xi and xj are the initial input vectors, while yi and yj are the labels. �rough mixup, we obtained new 
vectors and labels. As the calculation of loss using cross entropy is a convex optimization problem, the convex 
optimization problem has good convergence properties when solved by gradient descent, we used cross entropy 
as the loss function (Eq. 2).

where x ∈ R
N×C is the output of the model, class ∈ R

N is the label of the CT imaging and 0 ≤ class[i] ≤ C − 1.

Results
In this section, we investigate the model performance in testing for COVID-19. Speci�cally, we endeavor to 
address the following questions:

• How are di�erent hyperparameters, including various resolutions, training steps, and mixup, used to a�ect 
the model performance?

• How do di�erent weight initializations trained from the di�erent datasets a�ect result?
• Can we obtain a satisfactory result with the proposed model with limited CT images?
• How can we understand the decisions made by the deep convolutional neural network to assist in clinical 

decision-making?

Test performance. We utilized the training setting described in Hyperparameter settings for training sec-
tion to train the models. �e results are summarized in Table 1 and are compared with those from the current 
most advanced methods. Random, Bit-S and Bit-M are the models adopted in our laboratory, and refer to the 
random initialization, and methods of pre-training on ILSVRC-2012 and ImageNet-21k, which will be intro-
duced in Impact of parameter initialization section. We compared our model with the most advanced COVID-
Net CT-2 L. Table 1 reveals that our Bit-S and Bit-M models which rely on transfer learning saw an increase 
in accuracy of 0.71% and 1.12% over COVID-Net CT-2 L model, respectively. In addition, the accuracy of 
our model of random initialization was 3.60% higher than that of COVID-Net CT-1, suggesting that in com-
parison with models using structure space search, our model with random parameter initialization also has 
excellent performance. Figure 4 shows the distribution of the CT images representations a�er dimensionality 
reduction, which highlights the proper di�erentiation of the di�erent categories. In the confusion  matrix55 in 
Fig. 5, we demonstrate that even though radiologists may sometimes fail to distinguish between CP and NCP, 

(1)

{

x̃ = �xi + (1 − �)xj ,
ỹ = �yi + (1 − �)yj ,

(2)

loss(x, class ) = − log

�

exp(x[class])
�

j exp(x[j])

�

= −x[class] + log





�

j

exp(x[j])
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our model provides accurate classi�cations. For a better quantitative analysis of the models, four indicators 
were introduced, namely sensitivity (Sn), speci�city (Sp), positive predictive value (PPV), and negative predic-
tive value (NPV), as summarized in Table 2. We discovered that the BiT-M model based on transfer learning 
achieved the state-of-the-art performance with respect to sensitivity for COVID-19 (98.7%), positive predictive 
value (98.5%), speci�city (99.5%), and negative predictive value (99.6%). Our proposed technique outperforms 
previous works because we pre-train the model on a larger out-of-domain dataset which enables the model to 
learn more generalize knowledge. From a clinical perspective, high sensitivity ensures that there are few false 
negatives that lead to missed diagnoses in patients with COVID-19 infection, and high PPV ensures few false 
positives which add an unnecessary burden on the health care system. High speci�city and NPV achieved by 
our Bit-M model ensure that COVID-19 negative predictions are indeed true negatives in the vast majority of 
cases, the prediction results are real and reliable for COVID-19 negative patients. �e problem of treating false 

Table 1.  Accuracy of the COVIDx CT-2A benchmark datasets.

Model Methods Accuracy(%)

COVID-Net CT-1 Structure design 94.5

COVID-Net CT-2 L Structure design 98.1

COVID-Net CT-2 S Structure design 97.9

Random (ours) Transfer learning 97.9

Bit-S (ours) Transfer learning 98.8

Bit-M (ours) Transfer learning 99.2

Figure 4.  Distribution of characteristics of CT images a�er dimensionality reduction with t-SNE57. Each node 
refers to a di�erent CT image, the color re�ects the information on categories, and the meaning of the color is 
de�ned in the legend.

Figure 5.  Confusion matrix for COVID-19 testing using Bit-M �ne-tuned model. �e color bar indicates the 
intensity of normalization.
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positives and false negatives is equivalent, speci�cally, we cannot a�ord to diagnose a COVID-19 positive patient 
as negative, as in this case, the patient may go back into community, believing to be free of COVID-19, which 
leads to community transmission of the  disease56. When we diagnose too many COVID-19 negative as positive, 
it increases the burden on the healthcare system and causes public panic. Psychological stress my result if a nega-
tive person is diagnosed as positive.

Hyperparameters sensitivity. In this section, we explore the e�ect of various hyperparameters on model 
performance, speci�cally: training steps, image resolutions, and whether to use mixup. We used four combina-
tions of overall training steps and input resolutions. For the resolutions of CT images, we adopted the settings 
(160, 128), (256, 224), (448, 384), and (512, 480), where the �rst value in each doublet indicates the scale of 
adjustment during training, while the second value indicates the size of random cropping during training and 
testing. Regarding the length of the training project, we used [100, 200, 300, 400, 500], [500, 1,500, 3,000, 4,500, 
5,000], [500, 3,000, 6,000, 9,000, 10,000], and [500, 6,000, 12,000, 18,000, 20,000]. �e �rst parameter refers to 
the number of steps in the warmup step, the last parameter is the end step, and the rest are the step nodes with 
a learning rate decaying by 10 times. Figure 6 displays the test accuracy for di�erent resolutions and training 
steps with and without mixup. �e results emphasize that a higher resolution can increase accuracy in identi�ca-
tion, which means that clearer CT images contain more diagnostic clinical information. A larger training step 
can also improve accuracy, but the e�ect is less signi�cant when it exceeds 10,000. �e results suggest that for 
resolutions of (512, 480) and a training step of 10,000 between Fig. 6a and  b, the accuracy rates are exactly the 
opposite (�e hyperparameter settings for the experiments are the same). �is phenomenon is a result of the 
random sampling. It indicates that the performance of the model is not enhanced by the mixup due to the data 
being already rich enough.

Impact of parameter initialization. To evaluate the impact of parameter initialization on the task per-
formance, we used the pre-trained ResNet50x1 models to investigate how upstream pre-training can a�ect the 
�ne-tuning performance. Random means the parameters were randomly initialized in the models. BIT-M was 
pre-trained on the complete ImageNet-21k dataset, a public dataset with 14,200,000 images and 21,000 catego-
ries. �e images could contain multiple labels. BIT-S was pre-trained on the ILSVRC-2012 variant from Ima-

Table 2.  Sensitivity, PPV, Speci�city, and NVP of the test data in COVIDx CT-2A benchmark datasets.

Network

Sensitivity (%) PPV (%) Speci�city (%) NPV (%)

Normal CP NCP Normal CP NCP Normal CP NCP Normal CP NCP

COVID-Net CT-1 98.8 99.0 80.2 96.1 90.2 97.6 96.3 95.7 99.4 98.9 99.6 94.2

COVID-Net CT-2 L 99.0 98.2 96.2 99.4 97.2 96.7 99.5 98.8 99.0 99.1 99.3 98.8

COVID-Net CT-2 S 98.9 98.1 95.7 99.3 97.0 96.4 99.3 98.8 98.9 99.0 99.2 98.7

Random(ours) 97.9 98.6 96.9 98.9 97.5 96.4 99.0 99.0 98.9 98.1 99.4 99.1

Bit-S(ours) 99.0 99.3 97.9 99.6 97.9 98.4 99.6 99.1 99.5 99.1 99.7 99.4

Bit-M(ours) 99.3 99.6 98.7 99.8 98.9 98.5 99.8 99.6 99.5 99.3 99.8 99.6

A B

Figure 6.  Test accuracy of COVIDx CT-2 with various hyperparameters. (A) Resolution. (B) Schedule.
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geNet, which include 1,280,000 images and 1,000 categories. BIT-M-S was �rst pre-trained on the ImageNet-21k 
dataset and then �ne-tuned on ILSVRC-2012. BIT-M-C �rst went through pre-training using the ImageNet-
21k dataset and was then �ne-tuned on CIFAR-10 which contains 60,000 images ( 32 × 32 pixels) across 10 
categories. �e weight initialization was pre-trained on out-of-domain data from a previous  study58. For a fair 
comparison, we set the training step as 10,000 and used mixup, while the other settings were the same as those 
in Hyperparameter settings for training section. �e impact of weighting initialization is illustrated in Table 3. 
We repeated the experiment and the results were slightly di�erent from Table 1 because of random sampling 
and random initialization of model parameters. We realized that the parameter pre-trained on ImageNet-21k 
exhibited better performance in generalization compared to that pre-trained on ILSVRC-2012. Meanwhile, this 
performance would not be a�ected even by the �ne-tuning on out-of-�eld datasets. A�erwards, we calculated 
the test performance for every 100 steps, presented in Fig. 7. �e models pre-trained on ImageNet-21k (BIT-M, 
BIT-M-S, and BIT-M-C) exhibited better performance in the evaluation with the test set at later stages than did 
the ILSVRC-2012 initialized weighting (BIT-S). �is result highlights that training with the larger dataset results 
in greater generalizability.

Influence of the size of labeled training data on model performance. To evaluate how the models 
perform on the small downstream datasets akin to those which would be used in real-world situations, a certain 
number of images from each category were randomly selected for a performance test. For each category, we ran-
domly chose 50, 100, 500, and 1,000 samples for training and tested the trained model to see the identi�cation 
rate with the test set. �e results of these tests were presented in Fig. 8. �e histogram on the right showed the 
outcomes of the Imagenet21k pre-trained model using the entire training set, CT-2L, CT-2S, and CT-1. When 
conducting these tests, we noticed that BIT-M achieved a higher test accuracy with a limited number of labeled 
images. When 100 images were selected from each category, the accuracy (94.8%) already exceeded that of the 
experimental result using CT-1 (94.5%). When 1,000 images were selected, the accuracy (98.0%) was as good as 
that of CT-2S (97.9%). �is lends support to the immense potential of our transfer learning models, which can 
still function well using limited dataset. �is suggests that the priori knowledge learned through pre-training on 
large, out-of-�eld datasets can still ensure an excellent performance in the case of limited training data.

Qualitative analysis of Covid‑19 testing of the model. Although performance indicators are use-
ful for model evaluation, they fail to explain the decision-making behavior of the network. In this regard, we 
employed the Grad-CAM59 visualization technique to explore the areas of concern for the models in COVID-
19 testing, to better understand which characteristics of CT images are key for diagnostic accuracy, and thus 
aid clinical decision-making. As demonstrated in Fig. 9, we �rst cropped the images using the detection frame 
(introduced in Hyperparameter settings for training Section), enlarged them to 480 × 480 pixels, and used 

Table 3.  Categorization accuracy of test and validation sets with di�erent weight initialization.

Weight initialization Val Test

Random 96.5 97.7

Bit-S 97.4 98.8

Bit-M 97.9 99.3

Bit-M-C 97.7 99.2

Bit-M-S 97.6 98.9

Figure 7.  Validation accuracy curves of various initialized models.
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Grad-CAM for visual explanation. All the predictions of the model using CT images in Fig. 9 are the same as the 
actual detection results. In most cases, the performance of the model is the same as would be expected for typi-
cal human visual cognition. �is is particularly true for CP, as the model successfully focus on the disease areas, 
and display the a�ected regions of lungs. �e radiologist further can apply color visualization approach using 
Grad-CAM for making e�cient and con�dent  decision60. For the norm case, the model focuses more on the 
lower region. Although NCP due to SARS-CoV-2 could be detected using the �rst and third CT images (third 
row in Fig. 9), the model was more interested in the texture at the periphery. Such a visual heuristic di�erent 
from human visual perception merits further exploration, to gain better knowledge on how the model detect for 
COVID-19 and which features they consider most diagnostic. �e discovery of these features would contribute 
to explaining the power of the model in COVID-19 testing, as well as assisting clinical doctors in discovering 
new visual indicators for COVID-19 infections for use in manual screening based on CT images.

Figure 8.  Impact of the number of each category of images in the training set on the performance of the model 
on the test set.

Figure 9.  Grad-CAM visualization of Bit-M. �e �rst line depicts the normal case, the second line the case 
of CP, and the third line the case of COVID-19 (NCP) due to infection by SARS-CoV-2. �e model using CT 
images as input source have yielded accurate predictions.
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Discussion
Our study applied transfer learning on COVID-19 testing using CT images and discussed the impacts of various 
initialization parameters on the results, demonstrating that our model which were pre-trained on ImageNet21k 
has strong generalizability in terms of CT images. �e proposed model provides an accuracy of 99.2% while 
detecting the COVID-19 cases. Compared to the neural architecture search model, our model shows the state-
of-the-art performance, across all metrics we have described. �ese ensure that COVID-19-negative patients 
are correctly diagnosed as negative in the vast majority of cases, reduce probability of diagnosing COVID-
19-negative cases as positive and reduce the burden on the health care system. Additionally, we examined the 
performance of the model with limited data and found that the model still perform satisfactorily. �is shows 
that our model is still applicable with a limited data, which is characteristic of the real situation, where large and 
diverse datasets may not be readily available. Finally, we explored the relevant mechanism of COVID-19 testing 
using Grad-CAM visualization technique to make the proposed deep learning model more interpretable and 
explainable. �e model performs performance validation through interpretability driven in a manner consistent 
with the radiologist’s interpretation for the CP. �e investigation of normal and NCP CT images helps to explore 
new visual indicators to assist clinical doctors in further manual screening. �e experiments demonstrate that 
our models are e�ective in COVID-19 testing. In future, we will pay attention to the evaluation of the severity 
of COVID-19 and attempt to discover more valuable information from CT images to combat the pandemic. We 
will further conduct explanatory analyses on the models, which will shed light on the detection mechanism of 
COVID-19, to identify key characteristics in the CT images and to facilitate the screening by clinical doctors. 
Although the system has good performance on public datasets, the work is still at theoretical research stage, and 
the models has not been validated in actual clinical routine. �erefore, we will test our system in the clinical 
routine and communicate with physicians to understand how they use it and their opinions about the models. 
�us, we can further improve the models in our future work.

Data availability
�e datasets analysed during the current study are available in the COVIDNet-CT repository, https:// github. 
com/ hayde ngunr aj/ COVID Net- CT.
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