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Deep learning for distinguishing 
normal versus abnormal chest 
radiographs and generalization 
to two unseen diseases 
tuberculosis and COVID‑19
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Chest radiography (CXR) is the most widely‑used thoracic clinical imaging modality and is crucial for 
guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been 
the main focus of several artificial intelligence (AI) systems. However, the wide range of possible CXR 
abnormalities makes it impractical to detect every possible condition by building multiple separate 
systems, each of which detects one or more pre‑specified conditions. In this work, we developed and 
evaluated an AI system to classify CXRs as normal or abnormal. For training and tuning the system, 
we used a de‑identified dataset of 248,445 patients from a multi‑city hospital network in India. To 
assess generalizability, we evaluated our system using 6 international datasets from India, China, and 
the United States. Of these datasets, 4 focused on diseases that the AI was not trained to detect: 2 
datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our results suggest that the 
AI system trained using a large dataset containing a diverse array of CXR abnormalities generalizes to 
new patient populations and unseen diseases. In a simulated workflow where the AI system prioritized 
abnormal cases, the turnaround time for abnormal cases reduced by 7–28%. These results represent 
an important step towards evaluating whether AI can be safely used to flag cases in a general setting 
where previously unseen abnormalities exist. Lastly, to facilitate the continued development of AI 
models for CXR, we release our collected labels for the publicly available dataset.

Chest radiography (CXR) is a crucial thoracic imaging modality to detect, diagnose, and guide the management 
of numerous cardiothoracic conditions. Approximately 837 million CXRs are obtained annually  worldwide1, 
resulting in a high reviewing burden for radiologists and other healthcare  professionals2,3. In the United Kingdom, 
for example, a shortage in the radiology workforce is limiting access to care, increasing wait times, and delay-
ing  diagnoses4. �e need to reduce radiologist workload and improve turnaround time has sparked a surge of 
interest in developing arti�cial intelligence (AI)-based tools to interpret CXRs for a broad range of  �ndings5–7.

Many algorithms have been developed to detect speci�c diseases, such as pneumonia, pleural e�usion, and 
fracture, with comparable or higher performance than  radiologists5–10. However, by virtue of being developed to 
detect a speci�c disease, these algorithms may fail to recognize diseases that they were not trained to  detect11–13. 
For example, interstitial lung disease may not necessarily trigger a pneumonia detector. Although algorithms of 
this type may be highly speci�c, they may not be suitable as comprehensive tools. Moreover, because developing 
accurate AI algorithms generally requires large labeled datasets, developing algorithms for every potential disease 
abnormality that may be encountered in a broad clinical setting is impractical. �erefore, a di�erent problem 
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framing is required for use as an e�ective prioritization tool: algorithms are needed to distinguish normal versus 
abnormal CXRs more generally, where abnormality is de�ned as the presence of a clinically actionable �nding.

A reliable AI system for distinguishing normal CXRs from abnormal ones can contribute to prompt patient 
workup and management. �ere are several use cases for such a system. First, in scenarios with a high reviewing 
burden for radiologists, the AI algorithm could be used to identify cases that are unlikely to contain �ndings, 
empowering healthcare professionals to quickly exclude certain di�erential diagnoses and allowing the diagnostic 
workup to proceed in other directions without delay. Cases that are likely to contain �ndings can be also grouped 
together for prioritized review, reducing the turnaround time. Second, in settings when clinical demand outstrips 
availability of radiologists (for example, in the midst of a large disease outbreak), such a system might be used 
as a frontline point-of-care tool for non-radiologists. Importantly, the AI needs to be evaluated on CXRs with 
“unseen” abnormalities (i.e. those that it had not encountered during development), to validate its robustness 
towards new diseases or new manifestations of diseases.

In this work, we developed a deep learning system (DLS) that classi�es CXRs as normal or abnormal using 
data containing a diverse array of CXR abnormalities from 5 clusters of hospitals from 5 cities in India. We then 
evaluated the DLS for its generalization to unseen data sources and unseen diseases using 6 independent datasets 
from India, China, and the United States. �ese datasets comprise two broad clinical datasets, two tuberculosis 
(TB) datasets, and two coronavirus disease 2019 (COVID-19) datasets with reverse transcription polymerase 
chain reaction (RT-PCR)-con�rmed positive and negative cases. We are also releasing labels we collected (radi-
ologist interpretations) for images in the publicly-available test dataset to facilitate further development and 
continual research of AI models by the community (see Data availability).

Results
Dataset curation. Figure 1 shows the overall study design. Our training set consisted of 250,066 CXRs 
of 213,889 patients from 5 clusters of hospitals from 5 cities in India (Supplementary Table 1, Supplementary 
Fig. 1). In the training set, all known TB cases were excluded and COVID-19 cases were absent. To evaluate 
the trained DLS, we used 6 datasets with a total of 11,576 CXRs from 11,298 patients (Table 1, Supplementary 
Fig. 1). �is includes 2 broad clinical datasets (Dataset 1 [DS-1] and ChestX-ray14 [CXR-14], n = 8557 total 
cases) with 2423 abnormal cases, 2 datasets (TB-1 and TB-2, n = 595 total cases) with 294 TB-positive cases, 
and 2 datasets (COV-1 and COV-2, n = 2424 total cases) with 873 COVID-19 positive cases. DS-1, COV-1, and 
COV-2 were obtained from a mixture of general outpatient and inpatient settings and thus represent a wide 
spectrum of CXRs seen across di�erent populations. Evaluations on these broad datasets mitigates the risk of 
selecting only the most obvious cases while excluding more di�cult images. CXR-14, TB-1, TB-2 were enriched 
(such as for pneumothoraces in CXR-14; see Supplementary Fig. 2) and were publicly available. Evaluations on 
these datasets help to validate the DLS’s performance on conditions that would otherwise be rarer, and enables 
benchmarking with other studies using the same data. To de�ne high-sensitivity and high-speci�city operating 
points for the DLS, we created four small operating point selection datasets for four scenarios: DS-1, CXR-14, 
TB, and COVID-19; n = 200 cases each (see Fig. 1B and “Operating point selection datasets” section in “Meth-
ods”). Across these datasets, we collected 48,877 labels from 31 radiologists for either the reference standard or 
to serve as a comparison for the DLS (see “Labels” section in “Methods”).

Classifying CXRs as normal vs abnormal. �e DLS was �rst evaluated for its ability to classify CXRs as 
normal or abnormal on the test split of DS-1 and an independent test set CXR-14. We obtained the normal and 
abnormal labels from the majority vote of three radiologists (see “Labels” section in “Methods”). �e percentage 
of abnormal images were 24% and 71% in DS-1 and CXR-14, respectively (Table 1). �e areas under receiver 
operating characteristic curves (area under ROC, AUC) were 0.87 (95% CI 0.87–0.88) in DS-1 and 0.94 (95% 
CI 0.93–0.96) in CXR-14 (Table 2, Fig. 2A). To have a comprehensive understanding of the DLS, we measured 
sensitivity, speci�city, negative predictive value (NPV), positive predictive value (PPV), percentage of predicted 
positives and the percentage of predicted negatives at a high-sensitivity operating point and a high-speci�city 
operating point (“Evaluation metrics” section in “Methods”). With the high-sensitivity operating point (see 
“Operating point selection” section in “Methods”), the DLS predicted 29.9% of DS-1 and 24.0% of CXR-14 as 
normal, with NPVs of 0.98 and 0.85, respectively (Table 2). With the high-speci�city operating point, the DLS 
predicted 22.2% of DS-1 and 11.7% of CXR-14 as abnormal, with PPVs of 0.68 and 0.99, respectively (Table 2). 
�e NPVs and PPVs across di�erent operating points are plotted in Fig. 3.

To put the performance of the DLS in context, two independent board-certi�ed radiologists reviewed the 
test splits of both DS-1 and CXR-14. �e radiologists had average NPVs of approximately 0.87 and 0.70 and 
PPVs of 0.75 and 0.96 on DS-1 and CXR-14, respectively (Table 3). �e radiologists’ sensitivity and speci�city 
are illustrated on the ROC curves (Fig. 2A).

Radiographic �ndings vary in their di�culty and importance of detection. �us we next conducted subgroup 
analyses for each abnormality listed in Supplementary Table 2. �e DLS and radiologists’ performance for dis-
tinguishing normal versus abnormal across all individual �ndings are shown in Supplementary Figs. 2–4 and 
Supplementary Tables 3 and 4. �e DLS showed consistently high NPVs (range 0.93–1.0) with low variability 
across all �ndings in both datasets. �e radiologists also showed similar NPVs but with higher variability (range 
0.86–1.0).

Lastly, for DS-1 and CXR-14, every image was independently reviewed by 3 radiologists to form the reference 
standard. To understand whether the DLS has learned the intrinsic variability across radiologists, we plotted 
the distribution of DLS scores strati�ed by the number of radiologists indicating abnormality in Supplementary 
Fig. 5. We observed a consistent trend between the DLS scores and the radiologists’ discordance across both 
datasets.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15523  | https://doi.org/10.1038/s41598-021-93967-2

www.nature.com/scientificreports/

Performance in the setting of unseen diseases. �e DLS was next evaluated on two diseases that it 
had not been trained to detect (TB and COVID-19) across four disease-speci�c datasets: TB-1, TB-2, COV-1, 
and COV-2. In these analyses, the DLS was evaluated against the reference standard for each speci�c disease (TB 
or COVID, respectively, see “Labels” section in “Methods”). For TB (where the percentages of disease-positive 
images were 52% and 40% in TB-1 and TB-2; Table 1), the AUCs were 0.95 (95% CI 0.93–0.97) in TB-1 and 0.97 
(95% CI 0.94–0.99) in TB-2 (Table 2, Fig. 2B). At the high-sensitivity operating point, the DLS predicted 43.1% 
of TB-1 and 38.3% of TB-2 as negative, with NPVs of 0.88 and 0.98, respectively (Table 2A). �e NPVs and PPVs 
across di�erent operating points are also plotted in Fig. 3. However, CXRs that were labeled (TB) negative could 
nonetheless contain other abnormalities (see “Labels” section in “Methods”). Hence PPVs (Table 2A,B) need to 
be interpreted with the context that low PPVs for identifying TB-positive radiographs as abnormal do not neces-
sarily re�ect the PPV for correctly identifying images with other �ndings in those datasets (see “Distributional 
shi� between datasets” below). �e latter results (DLS performance for identifying abnormalities in TB-1 and 
TB-2) are presented in Supplementary Fig. 6, with AUCs between 0.91 and 0.93.

Every image in TB1 and TB2 was also annotated as normal or abnormal by one radiologist from a cohort of 8 
consultant radiologists from India. �e radiologist NPVs were 0.74 and 0.88 and their PPVs were 0.93 and 0.93 on 

Figure 1.  Schematic of the study design, including (A) training and tuning, (B) operating points selection, (C) 
evaluation on the deep learning system and radiologists, and (D) two simulated DLS-assisted work�ows. DS-1, 
CXR-14, TB-1, TB-2, COV-1, COV-2 are abbreviations of the datasets, please see Table 1 and Supplementary 
Table 1 for details.
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TB-1 and TB-2, respectively (Table 3 and Fig. 2B). Further subgroup analyses comparing the DLS performance 
with individual radiologists are shown in Supplementary Table 5A,B.

For COVID-19 (where percentage of disease-positive images were 32% and 48% in COV-1 and COV-2; 
Table 1), the AUCs were 0.68 (95% CI 0.66–0.71) in COV-1 and 0.65 (95% CI 0.60–0.69) in COV-2 (Table 2, 
Fig. 2A). At the high-sensitivity operating point, the DLS predicts 5.9% of COV-1 and 9.8% of COV-2 as nega-
tives with NPVs of 0.85 and 0.56, respectively (Table 2). �e NPVs and PPVs for di�erent operating points are 
plotted in Fig. 3. Similar to the TB case above, images that were negative for COVID-19 o�en contained other 
abnormalities (see “Distributional shi� between datasets” section below). �e DLS performance for identifying 
abnormalities in COV-1 and COV-2 are presented in Supplementary Fig. 6, with an AUC of 0.86 in both datasets.

Every image in COV-1 and COV-2 was also reviewed by one radiologist from a cohort of four US board-
certi�ed radiologists. �e radiologist NPVs were 0.78 and 0.62 and their PPVs were 0.51 and 0.60 on COV-1 
and COV-2, respectively (Table 3 and Fig. 2C). Further subgroup analyses comparing the DLS performance with 
individual radiologists are shown in Supplementary Table 5C,D.

Finally, to better understand the potential impact of the DLS in the setting of imperfect RT-PCR sensitivity, 
we conducted a subanalysis of COVID-19 cases that had a “false negative” RT-PCR test result on initial testing, 
de�ned as a negative RT-PCR test followed by a positive one within �ve days. In the 21 such cases, the DLS 
achieved a 95.2% sensitivity, with the CXR taken at the time of the negative test.

Distributional shifts between datasets. To better understand the data shi�s between applications (gen-
eral clinical setting in DS-1 vs. the enriched CXR-14; the broad clinical settings vs. TB; and the broad clinical 
settings vs. COVID-19), we next examined the distributions of the DLS predictive scores across all 6 test datasets 
and their corresponding operating point selection sets (Fig. 4, see “Operating point selection datasets” in “Meth-
ods”). We observed similarly peaked DLS prediction score distributions (near 1.0) for positive cases—whether 
for general abnormalities, speci�c conditions, TB, or COVID-19 (see red histograms in Fig. 4A–C). However, 
although the distributions for “negative” cases were mostly similar, they did have a small degree of variability, 
even among datasets of the same scenario from di�erent sites. For example, comparing TB-1 and TB-2 which 
have similar CXR �ndings (TB) but were from two independent sites, negative cases in TB-2 had higher scores 

Table 1.  Data and patient characteristics of the 6 test datasets. N/A indicates information was not available. 
a Abnormal images in the disease-speci�c datasets include both those positive for TB or COVID-19, and those 
with other �ndings; the numbers of images that contained other �ndings were not available.

Scenario Abnormality detection Unseen disease: TB Unseen disease: COVID-19

Dataset DS-1
CXR-14 (“ChestX-
ray14”) TB-1 TB-2 COV-1 COV-2

Dataset origin
5 clusters of hospitals 
from 5 cities in India

NIH Clinical  Center7 A hospital in Shenzhen, 
China

A hospital in Montgom-
ery, MD, USA

A hospital in Illinois, 
USA

A hospital in Illinois, 
USA

No. patients 7747 532 462 133 1819 605

Median age (IQR) 48 (38–58) 49.5 (36–60) 33 (26–43) 40 (28–52) 54 (39–66) 56 (43–68)

No. female (%) 2805 (36.2%) 375 (46.3%) 151 (32.7%) 70 (54.1%) 950 (47.8%) 325 (46.3%)

Race/ethnicity N/A N/A N/A N/A

White/Caucasian: 769 
(42%)
Hispanic: 336 (18%)
Black/African Ameri-
can: 516 (28%)
Asian: 67 (4%)
Native Hawaiian/
Other Paci�c Islander: 
3 (0.2%)
American Indian/Alas-
kan Native: 2 (0.1%)
Other: 65 (4%)
Not available: 61 (3%)

White/Caucasian: 369 
(61%)
Hispanic: 123 (20%)
Black/African Ameri-
can: 58 (10%)
Asian: 21 (3%)
Native Hawaiian/
Other Paci�c Islander: 
1 (0.2%)
American Indian/Alas-
kan Native: 0 (0%)
Other: 24 (4%)
Not available: 9 (1%)

No. images 7747 810 462 133 1819 605

PA images 7747 810 462 133 0 0

AP images 0 0 0 0 1819 605

Reference standard
Normal/abnormal based 
on majority vote of 3 
radiologists

Normal/abnormal based 
on majority vote of 3 
radiologists

Radiologists reading 
without clinical tests

Radiology reports con-
�rmed by clinical tests

COVID-19 status based 
on RT-PCR test

COVID-19 status based 
on RT-PCR test

No. abnormal images 
(%)

1845 (23.8%) 578 (71.4%) N/Aa N/Aa N/Aa N/Aa

No. positive images (%, 
speci�c disease/�nding)

See Supplementary 
Table 3

See Supplementary 
Table 4

241 (52.2%, TB) 53 (39.8%, TB) 583 (32.1%, COVID-19) 290 (47.9%, COVID-19)

Image properties

Width (pixels) 512–4400 1143–3827 1130–3001 4020–4892 1024–4200 1024–4200

Height (pixels) 512–4784 966–4715 948–3001 4020–4892 2014–4200 2014–4200

Bit-depth (bits) 12 8 8 8 12 12
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than in TB-1. Similarly, comparison between COV-1 and COV-2 also shows slight di�erences in the scores for 
negative cases. �ese observations con�rm the existence of distributional shi�s, suggesting that the scenario-
speci�c operating points are essential, and that even having site-speci�c operating points may further improve 
the DLS’s performance.

Although scores for positive and the negative cases in DS-1, CXR-14, TB-1, and TB-2 were well-separated, 
there was signi�cant overlap between the distributions of positive and negative cases for the COVID-19 datasets. 
In fact, further review of the images revealed that 24.9% of negatives in COV-1 and 31.5% of negatives in COV-2 
had other CXR �ndings, and were thus abnormal. A breakdown of the type of �nding in these “negatives” is 
presented in Supplementary Fig. 7. Examples of challenging cases of each condition and associated saliency maps 
highlighting the regions with the greatest in�uence on DLS predictions are presented in Fig. 5.

Performance of two simulated DLS assisted workflows. To understand how the developed DLS can 
assist practicing radiologists, we investigated two simulated DLS-based work�ows. In the �rst setup, to assist 
radiologists in prioritizing review of abnormal cases, the DLS sorted cases by the predicted likelihood of being 
abnormal (Fig. 1D). We measured the di�erences in expected turnaround time for the abnormal cases with and 
without DLS prioritization. For simplicity, in this simulation, we assume the same review time for each case, 
and that the review time per case does not vary based on review order. �e DLS-based prioritization reduced 
the mean turnaround time of abnormal cases by 8–29% for DS-1 and CXR-14, 21–28% for TB-1 and TB-2, and 
8–13% for COV-1 and COV-2 (Fig. 6). To understand the e�ect of relative di�erences in abnormal vs normal 
review time, we simulated for a range of di�erent scenarios by varying the time it takes to review an abnormal 
case with respect to the time it takes to review a normal case (Supplementary Fig. 8). In the second setup, we 
investigated a simulated sequential reading setup where the DLS identi�ed cases that were unlikely to contain 
�ndings, and the radiologist reviewed only the remaining cases (Fig. 1D). �ough the deprioritized cases could 
be reviewed at a later time, we computed the e�ective immediate performance assuming the DLS-negatives were 
not yet reviewed by radiologists and considered them to be interpreted as “normal” for evaluation purposes. 
�ere were minimal performance di�erences between radiologists and the sequential DLS-radiologists setup, 
but the e�ective “urgent” caseload reduced by 25–30% for DS-1 and CXR-14, about 40% for the TB datasets, and 
about 5–10% for the COVID-19 datasets (Supplementary Table 6).

Discussion
We have developed and evaluated a DLS for interpreting CXRs as normal or abnormal, instead of detecting 
individual abnormalities. We further validated that it generalized with acceptable performance using six datasets: 
two broad clinical datasets (AUC 0.87 and 0.94), two datasets with one unseen disease (TB; AUC 0.95 and 0.97), 
and two datasets with a second unseen disease (COVID-19; AUC 0.68 and 0.65).

Table 2.  Quantitative evaluation of DLS in distinguishing normal versus abnormal CXRs across 6 datasets. 
(A) �e DLS’s performance with the high-sensitivity operating point. (B) �e DLS’s performance with the 
high-speci�city operating point. �e AUC is independent of the operating point and is identical to that in (A).

(A)
Scenario

Dataset (reference 
label used for 
evaluation)

High-sensitivity operating point (optimizes for NPV)

AUC (95% CI)
No. predicted 
negative (%) NPV (95% CI)

Sensitivity (95% 
CI)

No. predicted 
positive (%) PPV (95% CI)

Speci�city (95% 
CI)

Abnormality 
detection

DS-1 (normal/
abnormal)

2313 (29.9%) 0.98 (0.97–0.99) 0.98 (0.97–0.98) 5434 (70.1%) 0.33 (0.32–0.34) 0.38 (0.37–0.40) 0.87 (0.87–0.88)

CXR-14 (normal/
abnormal)

194 (24.0%) 0.85 (0.79–0.89) 0.95 (0.93–0.97) 616 (76.0%) 0.89 (0.86–0.91) 0.71 (0.65–0.76) 0.94 (0.93–0.96)

Unseen disease 
1: TB

TB-1 (TB status) 199 (43.1%) 0.88 (0.84–0.93) 0.90 (0.87–0.94) 263 (56.9%) 0.83 0.78–0.87 ) 0.80 (0.74–0.85) 0.95 (0.93–0.97)

TB-2 (TB status) 51 (38.3%) 0.98 (0.94–1.0) 0.98 (0.94–1.0) 82 (61.7%) 0.63 (0.51–0.73) 0.63 (0.51–0.73) 0.97 (0.94–0.99)

Unseen disease 2: 
COVID-19

COV-1 (COVID-
19 status)

109 (5.9%) 0.85 (0.78–0.92) 0.97 (0.96–0.98) 1710 (94.0%) 0.33 (0.31–0.35) 0.08 (0.06–0.09) 0.68 (0.66–0.71)

COV-2 (COVID-
19 status)

59 (9.8%) 0.56 (0.43–0.68) 0.91 (0.87–0.94) 546 (90.2%) 0.48 (0.44–0.52) 0.10 (0.07–0.14) 0.65 (0.60–0.69)

(B)
Scenario

Dataset (reference 
label used for 
evaluation)

High-speci�city operating point (optimizes for PPV)

No. predicted 
negative (%) NPV (95% CI)

Sensitivity (95% 
CI)

No. predicted 
positive (%) PPV (95% CI)

Speci�city (95% 
CI)

Abnormality 
detection

DS-1 (normal/
abnormal)

6027 (77.8%) 0.89 (0.88–0.90) 0.63 (0.61–0.65) 1720 (22.2%) 0.68 (0.65–0.70) 0.91 (0.90–0.91)

CXR-14 (normal/
abnormal)

715 (88.3%) 0.32 (0.29–0.36) 0.16 (0.13–0.20) 95 (11.7%) 0.99 (0.96–1.0) 1.0 (0.99–1.0)

Unseen disease1: 
TB

TB-1 (TB status) 260 (56.3%) 0.81 (0.76–0.85) 0.81 (0.74–0.84) 202 (43.7%) 0.95 (0.91–0.98) 0.95 (0.92–0.98)

TB-2 (TB status) 80 (60.2%) 0.94 (0.88–0.99) 0.91 (0.82–0.98) 53 (39.8%) 0.91 (0.81–0.98) 0.94 (0.88–0.99)

Unseen disease 2: 
COVID-19

COV-1 (COVID-
19 status)

1558 (85.7%) 0.72 (0.69–0.74) 0.23 (0.20–0.27) 261 (14.3%) 0.52 (0.46–0.58) 0.90 (0.88–0.92)

COV-2 (COVID-
19 status)

537 (88.8%) 0.55 (0.51–0.59) 0.17 (0.12–0.21) 68 (11.2%) 0.71 (0.59–0.81) 0.94 (0.91–0.96)
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Figure 2.  Receiver operating characteristic (ROC) curves for the DLS in distinguishing normal and abnormal CXRs across 6 di�erent 
datasets. Positive CXRs in DS-1 and CXR-14 contain a mix of multiple labeled abnormalities (Supplementary Table 2). Positive CXRs 
in the two TB datasets are from patients with tuberculosis. Positive CXRs in the two COVID-19 datasets are from patients with reverse 
transcription polymerase chain reaction (RT-PCR)-veri�ed COVID-19. Radiologists’ performances in distinguishing the test cases 
as normal or abnormal are also highlighted in the �gures. DLS performance for identifying abnormalities in the TB and COVID-19 
datasets (as opposed to the presence or absence of TB or COVID-19) are presented in Supplementary Fig. 6, with AUCs of 0.91-0.93 
for TB and 0.86 for COVID-19.
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Generalizability to di�erent datasets and patient populations is critical for evaluation of AI systems in medi-
cine. Studies have shown that many factors might lead to challenges of generalization of AI systems to new 
populations, such as dataset shi� and  confounders14. Furthermore, with CXRs, as with all medical imagery, the 
number of potential manifestations is unbounded, especially with the emergence of new diseases over time. 
Understanding model performance on this set of unseen diseases is an imperative step in developing a robust 
and clinically useful model that can be trusted in real world situations. In this work, we evaluated the DLS’s 
performance on 6 independent test sets consisting of di�erent patient populations, spanning three countries, 
and with two unseen diseases (TB and COVID-19). �e DLS’s high sensitivity operating point for ruling out 
normal CXRs performed on par with board-certi�ed radiologists, with NPVs of 0.85–0.95 (general abnor-
malities), 0.88–0.98 (TB), and 0.56–0.85 (COVID-19), comparable to radiologist NPVs of 0.67–0.87 (general 
abnormalities), 0.74–0.88 (TB), and 0.62–0.78 (COVID-19). �ese results highlight the DLS’s generalizability 

Figure 3.  Positive predictive values (PPV) and negative predictive values (NPV) of the DLS across 6 datasets. 
(A) General abnormalities: DS-1 and CXR-14 datasets. (B) TB: TB-1 and TB-2. (C) COVID-19: COV-1 and 
COV-2. �e horizontal dotted lines represent the prevalence of positive examples (red) and negative examples 
(blue), which also correspond to random predictions’ PPV and NPV, respectively. �e DLS’s NPV converges to 
the prevalence of negative examples when all examples are predicted as negative, and the DLS’s PPV converges 
to the prevalence of positive examples when all examples are predicted as positive. �e vertical, dotted black 
lines highlight the selected operating point at 95% sensitivity on the operating point selection sets for each 
scenario.
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across real-world dataset shi�s, increasing the likelihood of such a system to also generalize to new datasets 
and new manifestations. �e “lower” observed AUCs of the DLS on the COVID-19 datasets were likely caused 
by our deliberate application of a general abnormality detector to a cohort enriched for patients with a clinical 
presentation consistent with COVID-19 and thus tested for COVID-19. However, as other acute diseases may 
share a similar clinical presentation, many cases negative for COVID-19 exhibited abnormal CXR �ndings that 
likely triggered the DLS (Fig. 5, Supplementary Fig. 7). Additionally, a substantial number of COVID-19 patients 

Table 3.  Radiologist performance in distinguishing normal and abnormal CXRs across the 6 datasets.

Scenario

Dataset (reference 
label used for 
evaluation)

Radiologists

No. predicted 
negative (%) NPV (95% CI) Sensitivity (95% CI)

No. predicted 
positive (%) PPV (95% CI) Speci�city (95% CI)

Abnormality detec-
tion

DS-1 (normal/abnor-
mal)

6567 (84.8%) 0.86 (0.85–0.86) 0.48 (0.46–0.51) 1180 (15.2%) 0.76 (0.74–0.78) 0.95 (0.95–0.96)

6380 (82.4%) 0.87 (0.86–0.88) 0.54 (0.52–0.57) 1367 (17.6%) 0.74 (0.71–0.76) 0.94 (0.93–0.94)

CXR-14 (normal/
abnormal)

284 (35.1%) 0.73 (0.67–0.77) 0.87 (0.84–0.89) 526 (64.9%) 0.95 (0.93–0.97) 0.89 (0.85–0.93)

325 (40.1%) 0.67 (0.62–0.72) 0.81 (0.78–0.84) 485 (59.9%) 0.97 (0.96–0.99) 0.94 (0.91–0.97)

Unseen disease: TB
TB-1 (TB status) 282 (61.0%) 0.74 (0.69–0.80) 0.70 (0.65–0.76) 180 (39.0%) 0.93 (0.89–0.97) 0.95 (0.91–0.97)

TB-2 (TB status) 88 (66.2%) 0.88 (0.81–0.94) 0.79 (0.68–0.90) 45 (33.8%) 0.93 (0.85–1.0) 0.96 (0.92–1.0)

Unseen disease: 
COVID-19

COV-1 (COVID-19 
status)

1194 (65.6%) 0.78 (0.76–0.80) 0.55 (0.51–0.59) 625 (34.4%) 0.51 (0.47–0.54) 0.75 (0.73–0.77)

COV-2 (COVID-19 
status)

352 (58.2%) 0.62 (0.57–0.66) 0.53 (0.48–0.59) 253 (41.8%) 0.60 (0.55–0.66) 0.68 (0.64–0.74)

Figure 4.  Histogram for the distribution of DLS predicted scores across 6 datasets and their corresponding 
operating point selection sets: (A) DS-1 and CXR-14, (B) TB-1 and TB-2, and (C) COV-1 and COV-2. Curation 
of the operating point selection (Op. Sel.) datasets is described in “Operating point selection datasets” in 
“Methods”. Positive and negative examples are visualized separately in red and blue, respectively. �e vertical 
lines (black) highlight the selected high-sensitivity operating point for each scenario.
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can present with a normal  CXR15, which would also contribute to a lower observed AUC. Lastly, we expect an 
improved performance by training the model speci�cally on a COVID-19 dataset for detecting the disease, and 
future work is needed to investigate using the current general abnormality model as a pretraining step (i.e. to 
pre-initialize new networks) for other speci�c  tasks16. However, we focused on evaluating a general-abnormal 
DLS’s performance in identifying patients with normal CXRs in a challenging COVID-19 cohort dataset.

In this study, we focused on evaluating the generalizability of the DLS to unseen diseases (TB and COVID) 
rather than unseen CXR imaging features, in order to assess the clinical relevance of the DLS. Studies have 
suggested that radiologists’ ability to recognize abnormal imaging features of disease (e.g. consolidation or 
pleural e�usion) on CXR appear relatively independent of experience level, from junior residents through senior 
 faculty17. However, pro�ciency at accurately diagnosing disease on CXR remains strongly tied to experience 
 level18. �is disparity highlights the value in characterizing an AI system’s ability to detect disease on CXR, in 
addition to its ability to detect abnormal imaging features.

�e variability in patient population and clinical environment across di�erent datasets also meant that the 
same operating point was unlikely to be appropriate across all settings. For example, a general outpatient setting 
is substantially less likely to contain CXR �ndings compared to a cohort of patients with respiratory symptoms 
or fevers in the midst of the COVID-19 pandemic. Similarly, datasets that are deliberately enriched for speci�c 
conditions (CXR-14 and TB) are skewed and are not representative of a general disease screening population. 
�us, we used a small number of cases (n = 200) from each setting to determine the operating points speci�c to 
that setting. Consistent with this hypothesis, these operating points then generalized well to another dataset, 

Figure 5.  Sample CXRs of true and false positives, and true and false negatives for (A) general abnormalities, 
(B) TB, and (C) COVID-19. Each image has the class activation map presented as red outlines that indicate the 
areas the DLS is focusing on for identifying abnormalities, and yellow outlines representing regions of interest 
indicated by radiologists. Text descriptions for each CXR are below the respective image. Note that the general 
abnormality false negative example is shown with abnormal class activation maps. However, the DLS predictive 
score on the case was lower than the selected threshold; hence the image was classi�ed as “normal”. Note that 
the TB false positive image was saved in the system with inverted colors that were inconsistent with what was 
speci�ed in the DICOM header tag, and presented to the model that way.
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such as from TB-1 to TB-2 and from COV-1 to COV-2. However, further performance improvement is likely 
possible with site-speci�c operating point selection sets. We anticipate that this simple operating point selection 
strategy using a small number of cases may be useful when evaluating an AI system in a new setting, institution, 
or patient population.

In addition to general performance across the 6 datasets, subgroup analysis of the DLS’ performance on each 
speci�c abnormal CXR �nding of DS-1 and CXR-14 (Supplementary Tables 3 and 4) revealed consistently high 
NPVs, suggesting that the DLS was not overtly biased towards any particular abnormal �nding. In addition, 
the DLS outperformed radiologists on atelectasis, pleural e�usion, cardiomegaly/enlarged cardiac silhouette, 
and lung nodules—suggesting that the DLS as a prioritization tool could be particularly valuable in emergency 
medicine where dyspnea, cardiogenic pulmonary edema, and incidental lung cancer detection are commonly 
encountered. Furthermore, the DLS also outperformed radiologists in settings where an abnormal chest radio-
graphic �nding was present but the abnormality was not one of the prede�ned chest radiographic �ndings (e.g. 
perihilar mass) or radiologists agreed on the presence of a �nding but disagreed as to its characterization (indi-
cating case ambiguity; see “Other” in Supplementary Tables 3 and 4). �is suggests that the DLS may be robust 
in the setting of chest radiographic �ndings that are uncommon or di�cult to reach consensus on.

To further evaluate the potential utility of our system, we simulated a setup where the DLS prioritizes cases 
that are likely to contain �ndings for radiologists’ review. Our evaluation suggests a potential reduction in turna-
round time for abnormal cases by 7–28%, indicating the DLS’s potential to be a powerful �rst-line prioritization 
tool. Additionally, we also found that the longer it takes to review an abnormal case, the less reduction in time 
there was. Whether deployed in a relatively healthy outpatient practice or in the midst of an unusually busy 
inpatient or outpatient setting, such a system could help prioritize abnormal CXRs for expedited radiologist 
interpretation. In radiology teams where CXR interpretation responsibilities are shared between general and 
subspecialist (i.e. cardiothoracic) radiologists, such a system could be used to distribute work. For non-radiologist 
healthcare professionals, a rapid determination regarding the presence or absence of an abnormality on CXR 
prevents the release of a patient who needs care and enables alternative diagnostic workup to proceed without 
delay while the case is pending radiologist review. Finally, a radiologist’s productivity might increase by batching 
negative CXRs for streamlined formal review.

Finally, to facilitate the continued development of AI models for chest radiography, we are releasing our 
abnormal versus normal labels from 3 radiologists (2430 labels on 810 images) for the publicly-available CXR-
14 test set. We believe this will be useful for future work because label quality is of paramount importance for 
any AI study in healthcare. In CXR-14, the binary abnormal labels were derived through an automated natural 
language processing (NLP) algorithm on the radiology  report7. However, editorials have questioned the the 

Figure 6.  Impact of a simulated DLS-based prioritization in comparison with random review order for (A) 
general abnormalities, (B) TB, and (C) COVID-19. �e red bars indicate sequences of abnormal CXRs in red 
and normal CXRs in pink; a greater density of red towards the le� indicates abnormal CXRs are reviewed 
sooner than normal ones. �e histograms indicate the average improvement in turnaround time.
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quality of labels derived from clinical  reports19. Hence, in this study we obtained labels from multiple experts to 
establish the reference standard for evaluation, and a confusion matrix of our majority vote expert labels against 
the public NLP labels is shown in Supplementary Table 7. We hope that the release of these high-quality labels 
will aid future work in this area.

Prior studies have demonstrated an algorithm’s potential to di�erentiate normal and abnormal  CXRs20–25. 
Dunnmon et al. showed high diagnostic performance of a developed system in classifying CXRs as normal or 
abnormal. Hwang et al. evaluated a commercially available system with comparison to radiology  residents22. 
Annarumma et al. further demonstrated the system’s utility in a simulated prioritization work�ow with three 
di�erent priority level on a held-out data from the same institution as the training  dataset21. Our study comple-
ments prior works by performing extensive evaluations on model generalizability, including generalization to 
multiple datasets in di�erent continents, di�erent patient populations settings, and with the presence of unseen 
diseases. In addition, we also obtained radiologist reviews as benchmarks to understand the DLS’s performance. 
Lastly, we presented two simulated work�ows; one demonstrated reduced turnaround time for abnormal cases, 
and the other showed comparable performance while reducing e�ective caseload.

Our study has several limitations. First, there are a wide range of abnormalities and diseases that were not 
represented among the CXRs available for this study. Although it’s infeasible to exhaustively obtain and annotate 
datasets for every possible �nding, further increasing the conditions and diseases, especially the rare �ndings, 
considered in this study could help both in the DLS development and evaluation. Second, we only had labeled 
data regarding disease-positive and disease-negative for TB and COVID-19. �e absence of normal and abnormal 
labels for the TB and COVID-19 datasets led to added complexity in understanding the performance metrics of 
PPVs and speci�cities for these scenarios. �e reference standard for the publicly available TB-2 was based on 
radiologists reading without appropriate clinical tests; hence the performance measure is subject to the diagnoses’ 
accuracy. �ird, the follow-up data or information of more sophisticated modalities were not available for DS-1 
and CXR-14, limiting the quality of the obtained reference standard. Fourth, to provide a comparison with the 
DLS, which only had CXRs as input, the radiologists reviewed the cases solely based on CXRs without referencing 
additional clinical or patient data. In a real clinical setting, this information is generally available, and likely in�u-
ences a radiologist’s decisions. Fi�h, TB cases were excluded from the training and tuning sets by removing all 
cases indicated as TB-positive or with any reference to TB in the radiology report. Microbiologically verifying the 
entire training set was infeasible. Hence, there was a potential for leakages of TB positive cases not noted on the 
radiology reports. Lastly, the results were based on retrospective data. Given the absence of historical reporting 
timing information, the utility of the DLS-assisted work�ows were based on simulation with many assumptions, 
such as identical radiologist diagnosis regardless of the review order. Additionally, the DLS-assisted work�ows 
did not consider the various degrees of urgency for di�erent diseases, which is an important aspect as a prioritiza-
tion tool. Hence, the true e�ects will need to be determined through future evaluation in a prospective setting.

In conclusion, we have developed and evaluated a clinically relevant arti�cial intelligence model for chest 
radiographic interpretation and evaluated its generalizability across a diverse set of images in 6 distinct datasets. 
We hope that the performance analyses reported here along with the release of the expert labels for the publicly 
available CXR-14 (ChestX-ray14) images will serve as a useful resource to facilitate the continued development 
of clinically useful AI models for CXR interpretation.

Methods
Datasets. In this study, we utilized 6 independent datasets for DLS development and evaluation. �e DLS 
was evaluated in two ways: distinguishing normal vs. abnormal cases in a general setting with multiple radiol-
ogist-con�rmed abnormalities (�rst 2 datasets), and in the setting of diseases that the DLS was not exposed to 
during training (TB was excluded from the train set and COVID-19 was not present; last 4 datasets). All data 
were stored in the Digital Imaging and Communications in Medicine (DICOM) format and de-identi�ed prior 
to transfer to study investigators. Details regarding these datasets and patient characteristics are summarized in 
Table 1, Supplementary Table 1, and Supplementary Fig. 1. �is study using de-identi�ed retrospective data was 
reviewed by Advarra IRB (Columbia, MD), which determined that it was exempt from further review under 45 
CFR 46.

Train and tune datasets. �e �rst dataset (DS-1) was from �ve clusters of hospitals across �ve di�erent cit-
ies in India (Bangalore, Bhubaneswar, Chennai, Hyderabad, and New Delhi)5. DS-1 consisted of images from 
consecutive inpatient and outpatient encounters between November 2010 and January 2018, and re�ected the 
natural population incidence of the abnormalities in the populations. All TB cases were excluded and COVID-
19 cases were not present. In total, DS-1 originally contained 1,052,274 CXRs from 794,501 patients before 
exclusions (Supplementary Fig. 1A). �is dataset was randomly split into training, tuning, and testing sets in a 
0.775:0.1:0.125 ratio while ensuring that images from the same patient remained in the same split. �e split is 
consistent with our previous  study5. �e DLS was developed solely using the training and tuning splits of DS-1. 
Because outpatient management is primarily done using posterior–anterior (PA) CXRs, while inpatient manage-
ment is primarily done on anterior–posterior (AP) CXRs, we emphasized PA CXRs in the tune split to better 
represent an outpatient use case. Both PA and AP images are used in the test datasets.

Operating point selection datasets. To select operating points for each of the four scenarios (two general abnor-
malities, TB, COVID-19), 200 images were randomly selected as the operating point selection sets. For general 
abnormalities, we selected two independent operating points using 200 randomly sampled images from the 
DS-1 tune set and 200 randomly sampled images from CXR-14’s publicly-speci�ed combined train and tune 
 set7,26. For TB, 200 randomly sampled images from TB-1 were used. For COVID-19, 200 randomly sampled 
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images from COV-1 were used. �ese images were only used to determine an operating point for that scenario, 
and once used for operating point selection, were excluded from the test set (Supplementary Fig. 1).

Test datasets. Two datasets were used to evaluate the DLS’s performance in distinguishing normal and abnor-
mal �ndings in a general abnormality detection setting. �e �rst dataset contains 7747 randomly selected PA 
CXRs from the original test split of the DS-15. �ese sampled images were expertly labelled as normal or abnor-
mal for the purposes of this study. �e second dataset contains 2000 randomly selected CXRs from the publicly-
speci�ed test set (25,596 CXRs from 2797 patients) of CXR-14 from the National Institute of  Health7,26. From 
these 2000 CXRs (also used in prior  work5), we removed all the patients younger than 18 years of age and all the 
AP scans (to focus on an outpatient setting, see tune split procedure above), leaving us with 810 images.

To evaluate the DLS performance in unseen diseases, we curated 2 datasets for TB and 2 datasets for COVID-
19 (1 CXR per patient, Supplementary Fig. 1B,C). For TB, one dataset (TB-1) of 462 PA CXRs with 241 con�rmed 
TB positive CXRs was used, from a hospital in Shenzhen, China. Another dataset (TB-2) of 133 PA CXRs with 
53 con�rmed TB positive CXRs was used from a hospital in Montgomery, MD,  USA27–29. Both TB datasets 
are publicly available. For COVID-19, we used 9390 CXRs and 5209 CXRs from all patients who visited two 
separate hospitals in Chicago in March 2020. Two datasets of 1819 and 605 AP CXRs (with 583 and 290 CXRs 
with RT-PCR-con�rmed COVID-19 positive diagnoses) were curated from the two hospitals: COV-1, COV-2.

Labels. Abnormality labels. For development and evaluation of the DLS, we obtained labels to indicate 
whether abnormalities were present in each CXR. Each image was annotated as either “normal” or “abnormal”, 
where an “abnormal” scan is de�ned as a scan containing at least one clinically-signi�cant �nding that may war-
rant further follow-up. For example, degenerative changes and old fractures were not labeled abnormal because 
no further management is required. �e decision to include abnormal but clinically non-actionable �ndings as 
“normal” was based on the intended use case of �agging “abnormality” that requires either downstream action 
or attention by the clinician.

For the train and tune split of DS-1, we obtained the abnormal and normal labels using NLP (regular expres-
sions) on the radiology reports (Supplementary Table 8). For the normal images, radiology report templates 
were o�en used, meaning the same report indicating a normal scan was o�en used for numerous images. We 
extracted the most commonly used radiology reports, manually con�rmed those that indicated normal reports, 
and obtained all images that used one of these normal template reports. Examples of these radiology reports along 
with their frequencies are shown in Supplementary Table 8. For the abnormal images, we obtained all images 
that did not contain keywords indicating the scan is normal in their respective radiology reports.

For the test sets of DS-1 and CXR-14, a group of US board-certi�ed radiologists reviewed the images at their 
original resolution to provide reference standard labels. For each image in DS-1, three readers were randomly 
assigned from a cohort of 18 US board-certi�ed radiologists (range of experience 2–24 years in general radiol-
ogy). For CXR-14, we obtained labels from three US board-certi�ed radiologists (years of experience: 5, 12, and 
24). In both cases, the majority vote of the three radiologists was taken to determine the �nal reference standard 
label.

For both DS-1 and CXR-14, in addition to the normal versus abnormal label, we also obtained labels for a 
selected set of �ndings present in the abnormal images for subgroup analysis (Supplementary Table 2). Note 
that the lists of �ndings for DS-1 and CXR-14 di�er. For DS-1, we selected a slightly di�erent list of �ndings to 
represent conditions that were more clinically reliable, mutually exclusive, and for which the CXR is reasonably 
sensitive and speci�c at characterizing (Supplementary Methods and Supplementary Table 2). Similarly to the 
normal versus abnormal label, the majority vote was taken for each speci�c �nding. For CXR-14, the di�er-
ences between the majority voted labels and the publically available labels are shown in a confusion matrix in 
Supplementary Table 7.

TB labels. �e �rst TB  dataset27 (TB-1) was from Montgomery County, Maryland, USA. �e TB positive and 
negative labels were derived from the radiology reports con�rmed by clinical tests and patient history from the 
tuberculosis control program of the Department of Health and Human Services of Montgomery County, Mary-
land. �e second TB  dataset27 (TB-2) was from Shenzhen, China. Positive and negative labels for this dataset 
came from the TB screening results of radiologists reading without appropriate clinical tests in the outpatient 
clinics in Shenzhen No. 3 People’s Hospital, Guangdong Medical College, Shenzhen, China.

COVID-19 labels. For the COVID-19 datasets COV-1 and COV-2, patients with RT-PCR tests and CXRs were 
included (Supplementary Fig. 1). �e COVID-19-positive labels were derived from positive RT-PCR tests. In 
accordance with current Centers for Disease Control and Prevention (CDC)  guidelines30, COVID-19-negative 
labels consisted of CXRs from patients with at least two consecutive negative RT-PCR tests with 12 h apart and 
no positive test. As false negative rates for RT-PCR have been reported to be ≥ 20% in symptomatic COVID-
19-positive patients, CXRs from patients with only one negative RT-PCR test were  excluded31.

Deep learning system development. Neural network training. We trained a convolutional neural net-
work (CNN) with a single output to distinguish between abnormal and normal CXRs. �e CNN uses E�cient-
Net-B732 as its feature extractor, which was pre-trained on  ImageNet33,34. Early tuning set results (Supplementary 
Table 9A) suggested that the E�cientNet-B7 performs better than other advanced networks, hence the decision 
to use such a network. Since the CNN was pre-trained on three-channel RGB natural images, we tiled the single 
channel CXR image to three channels for technical compatibility. We trained the CNN using the cross-entropy 
loss and the momentum  optimizer35 with a constant learning rate of 0.0004 and a momentum value of 0.9. Dur-
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ing training, all images were scaled to 600 × 600 pixels with bilinear interpolation and image pixel values were 
normalized on a per-image basis to be between 0 and 1. Using higher resolution images (1024 × 1024 pixels) 
led to non-signi�cantly lower results (Supplementary Table 9B), hence we used 600 × 600 pixels due to its lower 
computational memory usage. Initializing from ImageNet also appeared to improve results (Supplementary Ta-
ble 9C). �e original bit depth for each image was used (Table 1). For regularization, we applied  dropout36, with a 
dropout “keep probability” of 0.5. Furthermore, data augmentation techniques were applied to the input images, 
including horizontal �ipping, padding, cropping, and changes in brightness, saturation, hue, and contrast. All 
hyperparameters were selected based on the empirical performance on the DS-1 tuning set. We developed the 
network using TensorFlow and used 10 NVIDIA Tesla V100 graphics processing units for training.

Operating point selection. Given a CXR, the DLS predicts a continuous score between 0 and 1 representing the 
likelihood of the CXR being abnormal. For making clinical decisions, operating points are needed to threshold 
the scores and produce binary normal or abnormal categorizations. In this study, we selected two operating 
points (see “Operating point selection datasets” section above), a high sensitivity operating point (95% sensitiv-
ity) and a high speci�city operating point (95% speci�city) for each scenario: general abnormalities for a general 
clinical setting in DS-1, general abnormalities for an enriched dataset in CXR-14, TB, and COVID-19.

Comparison with radiologists. To compare the DLS with radiologists in classifying CXRs as normal ver-
sus abnormal, additional radiologists reviewed all test images without referencing additional clinical or patient 
data. All images in the DS-1 and CXR-14 test set were independently interpreted by two board-certi�ed radiolo-
gists (with 2 and 13 years of experience), who classi�ed each CXR as normal or abnormal. �ese radiologists 
were independent from the cohort of radiologists who contributed to the reference standard labels.

Each image in TB-1 and TB-2 was reviewed by a random radiologist from a cohort of 8 consultant radiologists 
in India. Each image was annotated as abnormal or normal. Each image in COV-1 and COV-2 was reviewed 
by one of four board-certi�ed radiologists (with 2, 5, 13, and 22 years of experience). Similarly, each image was 
annotated as abnormal or normal.

Two simulated DLS assisted workflows. We simulated two setups in which the DLS was leveraged 
to optimize radiologists’ work�ow (Fig. 1D). In the �rst setup, we randomly sampled 200 CXRs from each of 
our 6 datasets to simulate a “batch” workload for a radiologist in a busy clinical environment. For these CXRs, 
we compared the turnaround time for the abnormal CXRs when (1) they were sorted randomly (to simulate a 
clinical work�ow without the DLS) and (2) when the CXRs were sorted in descending order based on the DLS-
predicted scores, such that cases with higher scores appeared earlier. �is analysis does not require the selection 
of an operating point. We repeated each simulation 1000 times per dataset to obtain the empirical distribution 
of turnaround di�erences.

In the second setup, we analyzed an extreme use case where the DLS identi�ed CXRs that were unlikely to 
contain �ndings using a high sensitivity threshold, and the radiologists only reviewed the remaining cases. All 
cases skipped by radiologists were labeled negative. We compared the sensitivity between this simulated “reduced 
workload” work�ow and a normal work�ow in which the radiologists reviewed all cases.

Evaluation metrics. To evaluate the DLS across di�erent operating points, we calculated the areas under 
receiver operating characteristic curves (area under ROC, AUC). To evaluate the performance of the DLS in 
classifying CXRs as normal or abnormal, we measured negative predictive values (NPV), positive predictive 
values (PPV), sensitivity, speci�city, percentage of predicted negatives, and percentage of predicted positives at a 
high speci�city and a high sensitivity operating point chosen for each scenario (see “Operating point selection” 
in Deep learning system development. For evaluating the DLS for each individual type of �nding, we considered 
a “each abnormality versus normal” setup where negatives consisted of all normal CXRs, and positives consisted 
of only the CXRs with that particular �nding. As such, speci�city values were the same across all �ndings in a 
given dataset.

We measured the same set of metrics to evaluate the DLS performance with unseen diseases (TB and COVID-
19). However, the ground truth here was de�ned by either the respective TB or COVID-19 tests, and not whether 
each image contained any abnormal �nding. �us “negative” TB and COVID-19 cases could still contain other 
abnormalities.

Statistical analysis. Con�dence intervals (CI) for all evaluation metrics were calculated using the non-
parametric bootstrap method with n = 1000 permutations at the image level.

To compare the performance of DLS with the radiologists in a DLS-assisted work�ow, non-inferiority tests 
with paired binary data were performed using the Wald test procedure with a 5%  margin37. To correct for multiple 
hypothesis testing, we used Bonferroni correction, yielding α = 0.003125 (one-sided test with α = 0.025 divided 
by 8 comparisons)38.

Class activation mappings. To provide an approximate visual explanation of how the DLS makes predic-
tions on a small subset of our data, we utilized gradient-weighted class activation mapping (Grad-CAM)39 to 
identify the image regions critical to the model’s decision-making process (Fig. 5). Because overlaying activa-
tion maps on an image obscures the original image, a common Grad-CAM visualization shows two images: the 
original image, and the image with the overlaid activation maps. Here, to balance brevity and clarity, we present 
the activation maps as outlines highlighting the regions of interest. �e outlines were obtained by �rst using 
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linear interpolation to upsample the low-resolution Grad-CAM feature maps to the size of the original X-rays, 
resulting in smooth intensity gradations. Next, the majority of the color map is set to a transparent color while a 
narrow band around 60% of the maximal intensity is opaque to visualize an isoline contour. Conceptually, this is 
equivalent to taking a horizontal cross-section of the activated maps’ three-dimensional contour plot, where the 
x and y axes represent the spatial location, and the z-axis represents the magnitude of activation. We found this 
useful as an alternative way to present the Grad-CAM results in a single image. �e purpose of these visualiza-
tions are for explainability: to visualize and understand the locations in�uencing model predictions for a few 
speci�c examples. �e visualizations do not necessarily re�ect an accurate segmentation of the lung abnormality.

Data availability
Many of the datasets used in this study are publicly available. CXR-14 is a public dataset provided by the NIH 
(https:// nihcc. app. box. com/v/ Chest Xray- NIHCC)7,26. �e expert labels we obtained will be made available at 
https:// cloud. google. com/ healt hcare/ docs/ resou rces/ public- datas ets/ nih- chest# addit ional_ labels. TB-1 and 
TB-2 are publicly  available27,28. Other than these public datasets, DS-1, COV-1, and COV-2 are owned by their 
respective institutions. For COV-1 and COV-2 data requests, please contact Dr. Mozziyar Etemadi (mozzi@
northwestern.edu). For additional requests, please contact D.T., P.-H.C.C., or S.S.

Code availability
�e deep learning framework used here (TensorFlow v1.15) is available at https:// www. tenso r�ow. org/, https:// 
github. com/ tenso r�ow/ tenso r�ow/ tree/ r1. 15. �e neural network architecture E�cientNet (r1.15) is available 
at https:// github. com/ tenso r�ow/ tpu/ tree/ r1. 15/ models/ o�c ial/ e�c ientn et. �e training code uses the o�cial 
TensorFlow Estimator API (r2.2) available at https:// github. com/ tenso r�ow/ tenso r�ow/ tree/ r2.2/ tenso r�ow/ 
python/ estim ator. �e Python libraries used for computation and plotting of the performance metrics (SciPy 
v1.2.1, NumPy v1.16.4, and Matplotlib v3.3.4) are available from https:// github. com/ scipy/ scipy/ tree/ maint 
enance/ 1.2.x, https:// github. com/ numpy/ numpy/ tree/ maint enance/ 1. 16.x, and https:// github. com/ matpl otlib/ 
matpl otlib/ tree/ v3.3. 4- doc, respectively.
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