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Computational Chemistry is currently a synergistic assembly between ab initio

calculations, simulation, machine learning (ML) and optimization strategies for describing,

solving and predicting chemical data and related phenomena. These include accelerated

literature searches, analysis and prediction of physical and quantum chemical properties,

transition states, chemical structures, chemical reactions, and also new catalysts and

drug candidates. The generalization of scalability to larger chemical problems, rather

than specialization, is now the main principle for transforming chemical tasks in multiple

fronts, for which systematic and cost-effective solutions have benefited from ML

approaches, including those based on deep learning (e.g. quantum chemistry, molecular

screening, synthetic route design, catalysis, drug discovery). The latter class of ML

algorithms is capable of combining raw input into layers of intermediate features, enabling

bench-to-bytes designs with the potential to transform several chemical domains. In

this review, the most exciting developments concerning the use of ML in a range of

different chemical scenarios are described. A range of different chemical problems and

respective rationalization, that have hitherto been inaccessible due to the lack of suitable

analysis tools, is thus detailed, evidencing the breadth of potential applications of these

emerging multidimensional approaches. Focus is given to the models, algorithms and

methods proposed to facilitate research on compound design and synthesis, materials

design, prediction of binding, molecular activity, and soft matter behavior. The information

produced by pairing Chemistry and ML, through data-driven analyses, neural network

predictions and monitoring of chemical systems, allows (i) prompting the ability to

understand the complexity of chemical data, (ii) streamlining and designing experiments,

(ii) discovering new molecular targets and materials, and also (iv) planning or rethinking

forthcoming chemical challenges. In fact, optimization engulfs all these tasks directly.

Keywords: machine-learning, deep-learning, optimization, models, molecular simulation, chemistry

INTRODUCTION

Patterns are ubiquitous in Chemistry. From the crystalline structures of solid forms to the branched
chains of lipids, or the complex combinations of functional groups, chemical patterns determine the
underlying properties of molecules and materials, essential to address important issues of societal
concern. Artificial Intelligence (AI), and machine learning (ML) in particular, are committed to
recognizing and learn from these patterns (Mitchell, 2014; Rupp, 2015; Goh et al., 2017; Li et al.,
2017; Butler et al., 2018; Fleming, 2018; Gao et al., 2018; Kishimoto et al., 2018; Popova et al., 2018;
Aspuru-Guzik et al., 2019; Elton et al., 2019; Gromski et al., 2019; Mater and Coote, 2019; Schleder
et al., 2019; Venkatasubramanian, 2019).
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Recent evidence on the most interesting and challenging
prospects for accelerating discoveries in various chemistry fields,
reported under “Charting a course for chemistry” (Aspuru-
Guzik et al., 2019), indicate that the terms often used by the
scientific community for describing the future trends in their
field of research include “big data,” “machine learning,” and
“artificial intelligence.”

It is recognized that ML is already boosting computational
chemistry, at different levels. Different aspects have been
affected, and it is not easy to summarize developments in a
consistent way. In what follows, the main areas in which ML
has been employed are enumerated. These are extracted from
recent contributions, that can be regarded as complementary
and providing an overall perspective of the applications.
These include different approaches for (i) understanding and
controlling chemical systems and related behavior (Chakravarti,
2018; Fuchs et al., 2018; Janet et al., 2018; Elton et al., 2019;
Mezei and Von Lilienfeld, 2019; Sanchez-Lengeling et al., 2019;
Venkatasubramanian, 2019; Xu et al., 2019; Zhang et al., 2019),
(ii) calculating, optimizing, or predicting structure-property
relationships (Varnek and Baskin, 2012; Ramakrishnan et al.,
2014; Goh et al., 2017; Simões et al., 2018; Chandrasekaran
et al., 2019), density functional theory (DFT) functionals, and
interatomic potentials (Snyder et al., 2012; Ramakrishnan et al.,
2015; Faber et al., 2017; Hegde and Bowen, 2017; Smith et al.,
2017; Pronobis et al., 2018; Mezei and Von Lilienfeld, 2019;
Schleder et al., 2019), (iii) driving generative models for inverse
design (i.e., produce stable molecules from a set of desired
properties) (White and Wilson, 2010; Benjamin et al., 2017;
Kadurin et al., 2017; Harel and Radinsky, 2018; Jørgensen et al.,
2018b; Kang and Cho, 2018; Li et al., 2018b; Sanchez-Lengeling
and Aspuru-Guzik, 2018; Schneider, 2018; Arús-Pous et al., 2019;
Freeze et al., 2019; Jensen, 2019), (iv) screening, synthesizing, and
characterizing new compounds and materials (Ahneman et al.,
2018; Coley et al., 2018a; Granda et al., 2018; Segler et al., 2018;
Li and Eastgate, 2019), (v) improving catalytic technologies and
analytical tools (Li et al., 2017; Gao et al., 2018; Huang et al., 2018;
Durand and Fey, 2019; Freeze et al., 2019; Schleder et al., 2019),
(vi) developing quantum algorithms for molecular simulations,
and (vii) progressing quantum sensing (Ramakrishnan et al.,
2014; Ramakrishnan and Von Lilienfeld, 2017; Xia and Kais,
2018; Ahn et al., 2019; Christensen et al., 2019; Mezei and Von
Lilienfeld, 2019; Zaspel et al., 2019; Zhang et al., 2019), just to
name a few examples. In fact, Chemistry is a data-rich area,
encompassing complex information which is often unstructured
and poorly understood.

Deep learning (DL) approaches can also be particularly useful
to solving a variety of chemical problems, including compound
identification and classification, and description of soft matter
behavior (Huang et al., 2018; Jha et al., 2018; Jørgensen et al.,
2018b; Popova et al., 2018; Segler et al., 2018; Zhou et al.,
2018; Chandrasekaran et al., 2019; Degiacomi, 2019; Elton et al.,
2019; Ghosh et al., 2019; Mater and Coote, 2019; Matsuzaka and
Uesawa, 2019; Xu et al., 2019).

The design of generalized cause/effect models, and the
scaling-up of the contributions that are being made, containing
high-dimensional data, and following the open-science basis

(i.e., completely accessible, with precise metadata and practical
formats) are critical challenges, that may, however, facilitate the
routine implementation of datamining in chemistry and expedite
new discoveries.

The amount and quality of chemical data generated by
experiments and simulations have been the mainstay of the new
data-driven paradigm, that establishes the bridge between theory,
experiment, computation, and simulation.

This review describes, in a critical and comprehensive
way, relevant contributions carried out recently and involving
the development of chemistry ML approaches. An exhaustive
account of the theoretical foundations and applications published
in the early years of AI and ML in Chemistry falls beyond the
scope of this review. The reader is referred to Lecun et al. (2015),
Coveney Peter et al. (2016), Goh et al. (2017), Elton et al. (2019),
Gromski et al. (2019), and Mater and Coote (2019) for a full
description of these efforts.

Until 10 years ago, only a few 100 studies on the use of ML
in Chemistry were published, resulting from the contributions
made over four decades. In 2018, ca. 8,000 articles in the Web
of Science database included these keywords, corresponding to
an increase in ca. 35% for just one decade. In this review, there is
room to mention only a small fraction of these applications.

Despite the increasing number of works on the topic, the
models proposed and practices carried out by chemists are
entailing serious concerns (Chuang and Keiser, 2018a). Several
technical challenges, pitfalls, and potentials of ML, and also the
reliability of the results, have been discussed by some authors
(Ahneman et al., 2018; Chuang and Keiser, 2018a,b; Estrada
et al., 2018) corroborating some critical remarks on the fragility
of purely data-based approaches (Microsoft, 2018). “If data can
speak for themselves, they can also lie for themselves.” This
reflects the need for an in-depth understanding of chemical
patterns, data-driven and theory-driven models, and algorithms,
before their application.

Although significant progress has been made connecting
specific neural network predictions to chemical input features,
understanding how scientists should analyze and interpret these
models to produce valid and conclusive assumptions about the
system under study, still remains to be fully defined.

Co-occurring Machine-Learning
Contributions in Chemical Sciences
Scientific production covering ML-based approaches for dealing
with chemical patterns has increased exponentially in recent
years. However, the establishment and understanding of holistic,
or macro insights on the major research trends in Chemistry sub-
fields, are critical tasks. The challenge relies on how the analysis
of these sub-fields, with thousands published works, reveals
the most prominent applications supported by ML approaches
(Butler et al., 2018; Chmiela et al., 2018; Chuang and Keiser,
2018a; Coley et al., 2018a; Gao et al., 2018; Lo et al., 2018;
Panteleev et al., 2018; Xia and Kais, 2018; Ceriotti, 2019; Chan
et al., 2019; Christensen et al., 2019; Gallidabino et al., 2019; Häse
et al., 2019; Iype and Urolagin, 2019; Mezei and Von Lilienfeld,
2019; Schleder et al., 2019; Stein et al., 2019a; Wang et al., 2019).
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In Figure 1 an overview of the information generated during
the last decade and ranked in the research domain of “Science
Technology” of the Web of Science database, is presented.

The purpose of assessing the different facets of ML in
Chemistry across the respective sub-fields is 3-fold: (i) to be
able to quickly identify areas that have benefited most from the
development and implementation of ML approaches, and those
that still lack of such an optimization, as evidenced by the type of
outcome, (ii) to identify the most relevant ML outcomes in each
sub-field, and (iii) to assess the dynamics of ML outcomes over
the 2008–2019 period and how these are related, giving rise to
relevant research trends.

An extensive literature search on ML contributions in 30
Chemistry sub-fields is carried out, using a global set of
270 co-occurring keywords, each composed of three main
terms, machine learning, type of outcome and the sub-field in
which they co-occur (e.g., first co-occurrence: Machine learning
AND Quantum chemistry AND Quantum models, second
co-occurrence: Machine learning AND Medicinal Chemistry
AND Molecular screening). A total of 5,279 contributions
(including books, articles, reviews, editorials and letters)
on ML in Chemistry, with 81,248 citations, and published
between 2008 and June 30, 2019, are found in the worldwide
Web of Science database, corresponding to a 4-fold increase
over the previous four decades. Considering the compiled
data and the selected Chemistry fields (organic, inorganic,
physical, analytical, and biochemical), nine different ML
outcomes embracing the most frequent chemical challenges are
defined, including (i) text mining and system description, (ii)

quantitative structure-activity/property relationships, (iii) DFT
functionals and interatomic potentials, (iv) generative models
and inverse molecular design, (v) molecular screening, (vi)
synthesis/characterization of new compounds and materials,
(vii) catalytic technologies, (viii) analytical techniques, and (ix)
quantum models, algorithms, and quantum sensing. Note how
these have a strong relation with the seven overall applications
presented above (i–vii).

The heatmap represented in Figure 1 reflects the impact of
each type of ML outcomes on Chemistry sub-fields. The analysis
of co-occurring keywords is thus performed in order to find
the number of publications that appeared simultaneously in the
selected sub-field. This relation is established with greater or
lesser impact depending on the frequency of each set of keywords
in the selected time-span.

The natural clusters generated from the most important
co-occurring relationships are also identified. Considering the
dendrogram for the Chemistry sub-fields, it can be observed that
these are organized in two main groups, which discriminates,
in general, classical Chemistry sub-fields (organic, inorganic,
and physical) from analytical and biochemical sub-fields. This
structure suggests a significant similarity in the type of ML
outcomes within each group. Group 1 have benefitted from a
significant production on catalytic technologies, DFT functionals
and interatomic potentials, quantum models and quantum
sensing. The most representative ML outcomes in group 2
are associated to text mining, analytical techniques, generative
models and inverse design, molecular screening, structure
activity relationships, and synthesis of new compounds and

FIGURE 1 | A holistic view of ML-based contributions in Chemistry. The clustering heatmap displays the relative counts of ML outcomes, within each area of

Chemistry (organic, inorganic, analytical, physical, and biochemistry), in the 2008–2019 (30 June) period. Data are expressed as fractions of the highest number of

publications, including articles, reviews and books, containing specific co-occurring keywords, and following a standard normalization procedure. Hierarchical

clustering with Euclidean distances and Ward linkage was performed on both Chemistry sub-fields and type of application. Co-occurrences are colored using a

yellow-to-red color scheme. Highest and lowest relative contributions correspond to 1 (red) and 0 (yellow) values, respectively.
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materials. Examination of the similarity between the type of ML
outcomes reveals that there are threemain groups, corresponding
to (i) text mining, analytical techniques, generative modes
and inverse design, and molecular screening (group 1), (ii)
structure-activity relationships and synthesis of new compounds
and materials (group 2), and (iii) catalytic technologies, DFT
functionals and interatomic potentials, and quantummodels and
quantum sensing (group 3).

Historically, researchers have introduced numerical
approximations to Schrödinger’s equation, and the popular DFT
calculations in ab initio approaches. However, the computational
cost inherent to these classical approximations have limited the
size, flexibility, and extensibility of the studies. Larger searches
on relevant chemical patterns, have been successfully conducted
since several research groups have developed ML models and
algorithms to predict chemical properties using training data
generated by DFT, which have also contributed to the increase
of public collections of molecules coupled with vibrational,
thermodynamic and DFT computed electronic properties (e.g.,
Behler and Parrinello, 2007; Rupp et al., 2012; Behler, 2016;
Hegde and Bowen, 2017; Pronobis et al., 2018; Chandrasekaran
et al., 2019; Iype and Urolagin, 2019; Marques et al., 2019;
Schleder et al., 2019).

Based on the heatmap it can be determined that
groups of Chemistry sub-fields have similar, but distinct
ML-based contributions.

The increase in chemical data and scientific documents
has boosted data mining and text mining processes to

manage the huge amount of chemical information and to
extract useful and non-trivial knowledge in different scenarios
(Krallinger et al., 2017).

It is interesting to inspect if certain ML outcomes are
produced in combination with each other.

In this context, the strongest correlation (0.97), shown
in Figure 2, is observed between text mining and molecular
screening, which is to be expected as a large number of molecules
has been collected and screened systematically, by combining
different text mining processes and chemoinformatics techniques
(e.g., pharmacophore-based similarity and docking). These
integrated approaches have allowed (i) extracting and collecting,
in a systematic and high-throughput way, the available chemical
and biological information from different sources (e.g., scientific
documents) (Krallinger et al., 2017; Grzybowski et al., 2018),
(ii) predicting activity based on chemical structure (Granda
et al., 2018; Simões et al., 2018; Arús-Pous et al., 2019; Gromski
et al., 2019; Lee et al., 2019; Li and Eastgate, 2019), and (iii)
selecting promising molecular targets and candidates for further
experimental validation (e.g., in vitro tests) (Ramakrishnan et al.,
2014; Gupta et al., 2018; Segler et al., 2018; Brown et al., 2019;
Elton et al., 2019; Li and Eastgate, 2019; Schleder et al., 2019; Xu
et al., 2019).

Other strong correlations are found between generrative
models & inverse design and the two abovementioned ML
applications, molecular screening (0.95) and text mining (0.93).
This can be explained by the fact that many researchers have
proposed machine learning frameworks based on a variety of

FIGURE 2 | Pairwise Pearson correlations between the different types of ML outcomes in Chemistry, produced in the 2008–2019 (30 June) period (darker colors

reflect stronger correlations).
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generative models for modeling molecules, which differ in the
respective model structure and in the selected input features
(Kadurin et al., 2017; Gupta et al., 2018; Jørgensen et al., 2018b;
Arús-Pous et al., 2019; Brown et al., 2019; Jensen, 2019; Xu et al.,
2019).

Also relevant are the correlations between generative models
and inverse design and synthesis of new compounds and
materials (0.90), and between generative models and inverse
design and analytical techniques (0.85). The former relation
evidences the significant effort that has been made on
applying ML models, in particular those based on accurate
DL architectures, to find and select lead molecules (e.g.,
drugs), displaying desired properties (Varnek and Baskin, 2012;
Mitchell, 2014; Rupp, 2015; Lo et al., 2018). These properties
are to be translated into a more simplified information on
the molecular structures, and encoded into the respective
chemical fingerprint (i.e., a set of binary characteristics of
molecules). The process continues with the screening of the
available databases for finding molecules that possess similar
fingerprints to the generated ones. Generative models and
deep neural networks (DLNs) have thus allowed generating
molecules and promising candidates for useful drugs, basically
from scratch, making it possible to “design perfect needles
instead of searching for a needle in a haystack” (White and
Wilson, 2010; Benjamin et al., 2017; Gómez-Bombarelli et al.,
2018; Harel and Radinsky, 2018; Kang and Cho, 2018; Li et al.,
2018b; Merk et al., 2018; Nouira et al., 2018; Popova et al.,
2018; Sanchez-Lengeling and Aspuru-Guzik, 2018; Schneider,
2018).

It is also observed that there are other ML contributions
that are interrelated: structure activity relationships with (i)
molecular screening and (0.84), (ii) synthesis/characterization of
new compounds and materials (0.78), and (iii) generative models
and inverse design (0.75), DFT functionals and interatomic
potentials with quantum models and quantum sensing (0.83),
and synthesis/characterization of new compounds and materials
with analytical techniques (0.79).

Both generative models and analytical techniques have been
extensively used in the qualitative/quantitative search of patterns
underlying chemical systems (Elton et al., 2019; Ghosh et al.,
2019; Stein et al., 2019a,b). It should be noted the use data
from large repositories (e.g., Protein Data Bank and Cambridge
Structural Database) and ML methods are not new (Hiller et al.,
1973; Gasteiger and Zupan, 1993; Behler, 2016). The latter
have been employed as classification tools in pioneering works,
encompassing, for e.g., the analysis of spectra (Thomsen and
Meyer, 1989), quantification of structure-activity relationships
(QSARs) (Agrafiotis et al., 2002), and prediction of binding sites
of biomolecules (Keil et al., 2004).

The range of ML applications is now quite extended as a
result of a deep integration of ML in analytical, theoretical and
computational chemistry. Despite of some initial skepticism in
understanding the foundations and structure of ML methods,
their use has been accelerated and maturated in recent years
essentially due to their suitability to new applications and
industry needs, including chemical and pharmaceutical sectors.

MACHINE LEARNING FOR OPTIMIZATION:
CHALLENGES AND OPPORTUNITIES

Designing models from chemical observations to study, control,
and improve chemical processes and properties is the basis
of optimization approaches. The understanding of chemical
systems, and the respective underlying behavior, mechanisms
and dynamics, is currently facilitated by the development
of descriptive, interpretative, and predictive models, i.e.,
approximations that represent the target system or process.
Applications of such models have included the (i) optimization
of reaction parameters and process conditions, e.g., changing
the type of reagents, catalysts, and solvents, and also varying
systematically, concentration, addition rate, time, temperature,
or solvent polarity, (ii) suggestion of new reactions based on
critical functional groups, (iii) prediction of reaction/catalyst
design, and optimization of heterogeneous/homogeneous
catalytic reactions, (iv) acceleration and discovery of new
process strategies for batch reactions, (v) establishment of
trade-offs in the reaction rate and yield of organic compounds,
(vi) description and maximization of the production rate and
conversion efficiency of chemical reactions, (vii) prediction of
the potential toxicity of different compounds, and also the (viii)
rational design of target molecules and guided exploration of
chemical space (Kowalik et al., 2012; Houben and Lapkin, 2015;
Houben et al., 2015; Zielinski et al., 2017; Häse et al., 2018; Min
et al., 2018; Zhou et al., 2018; Ahn et al., 2019; Choi et al., 2019;
Gromski et al., 2019; Matsuzaka and Uesawa, 2019).

ML provides the tools to scrutinize and extract useful
information to be employed in modeling and system-solving
solutions (Artrith and Urban, 2016; Ward and Wolverton,
2017). In Chemistry domains, researchers have had access to
multidimensional data of unprecedented scale and accuracy, that
characterize the systems/processes to be modeled. A collection of
different examples of optimization based on ML approaches can
be found in Kowalik et al. (2012), Houben and Lapkin (2015),
Houben et al. (2015), Cortés-Borda et al. (2016),Wei et al. (2016),
Benjamin et al. (2017), Ahneman et al. (2018), Gao et al. (2018),
Granda et al. (2018), Min et al. (2018), Ahn et al. (2019), Elton
et al. (2019), Matsuzaka and Uesawa (2019).

Specifically, ML contributions have involved a variety of
systems including drugs (Griffen et al., 2018), polymers (Li et al.,
2018a), polypeptides (Grisoni et al., 2018; Müller et al., 2018),
energetic materials (Elton et al., 2018), metal organic frameworks
(He et al., 2018; Jørgensen et al., 2018a; Shen et al., 2018), and
organic solar cells (Jørgensen et al., 2018a).

Advances in analytical methods, laboratory equipment
and automation have rapidly improved the performance of
experimental procedures (e.g., miniaturizing experiments for
reactions, and connecting analytical instruments to advanced
software based on decision-making algorithms and optimization
tools) (Stevens et al., 2010; Smith et al., 2011; Richmond et al.,
2012; Houben and Lapkin, 2015). The implementation of
ML-based approaches have allowed developing innovative
capabilities, such as cost-effective experiments, advanced
algorithms for automation, and designing of experiments,
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chemoinformatics tools for dealing with high-dimensional
analytical data, and accelerated in situ/in line analysis of
chemical transformations (e.g., polymerization reactions,
heterogeneous catalytic processes, aggregation of nanoparticles)
(Houben and Lapkin, 2015; Häse et al., 2018).

However, there are critical challenges that ML in Chemistry
must face, including the control of experiments, the detailed
description of chemical space, the flexibility and generalization
of models, robustness, and accuracy of predictions, and
the establishment of effective cross-disciplinary collaborations
(Montavon et al., 2013; Hansen et al., 2015; Kishimoto et al., 2018;
Smith et al., 2018a).

A clear definition of ML, as well as the distinction from other
purely mathematical regression methods is not straightforward,
and can be associated to some degree of arbitrariness (Behler,
2016). Standard ML methods include, artificial neural networks,
support vector machines, and Gaussian processes, which have
contributed to the rational design of compounds and materials,
and to the improvement of computational frameworks (Goh
et al., 2017; Mater and Coote, 2019). The latter have been applied
for e.g., in QSAR models and drug design (Kadurin et al., 2017;
Chen et al., 2018; Fleming, 2018; Green et al., 2018; Gupta
et al., 2018; Li et al., 2018b; Lo et al., 2018; Popova et al., 2018;
Simões et al., 2018) aiming at identifying systems, molecules
andmaterials with optimal properties (e.g., conductivity, aqueous
solubility, bioavailability, bioactivity, or toxicity) (Kadurin et al.,
2017; Freeze et al., 2019). This can bemade via extensive searches,
in large databases, of latent relationships between the atomic
structures. The structures, can thus be encoded using multiple
descriptors, and target properties.

The possibilities of applying ML for optimization in
Chemistry are endless. There are studies focused on ML
approaches for inferring on the optimized geometry of a system
(Zielinski et al., 2017; Venkatasubramanian, 2019), and finding
minima on complex potential energy surfaces (Chen et al., 2015;
Chmiela et al., 2018; Kanamori et al., 2018; Xia and Kais, 2018;
Hughes et al., 2019), such as those of large water clusters (Bose
et al., 2018; Chan et al., 2019).

The most innovative aspects of ML in Chemistry are related
to the availability of large volumes of theoretical data (e.g.,
electrostatic energy contributions in force fields, atomic charges,
structural properties, and representations of the potential
energies), obtained from automatic and accurate electronic
structure calculations (Behler, 2016).

However, the intricate nature of the configuration space and
its exponential dependence on system size and composition,
have hampered the screening of the entire set of candidate
structures directly by electronic structure calculations (Behler,
2016; Welborn et al., 2018).

Signs of Controversy
Despite the usefulness of ML approaches being indisputable,
with the promise to modernize molecular simulations,
synthesis, materials science, and drug discovery, the respective
endorsement and practical aspects in some chemical sub-fields is
far from consensual (Ahneman et al., 2018; Chuang and Keiser,
2018a,b).

Ten years ago, there were only a few publications on
applications of ML in Chemistry, but currently there are
thousands of published works. The controversy has highlighted
the potential (instructive) pitfalls of some practices using
ML. It has been argued that ML algorithms may lead to
overestimated performances and deficient model generalizations,
due to their sensitivity to the presence of maze-like variables
and experimental artifacts (Chuang and Keiser, 2018a). For
instance, Ahneman et al. (2018) have recently designed a ML
model to predict yields of cross coupling reactions with high
accuracy, containing isoxazoles, as reaction inhibitors, which
were incorporated for assessing the robustness of the reaction.
Input data for the proposed algorithm included yields and
reagent parameters of 3,000 reactions, such as NMR shifts,
dipole moments, and orbital energies. The most significant
features of the proposed algorithm were found to be the
descriptors of additives. However, the experimental design of
this original work has been contested by Chuang and Keiser
(2018b), who warned for potential artifacts associated to the
original work. These authors demonstrated that the model also
identified reaction additives as the descriptors displaying the
greatest impact on the reactions, suggesting that high additive
feature contributions cannot be discriminated from the hidden
structure within the dataset, i.e., the procedure of the original
paper was not sufficient for establishing isoxazole additives as
the most important descriptors (Chuang and Keiser, 2018b). A
meticulous preprocessing of input data and validation of the
model hypothesis was then suggested. The Y-randomization test
in the original work was taken into account just the information
rooted in the structure of the data set, irrespective to the intended
outcome. The classical approach based on multiple hypotheses
to assess alternative descriptions of the performance of the ML
model was implemented (Chuang and Keiser, 2018b). The effect
of different reaction parameters (e.g., additives, catalyst, and
aryl halide) in an extensive combinatorial layout generated over
several independent reactions was duly explored, providing the
underlying structure of the data (Chuang and Keiser, 2018b).

An alternative assumption considering that ML algorithms
deal with patterns within the experimental design, instead of
learning from the most relevant chemical features was therefore
investigated. It was concluded that ML is prone to explore
data irrespective to their size and structure. This aspect was
illustrated by extracting and replacing the chemical features
(e.g., electrostatics, NMR shifts, dipole moments) from each
molecule with random (Gaussian distributed) numeric strings.
It was shown that the predictions were similar to the original
ones. Chuang and Keiser (2018a) have also introduced technical
and conceptual standpoints, including the use of adversarial
controls to evaluate the predictive performance of ML models,
focusing on the design of rigorous and deliberated experiments,
ensuring accurate predictions from suitable and significant
models (Chuang and Keiser, 2018a). By revising the original
information, a number of variations of the test sets was
introduced by Estrada et al. (2018) for assessing the performance
of predictions, considering alternatives to the random-forest
model. It was therefore demonstrated that ML models are in fact
quite sensitive to such imposed features, and the reagent-label
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models are relevant representations of the data set and useful for
comparing performances in generalization assessments.

The original assumptions regarding the significance and
validity of the random-forest (chemical-feature) model to
describe important and general chemical features were also
confirmed (Estrada et al., 2018).

A lesson that chemists may draw from such constructive
discussions is that as the size of the data set increases,
the performance of ML models also increases, but with
the possibility of obtaining unexpected results and irrelevant
patterns, as the rules for ML algorithms to detect and deal with
potential technical and conceptual gaps are not well-established.
Specifically, the description of chemical reactivity underlying a
data set is required in order to ensure the reaction prediction,
by using data and reagent-label models to evaluate the scope and
restraints of chemical characterization.

ML provides new opportunities to increase the quality and
quantity of chemical data, which are essential to promote
optimization, implementation of rational design and synthetic
approaches, prioritization of candidate molecules, decision-
making, and also for guiding of innovative ideas.

Deep Learning, Deep Chemistry
In this section, an introductory overview into the core concepts of
DL, andDLNs is provided. Focus is given to the unique properties
of DL, that distinguish these algorithms from traditional machine

learning approaches, with emphasis on chemical applications
rather than providing theoretical and mathematical details.

ML is a branch of computer science dedicated to the
development of algorithms capable of learning and making
decisions on complex data (Samuel, 1959; Mitchell, 1997). This
learning process involves specific tasks that are commonly
classified in (i) supervised learning, for establishing the
relationship between input and output data (e.g., linear
regressions and classification techniques), (ii) unsupervised
learning, for finding hidden patterns or features in data,
without any previous information on such characteristics
and interrelations (e.g., clustering and dimension reduction
techniques), and (iii) reinforcement learning, for performing
a particular task through repeated dynamic interactions e.g.,
optimization of molecules (Zhou et al., 2018) and chemical
reactions (Zhou et al., 2017).

Deep learning is a fast-moving sub-area of ML, focused
on sophisticated learning and extrapolation tasks, fostered by
the wide range of chemistry literature, open-source code, and
datasets (Goh et al., 2017).

The ability of DL to establish the relevant phenomena,
expedite chemical reactions, and predict relevant properties,
optimal synthesis routes, solve critical analytical uncertainties,
and reduce costs and resources, is invaluable in Chemistry.
Its success in modeling compound properties and
reactions, depends, among other aspects, on the access to

FIGURE 3 | Schematic representation of an artificial neuron (top), and a simple neural network displaying three basic elements: input, hidden and output layers

(bottom-left), and a deep neural network showing at least two hidden layers, or nodes (bottom-right). The calculation is performed through the connections, which

contain the input data, the pre-assigned weights, and the paths defined by the activation function. If the result is far from expected, the weights of the connections are

recalibrated, and the analysis continues, until the outcome is as accurate as possible.
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comprehensive, historical repositories of published chemical
data (Venkatasubramanian, 2019).

There are barriers to be surpassed, including cleaning data,
production of meaningful and accurate chemical information
(free of bias), lack of standardization of chemical data, expertise
and familiarity with ML and DL in chemistry sectors, and also
lack of collaboration opportunities) (Mater and Coote, 2019).

The majority of DL algorithms currently developed are based
on artificial neural networks (Lecun et al., 2015).

DLNs are now a proving-ground for research in chemical
sciences (Goh et al., 2017; Jha et al., 2018; Popova et al., 2018;
Segler et al., 2018; Elton et al., 2019; Mater and Coote, 2019;
Xu et al., 2019). Similarly to artificial neural networks, DLNs are
produced to resemble the brain, in which the information passes
through a series of interconnected nodes comparable to neurons
(Lecun et al., 2015). Each node analyzes segments of information
and transfer that information to adjacent nodes (see Figure 3).

The computational model consists of multiple hidden layers
(in higher number comparing to more conventional approaches)
which confer the ability of DLNs to learn from highly complex
data and perform correlation and reduction. This means that the
algorithm discovers correlated data, while discarding irrelevant
information. Each layer combines information collected from
the previous layer, and subsequently infers on the respective
significance and send the relevant information to the next layer.
The hidden term is used to represent layers that are not direct
neighbors of the input or output layers.

The process allows constructing increasingly complex and
abstract features, by adding layers and/or increasing the number
of neurons per layer. However, the use of more than a
single hidden layer requires determining error attributions and
corrections to the respective weights. This is carried out via
a backpropagation, i.e., a backward process starting from the
predicted output, and back through the neural network (Goh
et al., 2017). In this process a gradient descent algorithm is
employed to determine the minimum in the error surface created
by each respective neuron, when generating the output. Note
that, this gradient descent approach is conceptually similar to
the steepest descent algorithm implemented in classical MD
simulations (Goh et al., 2017). The major difference lies on the
use of an iterative process, in which an error function of the
target output of the neural network is minimized, and the weights
of the neurons are updated, instead of iteratively minimizing
an energy function and updating atomic coordinates for
each step.

A complete description of the main core concepts and
architecture of DL applied to chemistry is given in Goh et al.
(2017) and Mater and Coote (2019).

Other interesting reviews covering theoretical aspects (Goh
et al., 2017), available descriptors and datasets, and also
comparing model performances (Wu et al., 2017) have been
published. Moreover, a wide range of ML applications, including
drug design (Ekins, 2016; Chen et al., 2018; Fleming, 2018),
synthesis planning (Coley et al., 2018a), medicinal chemistry
(Panteleev et al., 2018), cheminformatics (Lo et al., 2018),
quantum mechanical calculations (Rupp, 2015), and materials
science (Butler et al., 2018) have been collected.

A summary of the main contributions of DL for solving
relevant chemical challenges, as well as an illustration of
the general components of a DL framework are presented
in Figure 4.

DL algorithms are particularly attractive for accelerating
discoveries in pharmaceutical, medicinal and environmental
chemistry (El-Atta and Hassanien, 2017; Goh et al., 2017;
Klucznik et al., 2018; Miller et al., 2018; Panteleev et al., 2018;
Smith et al., 2018b; Wu and Wang, 2018; Molga et al., 2019),
since they have made possible, for e.g., to simulate millions of
toxic compounds and identify those compounds displaying target
properties, safely, economically, and sustainably. These types of
applications have been thoroughly revised in various publications
and will not be further addressed in what follows [see for e.g.,
(Kadurin et al., 2017; Chen et al., 2018; Fleming, 2018; Green
et al., 2018; Gupta et al., 2018; Li et al., 2018b; Lo et al., 2018;
Panteleev et al., 2018; Popova et al., 2018; Smith et al., 2018b)].

DL is not only a cost-cutting effort, but also an innovative
source of new perspectives.

CUTTING-EDGE APPLICATIONS

In recent years, ML has been evoked in chemistry-related
tasks. The use of ML and, in particular, DL-based approaches
across prediction of binding, activity and other relevant
molecular properties, compound/material design and synthesis,
as well as applications of genetic algorithms are highlighted in
what follows.

Researchers in chemical sciences have started exploring the
capabilities of ML using data collected from computations
and experimental measurements. Data mining is traditionally
adopted to explore high-dimensional data sets, in order to
identify and establish relevant connections for the chemical
features of compounds and materials.

Other more ambitious approaches, including quantum
mechanics, which integrates physics-based computations (e.g.,
DFT) and ML methods in the search for novel molecular
components, have also been implemented (Curtarolo et al., 2013).

Amongst the major achievements of DL in Chemistry, are the
outstanding performances in predicting activity and toxicity, in
the context of the Merck activity prediction challenge in 2012,
and the Tox21 toxicity prediction challenge launched by NIH
in 2014, respectively. In the former, DL was very successful in
the competition outperforming Merck’s internal baseline model.
In the second challenge, DL models also achieved top positions
(Goh et al., 2017).

Similarly to what happens to the majority of the modern
computational chemists who no longer build their own code
to perform MD simulations or quantum chemical calculations,
due to the existence and availability of well-established software
packages, DL researchers have also use several software packages
for training neural networks including Torch, Caffe, Theano, and
Tensorflow (Goh et al., 2017).

Apart from the influence of software improvements, the
continuous growth of chemical data in public databases, such
as PubChem and Protein Data Bank has also facilitated the
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FIGURE 4 | Overview of (top) the contribution of DL algorithms for solving different chemical challenges and the respective tasks, and (bottom) the general

components of a DL framework, including the input data, the learning model able to interpret the data and the prediction space, from which the model performance

can be inspected. The model represents an optimization cycle containing interconnected components: prediction, evaluation, and optimization. Reprinted with

permission from Mater and Coote (2019). Copyright (2019) American Chemical Society.

raise of ML and DL applications in Chemistry, including
quantum chemistry, property prediction and materials design,
drug discovery, QSAR, virtual screening, and protein structure
prediction (Goh et al., 2017; Christensen et al., 2019).

Improving Computational and Quantum
Chemistry
Computational chemistry is naturally a sub-field that has been
increasingly boosted by the advances and unique capabilities of
ML (Rupp et al., 2012; Ramakrishnan et al., 2014, 2015; Dral et al.,
2015; Sánchez-Lengeling and Aspuru-Guzik, 2017; Christensen

et al., 2019; Iype and Urolagin, 2019; Mezei and Von Lilienfeld,
2019; Zaspel et al., 2019).

Also, recent progresses have enabled the acceleration of

MD simulations (atomistic and coarse-grained), contributing to

increase knowledge on the interactions within quantum many-
body systems and efficiency of DFT-based quantum mechanical

modeling methods (Bartók et al., 2010, 2013; Behler, 2011a,b,
2016; Rupp et al., 2012, 2015; Snyder et al., 2012; Hansen et al.,
2013, 2015; Montavon et al., 2013; Schütt et al., 2014; Alipanahi
et al., 2015; Botu and Ramprasad, 2015b; De et al., 2016; Faber
et al., 2016; Sadowski et al., 2016; Wei et al., 2016; Brockherde
et al., 2017; Chmiela et al., 2017, 2018; Smith et al., 2017; Wu
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et al., 2017; Gómez-Bombarelli et al., 2018). This field is still in
its infancy and have offered invaluable opportunities for dealing
with a wide range of challenges and unsolved questions, including
but not limited to model accuracy, interpretability, and causality.

For instance, the prediction of the refractive index of ionic
liquids based on quantum chemistry calculations and an extreme
learning machine (ELM) algorithm has been conducted (Kang
et al., 2018). Specifically, 1,194 experimental data points for 115
ionic liquids at different temperatures were collected from more
than 100 literature reports. Quantum chemistry calculations were
performed for obtaining the structures and descriptors of the
ionic liquids. Themodel was designed using a stepwise regression
algorithm and the R2 and AARD% values were 0.841 and 0.855%,
respectively. It was found that prediction of the refractive index
was significantly affected by ionic liquid anions, comparing to
the cations. Better performances were achieve using the ELM
algorithm, with the R2 and AARD% values of 0.957 and 0.295%,
respectively (Kang et al., 2018).

ML has also contributed for modeling the water behavior,
shedding light on important phenomena related to water
molecules interactions and the resulting density. Morawietz et al.
(2016) have calculated ice’s melting point from fundamental
quantum mechanics, demonstrating the predictive power of
ab initio MD simulations and highlighting the critical role
of van der Waals forces (Morawietz et al., 2016). It was
evidenced that ice occupies a larger volume than liquid water
as hydrogen bonds display water molecules in a rigid 3D
network. These hydrogen bonds weaken when ice melts, and
water molecules approximate, becoming dense with an extreme
value at 4◦C (Morawietz et al., 2016). Note that these processes
can also be rationalized resorting to ab initio MD approaches
based on DFT; however, such calculations are associated to
highly demanding computations. In addition to this, DFT
approaches are not able to accurately reproduce minute but
relevant van der Waals forces. The same authors have trained
a neural network to reproduce DFT results with less computer
power, and employed a previously-existing van der Waals
correction. Water density changes, hydrogen bond network
flexibility, and competition effects in terms of the nearest
shell’s contraction, after cooling, were explained based on the
simulations (Morawietz et al., 2016).

One of the current challenges is to answer the question
of whether chemical-physical properties, that often require
quantum mechanics (e.g., dipole moments, binding and
potential energies, and thermodynamics), can be represented and
predicted by ML methods (Hansen et al., 2013, 2015; Montavon
et al., 2013; Faber et al., 2016; Iype and Urolagin, 2019; Jaquis
et al., 2019). Several attempts have been made on the topic with
some successful examples (Rupp et al., 2012; Faber et al., 2017).

Rupp et al. (2012) have developed a model based on
nuclear charges and atomic positions for predicting molecular
atomization energies of various organic compounds. A matrix
composed of molecular elements and configuration was built,
describing the potential energy of each individual atom and
the Coulomb repulsion between nuclear charges. A non-linear
regression scheme was employed for solving and mapping the
molecular Schrödinger equation.

The regression models were trained and compared to
atomization energies calculated with hybrid DFT, transforming
a 1-h run (on average) of hybrid DFT per each atomization
energy into milliseconds using ML. Cross-validation over more
than seven thousand organic molecules yielded a mean absolute
error below 10 kcal/mol. The authors have trained the ML
algorithm on a set of compounds in a database, comparing the
respective matrices to determine differences between molecules,
so as to develop a landscape of such differences. Based on the
atomic composition and configuration, the unknown molecule
can be positioned in the landscape and the respective atomization
energy can be estimated by the contributions (weights) obtained
from the differences between the unknown and all known
molecules (Rupp et al., 2012).

More recently, the impact of selecting regressors and
molecular representations on the construction of fast ML models
of several electronic ground-state properties of organic molecules
has also been investigated (Faber et al., 2017). The performance
of each combination between regressor, representation, and
property was evaluated with learning curves, which allowed
reporting out-of-sample errors, as a function of the size if
the training set (ca. 118 k molecules). The QM9 database
(Ramakrishnan et al., 2014) was used for extracting themolecular
structures and properties at the hybrid DFT level of theory,
and included data on dipole moment, polarizability, enthalpies
and free-energies of atomization, HOMO/LUMO energies and
gap, heat capacity, zero point vibrational energy, and the highest
fundamental vibrational frequency.

Several regression methods including linear models (Bayesian
ridge regression and elastic net regularization), random-forest,
kernel ridge regression, and neural networks (graph convolutions
and gated graph networks) were tested. It was concluded that
out-of-sample errors were strongly affected by the molecular
properties, and by the type of representation and regression
method. Molecular graphs and graph convolutions displayed
better performances for electronic properties, while kernel
ridge regression and histograms of dihedrals were suitable for
describing energy-related properties [see Faber et al. (2017) for
details on other relevant combinations]. Predictions based on
the ML model for all properties have shown lower deviations
from DFT (B3LYP) than the latter deviated from experiment.
MLmodels displayed thus an improved prediction accuracy than
hybrid DFT, since experimental or explicitly electron correlated
quantum data were available.

In terms of drug development Brockherde et al. (2017)
have developed a ML algorithm for predicting the behavior
of molecules with potential to be used as pharmaceuticals
and in the design of new molecules, able to enhance the
performance of emerging energetic materials, including solar
cells, battery technologies, and digital displays. The main goal
was to identify the underlying patterns in the molecular behavior,
by employing the ML algorithm for understanding atomic
interactions within a molecule and using such information to
predict new molecular phenomena.

Specifically, the algorithmwas created and trained on the basis
of a small sample set of the molecule under study, and applied
to simulate the intricate chemical behavior within selected
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molecules, including malonaldehyde. A directed learning of the
density-potential and energy-density maps was conducted, as
illustrated in Figure 5, and the first MD simulation of with a ML
density functional on malonaldehyde was performed, allowing to
describe the intramolecular proton transfer process (Brockherde
et al., 2017).

In more detail, one of the key tasks in atomistic modeling
is the prompt and automated analysis of the simulation
results, in order to provide a comprehensive understanding
of the behavior of individual atoms and target collective
properties. The main supervised and unsupervised machine-
learning methods directed at classifying and coarse-graining of
molecular simulations were recently summarized and discussed
in Ceriotti (2019). A schematic overview of these methods, and
also of a workflow reflecting the application of a ML scheme to
an atomic-scale system is presented in Figure 6.

Also relevant is the development of improved molecular
force fields, commonly used in MD simulations, using ML.
On the other hand, the intrinsic operational aspects of MD
simulations, in which the dynamic evolution of the chemical
system is detailed in a fixed period of time, and for which
interparticle forces and potential energies are often estimated
using interatomic potentials, or molecular mechanics force fields,
are perfectly suited for ML. In fact, some of the timesteps
can be used as a training phase for estimating consecutive
ones, assuming that each of the timesteps of MD simulation
is strongly correlated with the preceding timestep and is
adequate for sampling the phase space rapidly and accurately,
allowing to estimate any meaningful property (Behler, 2016).
MD simulations often sample abnormal, but probably relevant
configurations, requiring the implementation of a decision tool
for dealing with the unusual configuration, and from which ML
may turn off and start learning (Botu and Ramprasad, 2015a;
Smith et al., 2018a). These conditions have also been previously
discussed and applied to ab initio MD (Botu and Ramprasad,
2015a).

In MD, the energies and forces for a vast number of
atomic configurations are required, which can be obtained
by performing the electronic structure calculations along the
trajectory, or by evaluating the direct functional relation between
the atomic configuration and the energy (Mansbach and
Ferguson, 2015). This analytic expression, defined before running
the simulation, is often recognized as a force field, an interatomic
potential, or a potential-energy surface. Calculations of electronic
structures are very demanding, even for DFT. DFT-based ab
initio MD simulations are restricted to a few 100 atoms and
shorter simulation times (Ahn et al., 2019).

The requirements for calculating ML potentials are very
similar to conventional empirical potentials, and are duly
discussed in Behler (2016). More recent conventional force
fields are developed and validated for very specific systems,
being limited by the functional form upon which they were
constructed. On the other hand, despite requiring a training
set, ML-based force fields are adaptive and more robust upon
configurations not previously sampled (Botu and Ramprasad,
2015a). Furthermore, these force fields can be extended rapidly
to different types of atoms and molecules, as they can learn and

apply the physical laws, rather than starting from strarch (Botu
et al., 2017).

Several improved force fields, and accurate predictions
of thermodynamics and kinetics signatures, as well as their
influence in molecular structures have been provided by
performing ML-based atomistic and ab initio MD simulations.
For instance, Chmiela et al. (2018) have incorporated spatial and
temporal physical symmetries into a gradient-domain machine
learning (sGDML) model for constructing flexible molecular
force fields from high-level ab initio calculations, with a great
potential to be used to improve spectroscopic accuracy in
molecular simulations. The sGDMLmodel was able to reproduce
global force fields at quantum-chemical CCSD(T) level of
accuracy and produced converged MD simulations with fully
quantized electrons and nuclei (Chmiela et al., 2018).

The parameterization of force fields and semiempirical
quantum mechanics have also been performed integrating ML
and evolutionary algorithms (Wang et al., 2019), which were
successfully applied in MD (Wang et al., 2019). Constructing
coarse-grained molecular models has been a common approach
to extend the time/length-scales accessible to large or complex
systems (Wang et al., 2019). These models have allowed
establishing suitable interaction potentials for properties of high-
resolution models or experimental data. Wang et al. (2019) have
reformulated coarse-graining as a supervised machine learning
problem, by using statistical learning theory for decoupling the
coarse-graining error, and cross-validation for choosing and
comparing the performance of distinct models. For that purpose,
the authors developed a DL model, that learned coarse-grained
free-energy functions and was trained by a force-matching
strategy (see Figure 7).

The proposed framework automatically learned multiple
terms necessary for accurate coarse-grained force fields, i.e.,
was able to keep relevant invariances and incorporate physics
knowledge, avoiding the sampling of unphysical structures.

The class of coarse-grained directed neural networks can thus
be trained with the force-matching principle and can encode
all physically relevant invariances and constraints, including
invariance of (i) the free-energy and mean force with respect to
translation of the molecule, (ii) the free-energy and variance of
the mean force associated to molecular rotation, and considering
(iii) the mean force being a conservative force field generated by
the free-energy, and (iv) a prior energy for preventing deviations
of the simulations with coarse-grained neural networks into
unphysical state space regions, i.e., states displaying overstretched
bonds or clashing atoms, which are captured out of the
training data.

The proposed strategy also outperformed classical coarse-
graining approaches, which generally failed to capture relevant
features of the free-energy surface, providing the all-atom
explicit-solvent free-energy surfaces estimated with models
including just a few coarse-grained beads, in the absence of
solvent (Wang et al., 2019).

The integration of ML in MD simulations have also been
useful for understanding the rate and yield of chemical reactions
and providing key mechanistic details (Christensen et al., 2019;
Häse et al., 2019). For instance, an unsupervised ML analysis
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FIGURE 5 | (A) Illustrative summary of the mappings proposed by Brockherde et al. (2017). E[v] is a conventional electronic structure calculation, i.e., Kohn–Sham

density functional theory (KS-DFT) and is represented by the bottom vector. The ground-state energy is determined by solving KS equations given the external

potential, v. E[n] corresponds to the total energy density functional. The Hohenberg–Kohn map n[v] (red vector) from external potential to its ground state density is

also presented. (B) Top: graphical representation of the dependency of the energy error on the number of training points (M), for ML-OF and ML-HK, considering

different basis sets for the one-dimensional problem. Bottom: errors in the Perdew-Burke-Ernzerhof (PBE) energies and the ML maps as a function of interatomic

spacing, R, for H2 with M = 7. (C) Schematic illustration of the strategy for obtaining predictions based on the proposed machine learning Hohenberg–Kohn (ML-HK)

map. Molecular geometry is represented by Gaussians, several independent Kernel ridge regression models allows predicting each basis coefficient of the density.

The performance of data-driven (ML) and common physical basis representations for the electron density is assessed.

tool based on Bayesian neural networks (BNNs) was proposed
by Häse et al. (2019) to extract relevant information from ab
initio MD simulation of chemical reactions (Häse et al., 2019).
BNNs have been optimized to predict a specific outcome of an ab
initio MD simulation corresponding to the dissociation time of
the unmethylated and tetramethylated 1,2-dioxetane molecules,
from the initial nuclear geometry and velocities. Predictions
based on BNNs showed that an earlier dissociation was related
to the planarization of the two formaldehyde moieties and also to
the symmetric shortening of the C–O bonds, respecting the octet
rule, i.e., the relation between bond order and bond length and
orbital hybridization (Häse et al., 2019).

Rupp et al. (2012) have developed a ML algorithm based
on non-linear statistical regression to predict the atomization
energies of organic molecules. The proposed model employed
a subset of seven thousand elements of the database, and
a library of more than 100 stable and synthetically-tractable
organic compounds. The target data used to train the model
included atomization energies of the compounds calculated
using the PBE0 hybrid functional. Cartesian coordinated and
nuclear charge were used as descriptors in a “Coulomb” matrix
representation. A mean-absolute error accuracy of 14.9 kcal/mol
was achieved using a small fraction of the compounds for the
training set. Similar accuracy, ca. 15.3 kcal/mol, was obtained
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FIGURE 6 | (I) Schematic representation of the main components of atomistic ML. (a) the inputs of the model are structures A or local environments X, (b) the

mathematical representation of the inputs, based on vectors of features |X 〉, a measure of similarity d, or a kernel k, (c) the ML model, controlled by a series of

parameters θ, and trained based on a set of inputs. (II) An overview of the clustering methods, including (a) a set of data points clustered according to their hidden

common features, (b) a density-based clustering for identifying maxima in the probability distribution of inputs, (c) distribution-based clustering for finding a model of

the data distribution based on the combination of clustering probabilities, and (d) hierarchical clustering for identifying natural clusters of the inputs. (III) Summary of

dimensional reduction techniques, including principal component analysis (PCA) for establishing the most relevant subspace retaining the largest fraction of the input

data variance, (b) a kernel-based method, (c) multidimensional scaling for reproducing in low dimension the similarity between high-dimensional data points.

Reprinted with permission from Ceriotti (2019).

considering an external validation set of 6,000 compounds
showing the potential transferability of the model within in-class
compounds. It was notable to outline QM-calculated energies,
with a mean-absolute error of ca. 15 kcal/mol, without using the
Schrodinger Equation in the ML algorithm. It was also suggested
that the DLNs-based model should outperform the traditional
ML-approach (Goh et al., 2017).

More recently, an alternative approach based ML algorithms
for supplementing existing QM algorithms was proposed
(Ramakrishnan et al., 2015). A 1-learning approach, involving
a ML correction term was developed. Such correction was used
in DFT calculated properties for predicting the corresponding
quantity at the G4MP2 level of theory. This combined
QM/ML approach gathers approximate but fast legacy QM

approximations and big-data based QM estimates, trained on
results across chemical space, despite being applied using only
traditional ML algorithms (Ramakrishnan et al., 2015).

Gómez-Bombarelli et al. (2018) have applied DL for
generating and optimizing functional compounds, such as drug-
like molecules. The proposed model allowed converting discrete
representations of molecules from and into a multidimensional
continuous representation, and generating new molecules for
exploration and optimization.

A DLN was trained on a a large set of existing chemical
structures to build an encoder, which converts the discrete
representation of a molecule into a continuous vector, a
decoder, that transforms the continuous vector into discrete
molecular representations (e.g., SMILES string), and a predictor,
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FIGURE 7 | (I) Machine-learned coarse-graining of dynamics in (a) a two-dimensional potential, showing the (b) exact free-energy along x, comparison of (c) the

instantaneous forces and the learned mean forces using feature regression and coarse-grained neural network models with the exact forces, and (d) the

potential-of-mean-force along x, predicted by feature regression, and coarse-grained neural network models with the exact free energy. (II) Free-energy profiles and

representative structures of alanine dipeptide simulated using all-atom and machine-learned coarse-grained models: (a) free-energy reference as a function of the

dihedral angles, obtained from the histograms of all-atom simulations, (b) standard coarse-grained model using a sum of splines of individual internal coordinates, (c)

regularized coarse-grained neural network models, (d) unregularized networks, (e) representative structures extracted from the free-energy minima, from atomistic

simulation (ball-and-stick representation) and regularized coarse-grained neural network simulation (licorice representation). (III) Free-energy landscape of Chignolin

for the different models, obtained from the (a) all-atom simulation, as a function of the first two TICA coordinates, (b) spline model, as a function of the same two

coordinates used in the all-atom model, (c) coarse-grained neural network model, as a function of the same two coordinates. (d) Comparison of the one-dimensional

free-energy profile as a function of the first TICA coordinate, reflecting the folding/unfolding transition, for the all-atom (blue), spline (green), and coarse-grained neural

network models (red). (e) Representative Chignolin conformations in the three minima from (a–c) all-atom simulation and (a′-c′) coarse-grained neural network model.

Reprinted with permission from Wang et al. (2019).

which estimates chemical properties from the latent continuous
vector representation of the molecule. These representations
allowed generating new chemical structures automatically by
employing simple operations in the latent space (e.g., decoding
random vectors, perturbing defined chemical structures, and
interpolating between molecules), and applying gradient-based
optimization for a oriented-search of functional molecules
(Gómez-Bombarelli et al., 2018).

DLNs have also been applied for exploring the molecular

conformational space of proteins. Some authors (Degiacomi,
2019) have demonstrated that generative neural networks trained

on protein structures, extracted from molecular simulation,

can be employed to create new conformations complementing
pre-existing ones. The model was trained and tested in a
protein-protein docking scenario to account for specific motions
occurring upon binding.

The fewer examples of DLNs applications in quantum
chemistry suggest that it is still in an earlier stage of development

compared to other approaches including computational
structural biology and computer-aided drug design.

Planning and Predicting Reactions and
Routes
Some practical questions in organic chemistry have been
addressed by ML approaches, including the identification of the
most suitable synthesis method for a specific compound and the
optimal conditions (reactants, solvent, catalyst, temperature, and
among others) for ensuring region/chemo/stereo selectivity and
obtaining the highest yields, estimating the precise rate, yield
and time for the reaction, predicting major/minor product, and
also evaluating similarity between reactions (Wei et al., 2016;
Ahneman et al., 2018).

Making predictions in reactive chemical systems can also
resort to DL. Segler and Waller (2017) and Segler et al.
(2018) have predicted reaction rules considering fundamental
substructures of reactants and products, allowing to return a
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product, given a reactant as input, and vice versa. In simple terms,
a reaction rule is a pattern guiding the interaction process for
a set of reactants and suggesting potential chemical products.
As the knowledge available in often inaccurate, such rules are
often ambiguous or even incomplete (Kishimoto et al., 2018).
However, there are some successful examples, such as the recent
outcomes of Chematica. Grzybowski et al. (2018) have assembled
the relevant transformations that connect chemical species into
a large network. The latter have codified and organized the
known pathways through chemical space and displays nodes of
molecules, elements and chemical reactions, collected by linking
reactants to products on the basis of core reactions.

The Chematica platform comprises network theory, high-
performance computing, artificial intelligence, and expert
chemical knowledge to accelerate the design of synthetic
pathways leading to new targets. However, the experimental
verification of the respective predictions was carried out recently
(Grzybowski et al., 2018). The authors have described the
results of a systematic approach in which synthetic pathways
leading to eight targets with distinct structures and of medicinal
relevance were designed without human supervision and
experimentally validated. There are other prominent products
such as ChemPlanner, and Synthia created from databases of
rules for chemical transformations. Both platforms incorporate
ML algorithms and allows navigating through chemical space
using those rules and suggesting to the user possible ways to
synthesize a target molecule. Synthia also employs MD, quantum
mechanics, and electronic properties to infer on the viability of
a transformation and on the stability of an intermediate along a
synthesis route (Klucznik et al., 2018).

Reaction prediction and retrosynthesis are the mainstays of
organic chemistry. Retrosynthesis has been used for planning
synthesis of small organic molecules, in which target molecules
are recursively converted into progressively simpler precursors
(Segler andWaller, 2017). However, the results obtained from the
in silico version of this process are not, in general, adequate. Rule-
based procedures have been extensively employed for solving,
computationally, both reaction prediction and retrosynthesis.
However, reactivity conflicts are often generated, since reaction
rules tend to ignore the molecular context. It is often difficult
to predict how a compound would behave in practice, unless
an experiment is carried out (Granda et al., 2018). Evaluating
a candidate sequence of reaction steps means that the synthesis
of a given compound is also difficult. In chemical synthesis
planning, Szymkuć et al. (2016) have discussed these issues.
Segler and Waller have reported (Segler et al., 2018) that the
prioritization of the most suitable conversion rules, as well as
the approach to conflicting or complexity raising issues can be
achieved by learning with DLNs. The authors have trained their
model on ca. three million reactions, exhibiting accuracies of 97
and 95% for reaction prediction and retrosynthesis, respectively,
on a validation set of ca. one million reactions. Following this
procedure, the same authors have applied Monte Carlo tree
search and symbolic artificial intelligence to find retrosynthetic
routes. DLNs were trained on the whole set of published organic
reactions (Segler et al., 2018).

Coley et al. (2017, 2018b) have performed DL with features
based on the alterations of reactants and have determined scores
for putative products. The product was modeled as a true target
molecule (product) if it was generated by a reaction covered
by the patent literature, and as a false product otherwise. More
recently Coley et al. (2018b) have put forward a new definition
addressing the synthetic complexity in order to compare with
the expected number of reaction steps required for producing
target molecules, with known compounds as reasonable starting
materials. Specifically, a neural network model was trained on 12
million reactions from the Reaxys database, imposing a pairwise
inequality constraint and showing that the products of published
chemical reaction are, on average, more synthetically complex
than their corresponding reactants.

A graph-link-prediction-based procedure was formulated
by Savage et al. (2017) to predict candidate molecules
(reactants), given a target molecule (product) as input and
to discover adequate synthesis routes for producing the
targets. This was employed over the Network of Organic
Chemistry constructed from eight million chemical reactions
described in the US patent literature in the 1976–2013 period
(Savage et al., 2017). The proposed evaluation demonstrated
that Factorization Machines, trained with chemistry-specific
information, outperforms similarity-based methods of chemical
structures. In these approaches, a fingerprint is built from
a graphical representation of the molecule, containing the
respective structural information and chemical features. The
latter can be selected using different approaches (Morgan, 1965;
Rogers and Hahn, 2010). Some neural graph fingerprints have
displayed significant predictive performance (Duvenaud et al.,
2015). The detection of molecular active substructures (e.g.,
a moiety impacting on a disease and a moiety that confers
structural stability) can also be performed with ML (Duvenaud
et al., 2015).

Researchers have also designed a chemical-handling robot
for screening and predicting chemical reactivity using ML.
The authors have found four novel reactions, demonstrating
the respective potential in discovering reactions. Chemical
reactions related to many different pathways can lead to a
desired molecule. To find the best pathways, discovering new
chemical reactivity is crucial to make the processes that produce
chemicals, pharmaceuticals and materials more sustainable,
environmentally-friendly and efficient. However, discovering
new reactions is usually an unpredictable and time-consuming
process that’s constrained by a top-down approach involving
expert knowledge to target a particular molecule.

Other researchers (Granda et al., 2018) have created an
organic synthesis robotic ML system able to explore the reactivity
several reagents from the bottom-up with no specific target. By
performing ca. 10% of 969 possible reactions from a set of 18
reagents, the proposed system allowed predicting the reactivity
of the remaining 90% of reactions with an accuracy of 86%.
The database was continuously updated by performing multiple
experiments based on the reactivity data collected. This allowed
discovering new reactions that were inspected to isolate and
characterize the new compounds (Granda et al., 2018).
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Supporting Analytical Chemistry and
Catalysis
Analytical chemistry is possibly the area corresponding to the
longest history, but also one that mostly displays embryonic
applications of ML. A large number of statistical analyses andML
expert systems have been implemented in analytical chemistry for
a long time (e.g., comparing and classifying mass spectra, NMR,
or IR through assessments on available compounds) (Lipkowitz
and Boyd, 1995; Mayer and Baeumner, 2019). Until recently, ML
approaches were mainly employed to explain chemical reactions
and to provide valuable predictive insights. Currently, it is
possible to predict unexpected reactive outcomes, or relevant
mechanistic insights for catalytic processes. A survey of some of
these contributions can be found in Durand and Fey (2019).

Other groups (Ghosh et al., 2019) have proposed DL methods
for predicting molecular excitation spectra. Considering the
electronic density of the states of 132 k organic compounds, the
authors have built three different neural network architectures:
a multilayer perceptron (MLP), a convolutional neural network
(CNN), and a DLNs. The coordinates and charge of the atoms in
each molecule were used as inputs for the neural networks. The
DLNs reached the best performance with a root-mean-square
error (RMSE) of 0.19 eV, while MLP and CNN were able to learn
spectra with a RMSE of 0.3 and 0.23 eV, respectively. Both CNN
and DLNs allowed identifying subtle variations in the spectral
shape. The structures of 10 k organic molecules previously
unseen were scanned and the instant predictions on spectra were
obtained to identify molecules for further applications (Ghosh
et al., 2019).

A new computational approach, denoted as quantitative
profile-profile relationship (QPPR) modeling, and based on
ML techniques, has been proposed for predicting the pre-
discharge chemical profiles of ammunition components from
the components of the respective post-discharge gunshot
residue (Gallidabino et al., 2019). The predicted profiles can be
compared with other measured profiles to perform evidential
associations in forensic investigations. Specifically, the approach
was optimized and assessed for the prediction of GC-MS profiles
of smokeless powders (SLPs) obtained from organic gunshot
residues, considering nine ammunition types. A high degree
of similarity between predicted and experimentally measured
profiles was found, after applying 14ML techniques, with a
median correlation of 0.982 (Gallidabino et al., 2019). Receiver
operating characteristic (ROC) analysis was employed to assess
association performances, and allowed comparing predicted–
predicted and predicted–measured profiles, producing areas
under the curve (AUCs) of 0.976 and 0.824, respectively,
in extrapolation mode. On the other hand, AUCs of 0.962
and 0.894 were obtained in the interpolation mode. These
results were approximated to the values obtained from the
comparison of the measured SLP profiles (AUC = 0.998),
demonstrating excellent potential to correctly associate evidence
in a number of different forensic situations (Gallidabino
et al., 2019). The advantages of this approach are numerous
and may be extended to other fields in analytical sciences
that routinely experience mutable chemical signatures,

including the analysis of explosive devices, toxicological
samples and environmental pollutants (Gallidabino et al.,
2019).

The integration of ML-based algorithms in a chemosensor has
also pointed out the future of ML and the artificial internet of
things applicability, i.e., optimized sensors, linked to a central
data analysis unit via wireless (Mayer and Baeumner, 2019).

Additionally, researchers have used ML to develop tools for
predicting catalytic components and dynamics. For instance,
the identification and prediction of ligands for metal-catalyzed
coupling reaction have been conducted for designing a
synthetic economic and ecological route, with the potential
to be expanded into a system of pharmaceutical interest
(Durand and Fey, 2019). Durand and Fey have recently
summarized calculations of several ligand descriptors, focusing
on homogeneous organometallic catalysis. Different approaches
for calculating steric and electronic parameters were also
reviewed and assessed, and a set of descriptors for a wide range of
ligands (e.g., 30 monodentate phosphorus (III) donor ligands, 23
bidentate P,P-donor ligands, and 30 carbenes) were collected.

Different case studies covering the application of these
descriptors, including maps and models and DFT calculations,
have been discussed, demonstrating the usefulness of descriptor-
oriented studies of catalysis for guiding experiments and
successfully evaluate and compare the proposed models (Durand
and Fey, 2019).

Li and Eastgate (2019) have designed a ML-based tool for

acting on transition metal-catalyzed carbon–nitrogen coupling

reactions encompassing phosphine ligands, which are often

involved in pharmaceutical syntheses. The data set of the

systemwas composed of literature documents reporting coupling
reactions with phosphine ligands. The input variables were the
molecular features of ligand electrophiles and nucleophiles, and
the phosphine ligands were de output obtained in successful
reactions. The tools used substrate fingerprints, to build a
multiclass predictive model and identify the ligands prone to
function in a Pd-catalyzed C–N coupling reaction. The resulting
probabilities were associated to the corresponding ligand (cPMIs)
to determine a probability-weighted predicted holistic PMI for
the transformation, considering the synthesis of the ligand.
This novel ML approach were developed for estimating the
probability of success for ligands, given specified electrophile and
nucleophile combinations, illustrated in the a Pd-catalyzed C–N
coupling context. The neural network allowed thus improving
the predictive performance of the top-N accuracy over other
ML approaches. Further application of this tool will foster the
development of frameworks based on criteria-decision analytics,
optimizing the design of manufacturing processes.

Designing catalysts using computational approaches is also
a major challenge in chemistry. Conventional approaches have
been restricted to calculate properties for a complex and
large number of potential catalysts. More recently, innovative
approaches for inverse design have emerged, for finding
the desired property and optimizing the respective chemical
structure. The chemical space has been explored by combining
gradient-based optimization, alchemical transformations, and
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ML. These efforts have been duly reviewed in the context of
inverse design and relevance to developing catalytic technologies
(Freeze et al., 2019). These approaches have offered new
opportunities for identifying catalysts using efficient methods
that circumvent the need for high-throughput screening and
reduce the array of compounds and materials displaying the
target properties and can be experimentally validated. For
instance, inverse design can be employed formodulating catalytic
activity via alterations in the first and second coordination
spheres of the catalyst binding site (e.g., functionality of catalytic
cofactors in enzymes).

One possible approach to inverse design is to use the
synthetic accessibility score, commonly used for drug
molecules, in the scoring functions of inverse design for
ensuring synthetic feasibility. For that purpose, empirical
parameters can be used to describe molecules without the
cost of using 3D coordinates for an entire structure and
without using a model to describe the complex interactions
from geometries.

The major progress on inverse design relies on optimization
algorithms, which govern the process for exploring a specific
space, improving identification rates of parameters that allows
optimizing the value of the scoring function. For example, the
Classical Optimal Control Optimization algorithm, used for
global energy minimization, is based on the diffeomorphic
modulation under the observable-response-preserving
homotopy algorithm, and lead the classical dynamics of a
probe particle, driven by an external field for reaching the
optimal value of a multidimensional function, by adjusting
iteratively field control parameters over the gradient of the
scoring function related to the controls. However, the respective
use for scoring functions in inverse design applications still
remain a challenge (Freeze et al., 2019). Scoring functions
allow correlating molecular descriptors to catalytic properties
for finding catalysts via gradient-based optimization. In a
simple example, similar molecules often display distinct
catalytic activity due to subtle effects that must be detected
by scoring functions. Such effects may be determined by
combining experimentation to build adequate training sets
of systems with different values of selected properties for
determining feature sets able to detect such properties.
ML can also be used to evaluate performance scores for
GA-based methods.

The application of autoencoders have allowed transforming
SMILES representations of compounds into a continuous latent
space in order to optimize chemical properties, including
synthetic accessibility score and Quantitative Estimation of Drug
Likeness. Additionally, by resorting to gradient-based methods
the latent space can be intersected to predict new candidate
structures for being synthesized and tested.

The integration of inverse design, gradient-based
optimization and ML is a very promising strategy to
shorten the long path toward catalyst discovery (Freeze
et al., 2019). Also, other related methods that have been
implemented to scrutinize the chemical space for drug

development can be applied for catalyst discovery, as described in
Freeze et al. (2019).

CONCLUDING REMARKS

This review has sought to provide a sample of ML approaches
that support the major research trends in Chemistry, especially in
computational chemistry, focusing on DLNs. Such an approaches
have offered the possibility of solving chemical problems that
cannot be described and explained via conventional methods.
In the last few years, the application of ML to the optimization
and prediction of molecular properties has become very popular,
since more researchers are trained and acquired technical skills
to develop and use such methods. ML applications are area-
dependent and follow, in fact, a more or less obvious pattern.
For instance, medicinal chemistry excels in structure-activity
relationships. In other words, each sub-field is progressing
essentially in activities that belong to its core subjects. It seems
that these fields are evolving naturally, and we cannot identify
significant disruptive trends.

Despite the historical route of ML methods involving
the implementation of clustering or dimensionality reduction
approaches, to provide a simple, low dimensional, or coarse-
grained representations of structural and dynamical patterns
of complex chemical systems, the interplay between innovative
ML-driven predictions and molecular simulations can be
combined to make time-consuming electronic calculations
feasible, obtain accurate interatomic potentials on complex
systems, and provide a rational design ofmolecules andmaterials.
However, the convergence between different ML algorithms
is a major challenge to achieve a definite progress in the
chemistry fields.

Unsupervised learning may also contribute to elucidate
the operating aspects of supervised algorithms, while
supervised approaches may contribute to the formulation
of objective metrics to evaluate the performance of
unsupervised approaches.

In Chemistry DL is still at an incipient stage, particularly in
computational chemistry, although the pace of contributions has
been increasing very recently. One of the major challenges is the
disparity, quality and interpretability of the generated outcomes.
Paired with the sophistication and ability of GPU-accelerated
computing for trainingDLNs and themassive growth of chemical
information used for training DLNs, it is anticipated that
DL algorithms will be an invaluable engine for computational
chemistry. DL uses a hierarchical cascade of non-linear functions
allowing to learn representations and capture the required
features from raw chemical data, necessary for predicting target
physicochemical properties.

Considering the recent effort on the topic, DL models have
been implemented in various Chemistry sub-fields, including
quantum-chemistry, compound and materials design, with
superior performances to conventional ML algorithms. There
is still tremendous room for improved model accuracy and
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interpretability. While industrial sectors will continue driving
many advances, academia will continue playing a critical role
in supplying innovative technical and practical contributions, as
well as in fostering cross-disciplinary cooperation.
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