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ABSTRACT Daily peak load forecasting is an essential tool for decision making in power system operation

and planning. However, the daily peak load is a nonlinear, nonstationary, and volatile time series, which

makes it difficult to be forecasted accurately. This paper, for the first time, proposes a bespoke gated recurrent

neural network combining dynamic timewarping (DTW) for accurate daily peak load forecasting. The shape-

based DTW distance is used to match the most similar load curve, which can capture trends in load changes.

By analyzing the relationship between the load curve and the cycle of human social activities, the some-hot

encoding scheme is first applied on the discrete variables to expand the features to further characterize their

impact on load curves. Then, a three-layer gated recurrent neural network is developed to forecast daily peak

load. The proposed algorithm is implemented on the Theano deep learning platform and tested on the loaded

dataset of the European Network on Intelligent Technologies. The simulation results show that the proposed

algorithm achieves satisfactory results compared with other algorithms using the same dataset in this paper.

INDEX TERMS Daily peak load forecasting, dynamic time warping, one-hot encoding, gated recurrent unit.

I. INTRODUCTION

Load forecasting is the first phase in power system planning

and controlling. Accurate load forecasting is important to util-

ity companies for ensuring reliability and stability of power

grids to meet load demands. Load forecasting is divided into

very short-term load forecasting, short-term load forecasting,

mid-term load forecasting and long-term load forecasting [1].

The daily peak load forecasting is one kind of mid-term

load forecasting. It is an important basis for estimating the

standby capacity of a power system, daily load rates, and

setting the peak and valley electricity prices. Also, it has a

significant impact on the operation and production cost of

utilities. Therefore, load forecasting algorithms have been

widely studied in the last decades. Themajority of forecasting

models are based on the similarity principle and various

optimization algorithms, which are divided into two kinds.

One is the classic forecasting algorithms and the other is the

intelligent forecasting algorithms.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xi Peng.

For the classic forecasting algorithms, the main advan-

tages are their fast calculation speed and robustness. The

regression analysis and exponential smoothing are simple

and easy to implement [2]. However, due to the lack of load

curve characteristic analysis, their forecasting accuracy is

inadequate. The time series method can reflect the continuous

change of load, but this method requires high smoothness of

original sequences and fails to account for changes in load

factors [3]. The frequency-domain component method and

the wavelet analysis method can study the load from the

frequency domain but fail to consider the impact of other

factors on the load, such as social factors, meteorological

factors [4], [5]. The selection of similar day is an effective

and practical technique to forecast load. The difficulty of

this method lies in how to establish an accurate similar day

selection criterion [6]–[8]. There are many ways to mea-

sure the similarity between two time series. The common

methods are the Euclidean (Euc) distance, the Manhattan

(Manh) distance, the cosine angle (Cos) and the correlation

(Cor) [9]. They can only describe the degree of similarity

for two sequences as a whole, and much local information

17184
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1823-2355
https://orcid.org/0000-0002-0598-8367


Z. Yu et al.: Deep Learning for Daily Peak Load Forecasting—A Novel Gated Recurrent Neural Network Combining DTW

is obscured. In order to solve this problem, the shape-based

dynamic time warping (DTW) distance, proposed by Itakura

in 1975, is adopted in this research to measure the similarity

between two curves [10]. The DTW distance can describe the

similarity between two sequences on different time scales,

which has been widely used in speech recognition [11], [12].

For the intelligent forecasting algorithms, their advantages

lie in screening and processing main factors affecting load

curves. Artificial Neural Networks (ANN) and Support Vec-

tor Machine (SVM) have been widely used for load fore-

casting [7], [13]. Based on the ANN and SVM methods,

Principal Component Analysis Artificial Neural Networks

(PCA-ANN) [14], Least Squares Support Vector Machine

(LS-SVM) [15] and Chaos-SVM [16] were proposed to

improve the accuracy of load forecasting. However, these

traditional neural network methods do not consider the time

series characteristics of load curves, which are prone to fall

into local optimum and overfitting. Hence, the accuracy of

load forecasting encountered bottlenecks using traditional

neural network methods.

In 2006, Professor Hinton proposed a deep belief net-

work (DBN) [17], which marked the arrival of the deep

learning era. On the basis of DBN, Stacked Auto-Encoders

(SAE) [18], Convolutional Neural Network (CNN) [19] and

Recurrent Neural Networks (RNN) [20] were developed.

Compared with traditional neural networks, RNN introduces

directional loops that can handle the contextual correlation

between the inputs. Some researchers found that using RNN

cannot ensure an excellent forecasting effect [21]–[24]. The

data pooling technology was then proposed to overcome the

problem of overfitting in deep learning and achieved good

results in household load forecasting [21]. The long short-

term memory (LSTM) is an improvement of RNN, which

can tackle the problem of gradient vanishing and gradient

explosion [22]. Different long short-termmemory-based deep

learning forecasting frameworks were proposed to forecast

residential load trends [23], [24]. Compared with LSTM,

the gated recurrent unit (GRU) has fewer parameters and is

easier to converge [25]. Deep learning has achieved many

breakthroughs in tackling other sophisticated problems and

becomes one of the most promising techniques in the data sci-

ence community, e.g Alpha Zero [26], face recognition [27],

speech recognition [28] and image reconstruction [29], etc.

In order to overcome the shortcomings of the traditional

forecasting algorithms, this paper proposes a novel forecast-

ing algorithm based on gated recurrent neural network and

dynamic time warping. Firstly, the autocorrelation coefficient

is applied to determine the length of the daily peak load curve

segment. Then considering the characteristics of load curves,

a DTW method is employed to match the most similar load

curve. Different from traditional measuring distance meth-

ods as mentioned, the DTW distance can capture not only

the trend of load curve changes but also local information

of load curves. Moreover, for the first time the some-hot

encoding scheme is applied on the calendar information to

expand forecasting features, which can further characterize

their impact on load forecasting. Finally, the gated recurrent

neural network is used to forecast the daily peak load, because

it can handle the temporal dynamic behavior of a time series

and needs fewer parameters.

The rest of the paper is organized as follows: Section II

briefly introduces the dynamic time warping distance and

the gated recurrent neural network employed in this study.

Section III proposes the DTW-GRU algorithm and describes

the one-hot encoding scheme to reflect the factors affect-

ing the load. Section IV explains data sources, data analy-

sis, hardware and software platforms, and experiment setup.

In Section V, results are demonstrated through comparisons

with other common distance methods (Euc, Manh, Cos, Cor),

other encoding schemes (all-hot and natural) and other

10 algorithms proposed by previous researchers. Conclusions

are drawn in Section VI.

II. INTRODUCTION OF THE DTW-GRU ALGORITHM

A. DYNAMIC TIME WARPING

Dynamic time warping (DTW) is a method for calculating

the optimal mapping between two time series, which employs

dynamic programming to represent the similarity between

two series [10].

Suppose there are two one-dimensional time series, i.e.

x(i), i = 1, 2, · · · ,m and y(j), j = 1, 2, · · · , n. In order

to calculate the DTW distance between the two sequences,

a distance matrix with dimensional of m × n should be

calculated firstly. Its (i, j) element is denoted as d(i, j) =
(x(i) − y(j))2. d(i, j) is called as the local distance, which

is the distance between two time points in two time series.

When the Euclidean distance is used to calculate the distance

between two one-dimensional time series, each pair of corre-

sponding distances at the same time stamp is summed up, and

the distance between every two points is the local distance.

For the DTW distance, the local distance is no longer the

distance between the same two time stamps, and it can be

the distance between any two time stamps.

Define the warping path W to represent an align-

ment or mapping of the sequences x and y.

W = (wk (i, j)), k = 1, 2, · · · , p (1)

where wk (i, j) represents that the step k of the element i in

the sequence x is mapped with the element j in the sequence

y. p represents the length of the warping pathW and satisfies

p ∈ [max(m, n),m+ n− 1]. For the DTW distance, the same

time stamps of two sequences do not necessarily correspond

to each other, so a shape-based correspondence needs to be

found through the dynamic programming and as a result,

the points in the two sequences reflecting the approximate

states correspond to each other. For example, a local high

point should correspond to a local high point and a local low

point should correspond to a local low point, also a point in

an upward trend cannot correspond to a point in a downward

trend. As shown in Fig. 1, this shape-based correspondence is

also called the warping path, that is, a mapping between two

sequences.
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FIGURE 1. The DTW distance of two time series.

The warping path W must satisfy the following three

constraints:

1. Boundary conditions

The warping path W must start at w1(1, 1) and end at

wp(m, n). That is, the selected warping path must start at the

bottom left and finish at the top right.

2. Continuity

Adjacent elementswk−1(a, b) andwk (a
′, b′) of the warping

path W must satisfy a′ − a ≤ 1 and b′ − b ≤ 1. That is to

say, the point at a certain time can only match the point at

the same time and the adjacent moment, and cannot cross the

match.

3. Monotonicity

Adjacent elementswk−1(a, b) andwk (a
′, b′) of the warping

path W must satisfy a′ − a ≥ 0 and b′ − b ≥ 0. This makes

the mapping in the path monotonically over time, ensuring

that there is no crossover of mapping lines between the two

sequences.

Obviously there are many warping paths to meet the above

three constraints. However, the dynamic time warping needs

to find the optimal warping path among them and its goal is

the shortest distance. Use DTW(x, y) to represent the shortest

distance between time series x and y, i.e. the distance cor-

responding to the optimal warping path in all the possible

warping paths W . The shortest DTW(x, y) distance and the

optimal warping path solution is a dynamic programming

problem that satisfies the above three constraints:



















DTW (x, y) = min{r(m, n)}
r(i, j) = d(i, j) + min{r(i−1, j−1), r(i−1, j), r(i, j−1)}
r(1, 1) = d(1, 1)

r(i, 0) = r(0, j) = 0

(2)

where r(i, j) represents the cumulative distance of the local

distances from (1, 1) to (i, j) and r(1, 1) represents the ini-

tial distance, which equals d(1, 1) in the distance matrix.

According to the constraints of continuity and monotonicity,

the point (i, j) must start from (i−1, j−1), (i−1, j), or (i, j−1).

min{r(i − 1, j − 1), r(i − 1, j), r(i, j − 1)} means select-

ing a point with the smallest accumulated distance among

the three points as the starting point. Fig. 1 illustrates the

DTW mapping and warping paths for the sequences x and y.

Because r(i, 0) and r(0, j) do not exist in practice, their values

are defined as 0 for easy calculation. However, calculat-

ing the shortest DTW distance is an O(N 2) time and space

complexity problem. In other words, if the lengths of the two

time series grow linearly, then the time and space needed to

calculate the shortest DTW distance grow quadratically, that

limits the DTW usefulness to small time series [30].

B. GATED RECURRENT NEURAL NETWORKS

In a traditional neural network model, the input data is

fed from an input layer, calculated through one hidden

layer or more, and finally output from an output layer. All lay-

ers are fully connected, but each node in each layer is not

connected. Therefore, a traditional neural network can only

characterize the relationship between an input and an output.

However, many problems possess time series features. For

example, you need to forecast words in a sentence. The

last word in the sentence relies on the previous word and

the words before, because there is a relationship between

all the words in a sentence. Compared with the traditional

feedforward neural network (FNN), the recurrent neural net-

work (RNN) increases its storage structure to handle the

time-to-time relationship between the input data. Its concrete

manifestation is that the current output value in RNN depends

on the input value and some previous output values stored.

That is to say, the input of the hidden layer includes the

input value of the current moment and the output value of

the previous moment. A typical RNN is shown in Fig. 2.

FIGURE 2. A typical recurrent neural network model.

A typical RNN model includes input units, hidden units

and output units. The input data set is marked as {x0, x1, · · · ,

xt , · · · }. The output data set ismarked as {y0, y1, · · · , yt , · · · }.
The output data set in the hidden cells is marked as

{h0, h1, · · · , ht , · · · }. The units in the hidden cells are the

main computing units of the RNN. The black square in Fig. 2

denotes the time delay. Fig. 2 shows that there is a flow of

information that flows unidirectionally from an input cell to

a hidden cell, meanwhile there is another flow of information

that flows unidirectionally from a hidden cell to an output

cell. In particular, there is a flow of information that flows

unidirectionally from a previous hidden cell to a next hidden

cell, which means the result of a previous hidden cell is part

of a next hidden cell input.

Because of this specific structure, RNN has the advan-

tage in dealing with the problems of time series. However,

when the step size between two inputs is too large, gradient
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FIGURE 3. The inner structure of a gated recurrent unit.

disappearance or explosion occurs, making the RNN difficult

to be trained properly [22]. As a variant of RNN, the long

short-term memory (LSTM) neural network can effectively

solve this problem. Due to the complexity of the LSTM

network structure, its network training time may be long.

The gated recurrent neural network improves the structure of

LSTM neural network by optimizing the number of gates. Its

structure is shown in Fig. 3.

In Fig. 3, xt and ht represent the input and the output of

a gated recurrent unit (GRU) at the current time t respec-

tively, and ht−1 is the state at the previous moment of the

current time t . Unlike other neural units, rt and zt are key

structures in a GRU [25], which are called reset gates and

update gates respectively. They are both a simple neural

network in order to make the output fixed between 0 to 1. The

activation function of the neural network uses the sigmoid

function. h̃t is the value of the output candidate processed

by the reset gate. The detailed calculation process is listed in

equations (3)-(6).

rt = σ (Wrhht−1 +Wrxxt ) (3)

zt = σ (Wzhht−1 +Wzxxt ) (4)

h̃t = tanh(Whh(rt ◦ ht−1) +Whxxt ) (5)

ht = (1 − zt ) ◦ h̃t + zt ◦ ht−1 (6)

where Wrh represents the connection weight between rt and

ht−1, Wrx the connection weight between rt and xt , Wzh the

connection weight between zt and ht−1, Wzx the connection

weight between zt and xt ,Whh the connection weight between

ht and ht−1 andWhx the connection weight between ht and xt .

The operator ◦ denotes the multiplication of array elements

in turn and σ represents the sigmoid function.

As can be seen from the above equation, the reset gate

rt and the update gate zt are obtained by using the sigmoid

function to calculate the linear combination of the output ht−1

and the input xt . However, their role is different. The reset

gate rt determines how much ht−1 information is retained.

The closer the rt value is to 1, the more ht−1 information is

retained in h̃t . The update gate zt determines how much ht−1

information is discarded. The smaller zt represents the more

ht−1 information is discarded. In particular, when rt = 1 and

zt = 0, the gated recurrent neural network degenerates into a

traditional RNN.

FIGURE 4. The architecture of a multi-layer gated recurrent neural
network.

Due to the sequential nature of the output of a GRU layer,

an arbitrary number of GRU layers can be stacked to form a

multi-layer gated recurrent neural network. The architecture

of the gated recurrent neural network is shown in Fig. 4. The

GRU block represents a gate recurrent unit and the sign of

‘‘→’’ represents the flow of data. For the multi-layer gated

recurrent neural network, the input data set is marked as

{x0, x1, · · ·, xt , · · ·} and the output data set is marked as

{y0, y1, · · ·, yt , · · ·}. For the GRU layer k , the input data set is

marked as {hk−1
0 , hk−1

1 , ···, hk−1
t , ···} and the output data set is

marked as {hk0, hk1, · · ·, hkt , · · ·} , i.e. the output of the previous
layer is the input of the next layer. In particular, the input data

set of GRU layer 1 is {x0, x1, · · ·, xt , · · ·} and the output data
set of GRU layer n is {y0, y1, · · ·, yt , · · ·}.

III. IMPLEMENTATION STEPS OF LOAD FORECASTING

In this section, a new DTW-GRU algorithm is developed for

daily peak load forecasting. The details of this methodology

are illustrated in Fig. 5.

FIGURE 5. The flowchart of the proposed DTW-GRU algorithm.

In general, the proposed algorithm consists of four stages:

1) Choose N -day daily peak load; 2) Match load curve

using DTW distance; 3) Encode related influencing factors;

4) Forecast daily peak load with gated recurrent
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neural network. The detailed rationale and design of each

stage are further discussed as follows.

A. STAGE 1: CHOOSE N-DAY DAILY PEAK LOAD

In the first stage, the length of the daily peak load curve

segment is determined by the autocorrelation coefficient. The

autocorrelation coefficient is used to describe the degree of

correlation of the data itself in different periods, that is,

to measure the impact of historical data on the present. For

the time series {xt }, the correlation coefficient between xt and
xt−l is called the autocorrelation coefficient with an interval l
of xt . The autocorrelation coefficient is denoted as ρl and the

calculation formula is shown as follows:

ρl = Cov(xt , xt−1)√
Var(xt )Var(xt−l)

, l = 1, 2, · · · (7)

where Cov(xt , xt−l) is the autocovariance, Var(xt ) and

Var(xt−l) are the variances [31].
The larger the autocorrelation coefficient, the greater the

impact of historical data on the present. For the autocorrela-

tion coefficient series {ρl} , its maximum is selected as ρN .

Then the optimal time interval N is the subscript value of ρN .

Based on this, the daily peak load of N days are adopted in

the fourth stage.

B. STAGE 2: MATCH LOAD CURVE USING DTW DISTANCE

In the second stage, the most similar daily peak load is

obtained. Considering the certain regularity and periodicity of

power system load, this research uses themethod of similarity

matching of daily peak load with the smallest DTW distance.

Firstly, the original data set is divided into the historical data

set and the forecasting data set. Then each segment of the

original data set is matched with the historical data set to

obtain the most similar segment. Based on the rule of thumb

that if the two segments are similar then the corresponding

next segments are similar [8], the most similar daily peak load

is obtained.

FIGURE 6. The most similar load curve matching.

The following is a detailed description of obtaining the

most similar daily peak load. As shown in Fig. 6, there are

n segments in the historical data set and m segments in the

original data set (0 < n < m). Each segment is a 1 × l

vector, where l is the length of each segment and its value is

obtained in stage 1. For any segment element in the original

data set (except the first segment), such as the pth element

in the (i+ 1)th segment is defined as the forecasting target

(i, p > 0). The DTW matching method is applied to find the

most similar segment of the ith segment in the historical data

set. Assumed the smallest DTW distance of the ith segment is

the jth segment in the historical data set (i 6= j, j > 0 ). Then

the pth element of the (j+ 1)th segment in the historical data

set is the most similar daily peak load, which is used in the

fourth stage.

C. STAGE 3: ENCODE RELATED INFLUENCING FACTORS

In the third stage, related influencing factors are encoded.

As known, there are many factors that affect the daily peak

load, which mainly includes two aspects. One type is meteo-

rological factors, such as temperature and precipitation. The

other type is social factors, such as the calendar information.

For continuous variables, such as meteorological factors,

this research normalizes them and then the natural coding

method is used to encode them. The normalized formula is

shown as follows,

xc = xo − xmin

xmax − xmin
(8)

where xc is the result of standardization, xo is the original

input data, xmax and xmin are the maximum and minimum

value of the original data respectively.

For discrete variables, this research applies the one-hot

encoding scheme [32]. One-hot encoding uses N -bit status

registers to encode N states. Each state has its own indepen-

dent register bit, and at any time, only one of them is valid.

That is, for any state, only one bit is one, and the others are

zero. The encoding results are shown in Fig. 7.

FIGURE 7. Different encoding schemes for calendar information.

As can be deduced from Fig. 7, this encoding scheme

defines two attributes for each day. The first attribute is

whether it is a holiday. Three conditions are defined for each

day. The first is the holiday. The second is the days before and
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after holidays, and it is named as the transition day. The third

is the working day. The working day’s natural encoding result

is 0, and its one-hot encoding result is [1 0 0]. The transition

day’s natural encoding result is 0.5, and its one-hot encoding

result is [0 1 0]. The holiday’s natural encoding result is 1,

and its one-hot encoding result is [0 0 1]. Another attribute

is adopted to mark which day of the week it belongs. For

Sunday to Saturday, their natural code is 0-6. For their one-hot

encoding, this research firstly defines two encoding schemes,

which are named as the some-hot encoding scheme and the

all-hot encoding scheme. For the all-hot encoding scheme,

a 7-bit encoding scheme is used to distinguish seven days

in a week. For the some-hot encoding scheme, only a 2-bit

encoding scheme is used to distinguish between weekdays

and weekends, which can save computing resources and dis-

tinguish its essential features.

D. STAGE 4: FORECAST DAILY PEAK LOAD WITH

GATED RECURRENT NEURAL NETWORK

The fourth stage employs the gated recurrent neural net-

work to forecast the daily peak load. It contains the follow-

ing 4 steps: 1) Data preprocessing; 2) Model construction;

3) Model training and testing; 4) Result evaluation.

1) DATA PREPROCESSING

The first step of the load forecasting using the deep learning

model is to prepare the data in an appropriate format. In this

step, the training set and the test set are built. For each element

of the training set and the test set, there are two parts, i.e.

matrix X and matrix Y . The matrix X is the input of the gated

recurrent neural network and the matrix Y is the output of the

gated recurrent neural network. The matrix X is composed of

three parts [A B C], where A, B, C are sub-matrixes obtained

from the above three stages. The submatrix A is the output

of the first stage, which is the daily peak load ofN days before

the target forecasting day. The submatrix B is the output of

the second stage, which is the most similar daily peak load

obtained by the DTW matching method. The submatrix C is

the output of the third stage, which is the encoding results of

the related influencing factors, including the meteorological

data and the calendar data. Thematrix Y is the daily peak load

that needs to be forecasted.

2) MODEL CONSTRUCTION

The second step of the load forecasting is to choose an appro-

priate deep learning model. Because of the unique reset gate

and update gate structure of GRU, it can make the length of

the input data changeable. For deep learningmodels, previous

research indicates that the performance of the networks is rel-

atively insensitive to any combination of the layer number and

layer size [33]. According to the consistent finding in [34],

multiple layers work better than a single layer and the number

of hidden nodes should be sufficiently large. In this research,

the model structure contains a 3-layer gated recurrent neural

network and a 1-layer feed forward neural network.

3) MODEL TRAINING AND TESTING

After the model is constructed, the pre-processed training set

is used to train the model. The test set is then employed to test

the model. The relevant parameters of the model are detailed

in Section IV.

4) RESULT EVALUATION

The results from step 3 are evaluated. Evaluation indicators

and results are presented in Section V.

IV. IMPLEMENTATION OF DTW-GRU ALGORITHM

This section introduces the implementation of the proposed

algorithm, including data sources, data analysis, hardware

and software platforms, and experiment setup.

A. DATA SOURCES

In 2001, the European Network on Intelligent Technologies

(EUNITE) organized a load forecasting competition. The

organizer of the competition provided the following impor-

tant information: 1) Electricity load data every 30 mins from

January 1997 to January 1999; 2) Daily average temperatures

from January 1997 to January 1999; 3) Dates of holidays from

1997 to 1999. The task of the competition was to forecast the

daily peak load in January 1999. The task of competitors was

to supply the prediction of daily peak load for January 1999.

The daily peak load from 1997 to 1998 is shown in Fig. 8 and

the daily average temperature from 1997 to 1998 is shown

in Fig. 9.

FIGURE 8. Daily peak load from 1997 to 1998.

In this study, the original data containing the daily peak

load of 761 days are used. The original data are divided into

109 weeks. Since there are 763 days in the 109 weeks, which

are more than 761 days, 0 is used to fill the gap. The first

104 weeks are divided as the historical data set and the last

5 weeks as the forecasting data set.

B. DATA ANALYSIS

1) PRELIMINARY ANALYSIS

Power load is a stochastic process. For a stochastic pro-

cess, the autocorrelation coefficient is used to determine its

appropriate model order. In this study, the autocorrelation
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FIGURE 9. Daily average temperature from 1997 to 1998.

FIGURE 10. Autocorrelation coefficient of daily peak load.

coefficient is calculated by different number of lag days. The

result is shown in Fig. 10. As can be deduced from Fig. 10,

the maximum of the autocorrelation coefficient is a period

of 7 days, which is consistent with the cycle of human social

activities for 7 days a week. Hence, a multiple of 7 days is

suitable for a load segment.

2) DETAILED ANALYSIS

Calendar information: As can be observed from Fig. 8,

the load at weekends (Saturday and Sunday) is usually lower

than that of weekdays (Monday to Friday). Furthermore,

combining the holiday situation in the area [13], the holidays

also have an influence on the load. The load in holidays is usu-

ally lower than that of non-holidays. Therefore, it is necessary

to use the calendar information, including the weekends and

holidays to forecast the daily peak load.

Temperature information: In the dataset, the only cli-

mate information provided is the average daily temperature.

Comparing Fig. 8 with Fig. 9, the higher temperature corre-

sponds to the lower load. A negative correlation between the

load and the daily average temperature is observed, which

is calculated as −0.868. Hence, the daily average temper-

ature is an important attribute for developing a forecasting

model.

C. HARDWARE AND SOFTWARE PLATFORMS

The program is implemented on a high-performance Sugon

workstation equipped with the Ubuntu 14.04 operating

system and 2 NVIDIA GTX 1080 units. This deep learning

process uses the Keras library [35] with the Theano back-

end [36] to build. Based on the Theano platform, the Com-

pute Unified Device Architecture (CUDA) [37] is applied

to implement GPU acceleration for training gated recurrent

neural networks. The programming language used in this

research is Python, which is the most popular programming

language in data science.

D. EXPERIMENT SETUP

This part presents the details of the algorithm configuration

for setting up experiments. In order to obtain the optimal

performance of the DTW-GRU algorithm, multiple settings

of the DTW-GRU algorithm have been attempted. However,

not all results are reported in the result section, and the com-

parison is made with the results of the optimal settings of the

DTW-GRU algorithm and the algorithms reported by other

researchers. The parameters of input vector and output vec-

tor are introduced in Section III. The training configuration

parameters of training batch size, training method, learning

rate, training stop strategy and loss function are detailed

discussed in [38]. In summary, all the experiment settings

and parameters of the DTW-GRU algorithm are presented as

follows:

• Input vector ∈ {10, 13, 17, 18, 20, 25}
• Output vector ∈ {1}
• Hidden neuron number ∈ {200, 300, 500, 800}
• Training batch size ∈ {10, 20, 30, 50}
• Training method ∈ {AdamOptimizer}
• Learning rate ∈ {0.1, 0.05, 0.02, 0.01}
• Training stop strategy ∈ {earlystopping}
• Loss function ∈ {RMSE}

V. RESULT AND DISCUSSION

In this section, the daily peak load forecasting results com-

pared between the DTW-GRU algorithm and ten reported

algorithms, as well as the matching results compared between

the DTW distance and four popular distance types, are pre-

sented using the dataset of EUNITE.

A. COMPARE MATCHING RESULTS

This section gives the matching results using the DTW

distance, the Euclidean distance, the Manhattan distance,

the Cosine distance and the Correlation coefficient tomeasure

the similarity of load curves. 108 weeks of the original data

set (except the last week) are matched with the 103 weeks of

the historical data set (except the last week). The matching

results of the 104th -108th weeks in the original data set are

shown in Fig. 11. Furthermore, the most similar daily peak

load is used in the input of the test data set. As seen from

Fig. 11, the DTW matching results are somewhat different

due to the characteristics of the different distances. It does

not focus on the one-to-one correspondence of each point,

but pays more attention to the large change tendency, which

is effective in solving such a nonstationary problem.
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FIGURE 11. Matching results for different distances.

B. COMPARE FORECASTING RESULTS

This section gives a comparison of load forecasting results

with other reported algorithms in two aspects, i.e. the Kupiec

test and the typical error indicators.

Firstly, the Kupiec test is applied to verify the model per-

formance. The basic idea of the Kupiec test is to calculate

the statistical value corresponding to the failure rate during

a test period to determine whether the model is valid. The

forecasting error is defined as follows:

forecasting error =
∣

∣

∣

∣

ŷt − yt

yt

∣

∣

∣

∣

× 100% (9)

where ŷt is the forecasting value and yt is the actual value.

The failure days are the days in which the forecasting error

exceeds a given error. Assume that the period is a total of P

days, where Q days fail. Then the failure rate f is calculated

by f = Q/P. Also, assume the time is independent and the

number of failure days Q follows the binomial distribution

B(P, f ). For the significance level α, the statistic likelihood

ratio (LR) follows the chi-square distribution with 1 degree

of freedom [39]:

LR = −2 ln
[

(1 − α)P−QαQ
]

+ 2 ln
{[

(1 − f )P−Qf Q
]}

(10)

Under the α = 5% level of significance, if the LR value is

greater than 5.02 [40], the model is rejected.

Secondly, to assess the performance of the proposed

method in conducting load forecasting, three widely used

indicators are employed, including the mean absolute percent

error (MAPE), the maximal error (ME) and the root mean

squared error (RMSE), as defined in equations (11)-(13).

MAPE = 1

N

N
∑

t=1

∣

∣

∣

∣

ŷt − yt

yt

∣

∣

∣

∣

× 100% (11)

ME = max
∣

∣ŷt − yt
∣

∣ where t = 1, 2, · · ·N (12)

RMSE =

√

√

√

√

1

N

N
∑

t=1

(ŷt − yt )
2 (13)

where ŷt is the forecasting value, yt is the actual value and N

refers to the forecasting set size.

Specifically, the results of daily peak load forecasting

are compared in three aspects: different distances, different

encoding schemes and different algorithm structures.

TABLE 1. Kupiec test results between the DTW distance and other
different distance types.

1) DIFFERENT DISTANCES

In this part, the results of different distance types are com-

pared as follows.

The LR values are shown in Table 1 and the sign of (X)

means this distance type passes the Kupiec test under the

α = 5% level of significance. As the error rate increases,

more and more distance types pass the Kupiec test. When

the threshold of the forecasting error rate is 1.75%, the DTW

distance and the Euc distance pass the Kupiec test. When the

threshold of the forecasting error rate is 2.50%, the Manh

distance and the Cos distance pass the Kupiec test. When the

threshold of the forecasting error rate is 3.00%, the Cor dis-

tance passes the Kupiec test. In summary, the DTW distance

and the Euc distance outperform the Manh distance, the Cos

distance and the Cor distance.

FIGURE 12. Load forecasting results applying different matching
distances.

TABLE 2. Comparison between the DTW distance and other different
distance types.

It can be seen from Fig. 12 and Table 2, the result of using

various distance matching methods isDTW> Euc>Manh>

Cos > Cor. Compared with the Euc distance, which is the
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second-best performance forecasting method, its forecasting

accuracy is increased about 12.17%, 23.41% and 21.13%

with respect to MAPE, ME and RMSE. Compared with the

Cor distance, which is the worst performance forecasting

method, its forecasting accuracy is increased about 28.87%,

34.21% and 51.59% with respect to MAPE, ME and RMSE.

Daily peak load is a nonstationary time series. The com-

mon distance calculation methods for obtaining the most

similar curve focus on the shortest distance between any two

points. This type ofmethods ignore the trend of curve changes

and makes them difficult to solve the nonstationary problem

of load forecasting. However, the DTW distance can capture

the trend of load curve change to obtain the nonstationary

information of the load curve to some extent. Also, the unique

reset gate and update gate structure of GRU can store and

learn the trend of load change obtained by the DTW distance

matching.

2) DIFFERENT ENCODING SCHEMES

In this part, the results of different encoding schemes are

compared as below.

TABLE 3. Kupiec test results between the DTW distance and other
encoding schemes.

The LR values are shown in Table 3 and the sign of (X)

means this coding scheme passes the Kupiec test under the

α = 5% level of significance. When the threshold of the

forecasting error rate is 1.75%, only the some-hot encoding

scheme passes the Kupiec test. When the threshold of the

forecasting error rate is 2.00%, the natural encoding scheme

passes the Kupiec test. When the threshold of the forecasting

error rate is 2.50%, the all-hot encoding scheme passes the

Kupiec test. To sum up, the result of using various coding

schemes is some-hot > natural > all-hot.

FIGURE 13. Load forecasting results applying different coding schemes.

It can be seen from Fig. 13 and Table 4 that the use of the

one-hot encoding schemes, including the some-hot encoding

scheme and the all-hot encoding scheme, can effectively

improve the accuracy of load forecasting compared with the

TABLE 4. Comparison between the some-hot coding and other encoding
schemes.

natural encoding scheme. The some-hot encoding scheme

forecasting accuracy is increased about 15.83%, 25.51% and

26.03% with respect to MAPE, ME and RMSE. Compared

with the all-hot encoding scheme, the forecasting accuracy

of the some-hot encoding scheme is increased about 6.48%,

12.00% and 16.78% with respect to MAPE, ME and RMSE.

This is due to the use of one-hot encoding scheme can play

a role in expanding the features of discrete variables. The

expanded features can characterize the type of load change

effectively, which are conducive to solve the volatile problem

of the load forecasting. However, for the two kind of one-hot

encoding schemes, the forecasting results applied the all-hot

encoding scheme is worse than those applied the some-

hot encoding scheme. That is because the all-hot encoding

scheme expands too many features that the useful features are

submerged. Hence, the some-hot encoding scheme achieves

the best forecasting results.

TABLE 5. Comparison between the proposed algorithm and other
published algorithms.

3) DIFFERENT ALGORITHM STRUCTURES

To futher demonstrate the effectiveness of the proposed

DTW-GRUalgorithm, the results of the load forecasting algo-

rithms developed by other 10 researchers on the EUNITE test

set are compared. Their MAPE results are directly cited from

their literatures, as shown in Table 5. In Table 5, the traditional

GRU algorithm is verified to be superior to the competi-

tion winner, LW-SVR, SOFNN and GKPCR, resulting in

a MAPE of 1.49%. Due to the special structure of GRU,

the gated recurrent neural network is capable of dealing

with nonlinear time series problems.Meanwhile, the obtained

results indicate that the DTW-GRU algorithm proposed by
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this research outperforms the other 10 algorithms and results

in a MAPE of 1.01%. This means the combination of the

some-hot encoding scheme and the DTW distance matching

method is highly effective for the improvement of traditional

gated recurrent neural networks.

VI. CONCLUSION

This research combines the DTW distance with gated recur-

rent neural networks to forecast the daily peak load for the

first time. The DTW distance can capture the trend of load

changes effectively and the some-hot encoding scheme can

expand the features of discrete variables. Using them as the

extra input to the gated recurrent neural networkmake predic-

tions more accurate. The simulation results on the EUNITE

dataset show that the DTW-GRU algorithm can significately

improve the forecasting accuracy of the daily peak load,

which is superior to the other reported forecasting algorithms

in this study.
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