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Abstract

Over the last decade, deep learning (DL) methods have been extremely successful and widely used 

to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud 

record on computational Go. Compared to traditional machine learning (ML) algorithms, DL 

methods still have a long way to go to achieve recognition in small molecular drug discovery and 

development. And there is still lots of work to do for the popularization and application of DL for 

research purpose, e.g., for small molecule drug research and development. In this review, we 

mainly discussed several most powerful and mainstream architectures, including the convolutional 

neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks 

(DAENs), for supervised learning and nonsupervised learning; summarized most of the 

representative applications in small molecule drug design; and briefly introduced how DL methods 

were used in those applications. The discussion for the pros and cons of DL methods as well as the 

main challenges we need to tackle were also emphasized.
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INTRODUCTION

In March 2016, AlphaGo knocked out Lee Sedol, one of the best Go players in the world, 

bringing artificial intelligence (AI) back into public attention overnight, spurring extensive 

interest (1). Compared to the Deep Blue, the chess-playing computer developed by IBM that 
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beat the world champion for the first time back to the 1990s, AlphaGo integrated an 

advanced and innovative architecture called the convolutional neural network (CNN), which 

is one of the most successful implementations of the deep learning (DL) algorithms in neural 

networks (NNs) (2). Benefiting from the rise of big data analysis and the development of 

large-scale computing capabilities, especially the developing of graphics processing unit 

(GPU) computing (3), using deep learning architectures has emerged as the first attempted 

technologies to address AI challenges (4).

Deep learning is the rebranding of a traditional machine learning (ML) algorithm called 

artificial neural network (ANN), which is a network system consisting of connected artificial 

neurons in order to mimic the human central neural system (CNS) (5). In early times, ANNs 

were not ‘deep’ but ‘shallow’; these ANNs were composed of one input layer, one output 

layer, and one hidden layer in between (Fig. 1). The input layer received input data directly 

by putting a feature into each node. Then, each node in the hidden layer received a weighted 

linear combination as input from all the units in the input layer and then used an activation 

function to perform a nonlinear transformation. The output layer did similar work to the 

hidden layer. It received signals from the hidden layer and then used an activation function 

to produce an outcome. With a data stream following this process, those ANNs could be 

considered as feedforward neural networks (FNNs) (5). The optimizations of these 

“shallow” NNs systems were achieved through a process which first calculated the error 

between the output result and the actual value using the back propagation (BP) algorithm 

(6), and then modified the internal adjustable parameters (weights) to minimize the errors 

through gradient descent (7). The universal approximation theorem states that shallow NNs, 

with only one hidden layer containing a finite number of nodes, could approximate any 

continuous function (8). Models with such architectures may be susceptible to overfitting 

when the number of adjustable parameters, such as number of nodes with adjustable weight 

connections in the hidden layer increases. By careful training of shallow networks, 

especially when regularization is applied, overfitting can be minimized (9). Nevertheless, 

more hidden layers could be designed to recognize more abstract patterns from input data, 

with lower layers learning basic patterns and upper layers learning higher-level patterns. 

However, adding more hidden layers and nodes could greatly increase the computation task. 

And those multilayer NNs with many hidden layers may suffer from gradient vanishing 

problem (10), resulting in the difficulty of changing weights to optimize the model training. 

To overcome these situations, in the development of DL models, GPU acceleration is 

commonly applied (3) to tremendously improve the computing power. Meanwhile, the 

network architectures were modified to optimize the initialization and the updating of 

weights, and different transfer functions and regularization techniques were adopted to 

minimize overfitting (11). Examples of those architectures included deep belief network 

(DBN) (12), CNN, and recurrent neural network (RNN) (13). Moreover, in the era of big 

data, DL has a major advantage compared to other traditional shallow ML algorithms, such 

as linear regression, logistic regression (14), support vector machine (SVM) (15), naive 

Bayesian methods (16), and decision tree or random forest algorithm (17). Those algorithms 

are also considered to be shallow in their capability of learning compared to DL algorithms 

(18). Those traditional algorithms have difficulty in processing naturalistic data of raw 

forms, and therefore, hand-engineered features must be extracted to represent the input data, 
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which is crucial but often intractable, and requires expertise in the specific area of input data. 

Deep learning algorithms, on the other hand, belong to the representation learning class, 

which has the capability of handling raw data and automatically extracting useful features as 

the representations needed for further detection or classification (7).

In modern computer-aided small molecular drug discovery and development, ML methods, 

especially traditional learning methods, were widely used for building predictive models 

such as quantitative structure-activity relationship (QSAR) models, quantitative structure-

property relationship (QSPR) models, and so on (17,19–22). In recent years, the new DL 

techniques have been adopted in drug discovery and development, opening a new door to 

computational decision making in pharmaceutical science (Fig. 2). The success of DL 

techniques benefits from the rapid development of the DL algorithms, the progress in high-

performance computing technique, as well as the explosion of chemical information in 

chemical databases (Fig. 3) (23).

The purpose of our review is to help readers to gain an insight into DL applications in the 

field of computational chemistry and chemoinformatics, so that they can use DL in their 

research. As such, the article mainly summarized how those DL applications were built, 

what the architectures of the deep neural network (DNN) models were, and what input 

features they adopted. We also compared DL with traditional ML algorithms and discussed 

the future perspective of DL. Despite the importance of predictive performance of 

mathematical models, the validation and parallel comparisons for those DL applications 

were not emphasized in this review, for the following reasons. One is that accuracy and 

precision vary with datasets, model architectures, hyperparameter configurations, and 

evaluation methods. For example, many researches used coefficient of determination (R2) or 

(RMSE) to assess the performances of their models, while other researchers believed that the 

standard error of prediction (SEP) for a test set might be more reasonable (24). Secondly, 

there have been several review articles discussing the performance of DL models, as well as 

comparing them to models generated using traditional ML algorithms (4,18,25–31).

PRINCIPLE OF DEEP LEARNING

The Development of Deep Learning

The origin of DL can be traced back to the neural network (NN) model proposed by Warren 

McCulloch and Walter Pitts in the 1940s, and the invention of perceptron by Frank 

Rosenblatt (32), both of which were designed to mimic the excitation of neurons in the 

human brain by analogizing the activation of a binary logic gate in the NN. The main idea of 

the early ANN was to define an algorithm to learn the weight vector w, which was used as 

the coefficient of an eigenvalue. Then, an activation function inside the neuron, such as 

Heaviside Step Function or Sigmoid Function, was used to determine whether the neuron 

was activated or not (5,32). Later on, the development of the BP algorithm (33) for ANN 

modeling brought the boom of those statistics-based ML methods for supervised learning. 

The practical framework of DL was proposed by Geoffrey Hinton, Yann LeCun, and other 

scientists in 2006, opening the revolutionary waves of DL and new AI, not only in academia 

but also in industry (7). They developed a novel architecture for multilayer NNs to introduce 

feature learning into DL for abstracting the essentials of the data. Through feature learning, 
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DL methods could automatically extract features from input data with raw format, then 

transform and distribute them into more abstract levels (7). Meanwhile, the rapid 

development in parallel computing techniques and computing hardware, especially the 

emerging application-specific integrated circuit designed for DL study, such as the tensor 

processing unit (TPU) technique (34), ensured that the tremendous computing workload of 

DNNs may no longer be an inaccessible domain (35).

Common Deep Learning Architectures Used in Small Molecular Drug Discovery

There are different types of DL architectures, each of which can recognize patterns and 

extract high-level features in distinct ways based on the structure of the training data. In this 

review, we mainly discussed the mainstream architectures, including the CNN, RNN, and 

the generative networks (7). We briefly introduced how they were used in DL applications 

for small molecule drug design and development.

Convolutional Neural Network—CNN is one of the most representative architectures in 

DL and is widely adopted in many fields such as image and voice recognition, as well as 

natural language processing (NLP). The modern CNN came from the development of the 

neocognitron by Fukushima in the 1980s, which was inspired by the research of receptive 

field in a cat’s visual cortex by Hubel and Wiesel (36,37). When processing visual signals, 

local neuron patterns take responsibility for perceiving particular regions in the sensory 

space (38) and CNN mimics its traits by developing two main characters in the 

convolutional layers: sparse connectivity and shared weights. In the convolutional layer k 
(Fig. 4a), there are two feature maps (A and B), either of which shares the same weight (wa 

or wb). Every pixel in each feature map of the hidden layer k comes from the convolution of 

weight matrix and the local pixel cluster of the layer k-1 (30).

Furthermore, the increase of robustness achieved by pooling layers and the integration of 

dropout technique for regularization make the CNN even more sophisticated (7). For those 

complicated signaling processes, in which the input data have a gigantic number of input 

features and extremely abstract connections, the adoption of CNN could circumvent the 

headache of feature selection by directly importing the input data into the model. There are 

three types of layers commonly used in CNN: the convolutional layer, the pooling layer, and 

the full connection layer (Fig. 4b). Those layers were carefully selected and arranged to 

form the multilayer network (39,40). Depending on the input data modality, different forms 

of layers can be considered. For example, for sequence signals such as language, layers can 

be formed with 1D arrays; for images or audios, layers can be formed with 2D arrays; and 

for videos, layers formed with 3D arrays can be applied (7).

Recurrent Neural Network—RNN is another representative type of architecture in DL. 

Specially aiming for handling sequence data, RNN has been widely used and achieved great 

success in NLP. RNN is different from regular FNNs which follow the feedforward 

architecture. In regular FNNs, there is no connection between hidden nodes in the same 

layer, but only between nodes in adjacent layers (Fig. 1). One of the major shortages of 

FNNs is that they cannot handle sequence problems, because the output is related to not only 

the current input information, but also prior information, for example machine translation. 
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However, RNN can process sequential information by (1) introducing directed cycles into its 

network; (2) affiliating the adjacent hidden nodes with each other; (3) capturing the 

calculated information from preceding time slices; and (4) storing it for the subsequent 

procedure (7,13) (Fig. 5). The one-way data flow stream from input units to output units, 

going through each sequential hidden unit. St represents the transition states of the step t, 
which stands for the memorial units in the network containing all the extracted information 

from the prior data in the sequence. The output from the output units in that step (t) is only 

correlated with the transition state at that moment (St). In the RNN, each hidden layer with 

directed cycles could be unfolded and processed as a traditional NN sharing the same weight 

matrices U, V, W in every same layer.

There are plenty of variations of RNNs. The most common ones are gated recurrent unit 

recurrent neural network (GRURNN) (41), long short-term memory (LSTM) network (42), 

and clockwork RNN (CW-RNN) (43). Among those RNN architectures, LSTM is currently 

the most popular and widely used one in NLP. In NLP, LSTM is often combined with 

distributed representation of word embedding, which is achieved by checking the statements 

and part-of-speech tagging (7,35). Using a specialized function to compute the transition 

state in the hidden layer, the LSTM network is powerful when capturing long-term 

dependencies compared to regular RNNs. In addition, LSTM is also as popular and 

successful as CNN in the image retrieval domain and is usually combined with CNNs for the 

automatic generation of image description in AI (7).

Generative Deep Neural Network—DNNs are not only for processing labeled data in 

supervised learning, but also for analyzing nonlabeled data in unsupervised learning. Deep 

auto-encoder network (DEAN) is one of the most common generative network architectures 

for unsupervised learning (25,30). DEAN consists of an encoder and a decoder, which are 

two symmetric DBNs, a DNN proposed by Hilton et al. in 2006 (12). Those two DBNs are 

usually composed of several restricted Boltzmann machines (RBMs) (44), a bipartite 

network that contains one visible layer and one invisible layer. In RBM, there are symmetric 

connections between every two nodes from different layers, and no connection between 

nodes from the same layer. The function of a simple auto-encoder can be regarded as the 

compression of data which can then be decompressed and recovered based on a BP 

algorithm with a minimal loss of information (33). Thus, DAEN is also considered as the 

method for dimensionality reduction because of its capacity of reducing the redundancy. In 

this case, DAEN can be used specifically for feature extraction, in order that the reduced 

features can be used to train a classification model using supervised learning algorithms 

(45). This paradigm may be valuable in the future development of DL applications.

More recently, generative adversarial networks (GANs), another type of DL algorithms for 

unsupervised learning, have been developed and widely used in the image synthesis, image-

to-image translation, and super-resolution (46). It was motivated by the underlying 

probability density or probability mass function of observation data. Generator (G) is 

responsible for making nonrealistic images from random vectors to confuse the other 

network which known as discriminator (D). When D receives both forgeries and real 

(authentic) images, it will tell them apart. In that module, G and D compete with each other 

and are trained simultaneously until both of them find the optimal parameters. Under those 
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parameters, the G maximizes its classification accuracy and D maximizes its discrimination 

accuracy. The networks can be implemented by multilayer networks consisting of fully 

connected GANs, convolutional GANs, conditional GANs, GANs with inference models, 

and adversarial auto-encoder (AAE).

Regularization and Dropout

Since over-fitting is a serious problem in multilayer DNNs, a broad range of techniques for 

regularizing have been developed to minimize the over-fitting problem. Dropout is one of 

the common ways to regularize NNs by dropping out units (hidden and visible) in NNs (47). 

The key idea of dropout is to add noise to its hidden units randomly; therefore, preventing 

over-fitting and improving test performance. Those DNNs which adopt dropout techniques 

can be trained through stochastic gradient descent (SGD) apparently like regular DNNs. 

Similarly, each hidden unit in an NN adopted dropout must learn to work with a randomly 

chosen sample of other units, which makes them more robust rather than relying on other 

hidden units to correct its mistakes.

Bayesian regularized artificial neural network (BRANN) is another development that 

introduced regularization into NN architecture. By using ridge regression in the 

mathematical process of model training, nonlinear regression can be converted into a “well-

posed” statistical problem in the BRANN (48). By using BRANN, the cross-validation step 

for assessing the model, which is usually tedious and time-consuming in DL modeling, may 

also be omitted. Automatic relevance determination (ARD) of the input features can be 

applied in BRANN to help calculate several effective network parameters or weights, which 

will cause the removal of parameters with smaller weights. In such way, those indices which 

are irrelevant or highly correlated are neglected, and variables which are the most important 

for modeling are highlighted. Those two characteristics are very beneficial for 

chemoinformatics and QSAR/QSPR researches, because there are usually too many features 

to describe one molecule.

RESOURCES USED FOR DEVELOPING DEEP LEARNING APPLICATION

With the rapid development of the DL technique, many open source packages and libraries 

for developing DL framework are available for individual developers and small groups to 

explore the DL—they may not need to develop their own DL platform. Most of these 

packages have well-established built-in codes for GPU computing with detailed tutorials and 

annotations. We have listed and briefly summarized the representative packages with their 

link on Table I.

In addition to the packages and tools, the dataset, especially the benchmark dataset, is 

another essential part of constructing a model. The development of DL benefited from the 

breakthrough of CNN in computer vision, which was mainly facilitated by the benchmark 

dataset ImageNet and the annual competition ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) (49). In the drug discovery field, the Merck Kaggle challenge using a 

Merck-activity dataset, as well as the Tox21 challenge using its benchmark datasets greatly 

speeded up the application of ML methods in the QSAR/QSPR studies (50,51). Compared to 

traditional ML methods, DL methods have the capacity of processing “big data.” Therefore, 
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the need for large standardized datasets for DL modeling is dire. Recently, Wu et al. 
introduced their large-scale benchmark package, MoleculeNet, for molecular ML study (52). 

The MoleculeNet dataset integrated multiple public molecular datasets, covering quantum 

mechanics data, physical chemistry data, biophysics data, and physiology data. In addition, 

all the datasets, established metrics for model evaluation, and implementations for calculated 

molecular features were packaged together with the DL modeling toolkits in their python 

library called DeepChem. Besides, Lenselink et al. published their benchmark bioactivity 

dataset generated from ChEMBL database (53), which could be another choice of a 

standardized dataset for developing DL models (54).

APPLICATIONS USING DEEP LEARNING IN SMALL MOLECULE DRUG 

DESIGN

DL models have been reported in three major areas in computational chemistry—predicting 

the drug-target interactions (DTIs), generating novel molecules, and predicting absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) properties for translational 

researches (55). Like other ML algorithms, DL undergoes more and more successful 

applications in building QSAR/QSPR models (Table II). As early as 2012, Hilton’s group 

won the Merck Kaggle challenge (https://www.kaggle.com/c/MerckActivity) using their DL 

models, opening a new chapter of applications using DL methods on predicting chemical 

compound activity and property. Similarly, Wang and Zeng published their DTI-

discriminative model using RBM, the commonly recognized first generation of DNNs (56). 

In the following year, Dahl et al. from Hilton’s group and Google Inc. published several 

papers on DL-based QSAR modeling. They tried multiple tasks and different features using 

DNNs with various hyper-parameters and started to use GPUs for a benchmark test (57–59). 

In 2014, Wang et al. reported their DIT-predictive model using pairwise-input NNs, offering 

a new reasonable idea of adding target information into the model (60). To mimic the 

interactions between compounds and proteins, separated groups of weights were assigned to 

the compound features and protein features, and then fed into the first hidden layer, 

respectively. In 2015, Wallach et al. introduced their DL models, AtomNet, to predict 

binding affinity for selecting active compounds for drug discovery (61). AtomNet was 

claimed to be the first DL model adopting CNN for small molecular binding affinity 

prediction. In AtomNet, a novel approach to combine both ligand and target structure 

information was used. However, AtomNet required the 3D structures for both ligand and 

target protein containing the location of each atom involved in the interaction at the binding 

site of the target. Recently, Wan and Zeng published their new model for compound-protein 

interaction prediction using DL methods, in which they adopted a widely used technique in 

NLP studies called feature embedding (62). In their model, both the ligand information 

(molecular fingerprints) (63) and protein sequence were embedded into multidimensional 

vectors. Following the embedding process, a sequence of fully connected layers which 

consisted of rectified linear units (ReLUs) was constructed (64).

Besides predicting target selectivity and DTIs, DL methods have been adopted to predict 

ADMET properties. In 2013, Lusci et al. reported their model for predicting aqueous 

solubility using DL architecture (65). They segmented small molecules into atoms and 
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bonds to build a digraph by sequencing those atoms and linking them using their 

corresponding bonds, and then put the contracted graph into an RNN model. In 2015, Shin 

et al. published their model developed using DL method to predict the absorption potential 

of small molecules (66). In vitro permeability data of 663 small molecules from the human 

colorectal carcinoma cell line (Caco-2) were used as training data and 209 molecular 

descriptors were calculated using CDK toolkits based on their 2D structures (http://

www.rguha.net/code/java/cdkdesc.html). Without using any specialized architecture, four 

layers of fully connected neural networks were generated to extract and transform the input 

information and finally classify the absorption potential of the input compound. DL methods 

were also effective in predicting the toxicity of small molecules in the Tox21 Data Challenge 
launched by the NIH, EPA, and FDA. Mayr and colleagues reported their DL-based models 

for toxicity prediction in 2015 (67). Multiple types of molecular features, such as different 

fingerprints and chemical properties, were tested and compared in their study. Forty 

thousand input features and a huge number of hidden layers were adopted in their models. 

The average performance of their DL-based models was good in multitask testing, showing 

that overall the DL algorithm was quite robust regarding training data, parameters, and tasks. 

Recently, Pereira et al. proposed their DL-based protocol for docking-based virtual 

screening (68). In their model, they used both ligand information and the interactive amino 

acids from docking to optimize the docking results. The input data were the distributed 

representation (69) of the compound-protein complexes generated using embedding 

technique, followed by a three-layer convolutional neural network.

A lot of the earlier DL attempts in the drug discovery field had been using human-

engineered features like molecular descriptors and fingerprints. In such cases, the 

characteristic of DL as representation learning, which allows DL to automatically engineer 

molecular features directly from data, is largely missing. Yet, that is possibly the most 

important aspect that distinguishes DNNs from traditional ML algorithms. It is nice to see 

that more recent publications have demonstrated that learning directly on “unprocessed” 

chemical data may also be a viable strategy. A work using “unprocessed” chemical data on 

convolutional neural networks was published by Yao and Parkhill (70). Notably, they used 

the electron density from the 3D small molecules, rather than 2D molecular fingerprints or 

physical chemical properties, as the input data and developed a 3D convolutional neural 

network model to predict the Kohn-Sham kinetic energy of hydrocarbons. Bjerrum reported 

his study on generating a DL model using LSTM-cell-based NN (71). The innovative part of 

his research was that he used SMILES (72) enumeration, a single-line text uniquely 

representing one molecule, as the raw input data in the model. Another research from Goh et 
al. tried to use 2D molecule drawing images of molecules as the input data of a CNN model 

to predict chemical properties (73,74). They also compared their method to a CNN model 

using conventional molecular features as the input features, giving the result that the model 

constructed using their image-based input features slightly outperformed conventional 

molecular features.

More recently, with the development of unsupervised learning and generative NNs, the 

application of those generative models using DL algorithms has seen progress. Kadurin et al. 
developed a seven-layer generative AAE model for screening compounds (75). Different 

from a regular screening method using the QSAR model, their model extracted features from 
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the input molecular fingerprints of 6252 training molecules and generated new fingerprint 

vectors for potential selective compounds using a nonsupervised generative model. Then, 

they screened those selected output vectors against a large library of 72 million compounds 

from PubChem (76) and predicted 320 compounds as potential compounds, in which 69 

were identified as true hits experimentally. Besides selecting novel compounds using auto-

encoders, there were several attempts generating novel compounds using other deep 

generative networks. Segler et al. introduced their generative models for designing novel 

focused library using RNNs, achieving a satisfied performance to complete the de novo drug 

design cycle (77). Similar methods were developed for the de novo library design by 

Olivecrona et al., with the novelty of adding reinforcement learning (RL) (35) into the 

method (78). Guimaraes et al. adopted GANs, as well as RL to construct a generative model 

for generating different types of molecules using their SMILES data, giving a novel idea of 

design novel compounds using state-of-the-art unsupervised DL methods (79).

DISCUSSION AND FUTURE PROSPECTIVE

Deep Learning Versus Traditional Machine Learning

As the state-of-the-art ML algorithms, DL algorithms have been challenged by comparing to 

other shallow ML algorithms (18). Winkler et al. recently reported their comparison between 

their Bayesian regularized neural network (BNN) models and the DL models generated by 

Ma et al. using the same KAGGLE dataset from Merck (57). They showed that shallow NNs 

with one single hidden layer could perform as well as DNNs with more hidden layers, given 

sufficient training data in QSAR or QSPR modelling (11). A similar conclusion was 

generated from Capuzzi et al. from the comparison using Tox21 data (80). It appears that 

those results were consistent with the universal approximation theorem (8), inferring that DL 

algorithms may not have superiority over regular shallow NNs. Those results may overturn 

our preconception that novel DL should be better than traditional shallow ML methods. In 

fact, for supervised learning with the final purpose of classification or regression, both DL 

and shallow learning have their own places (11,22).

Schmidhuber et al. suggested that the primary deficiency of most traditional ML methods is 

that they have a limited ability to simulate a complicated approximation function and 

generalize to an unseen instance (35). NNs have advances in QSAR/QSPR modeling (4), 

and the universal approximation theorem proves its advanced capacity on approximation. 

Shallow NNs can generalize to new data very well in most cases, given sufficient diverse 

data. Given the same descriptors and training data, both types of NN generate similar quality 

models. However, deep NNs can generate complex abstractions of the descriptors. As 

mentioned, the essential features of DL methods that distinguish them from shallow NNs are 

not only the emphasis on the depth of the network, but also the emphasis on feature learning. 

Compared to the shallow NNs that need to “manually” select the features, DL methods can 

learn features from data by constructing nonlinear network models to extract latent 

information of the big data. In the early QSAR/QSPR studies, descriptors were designed 

manually, which did not capture all the features impacting the QSAR/QSPR response 

surface (11). As a result, a tiny change in the values of those descriptors could lead to a 

significant change in the activity. Such phenomena are called activity cliff (81), which is a 
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very common concern in QSAR modeling. The presence of activity cliffs is also highly 

correlated with the distribution of the activity responding surface used for training the 

model, which is referring to not only small molecular feature learning, but also protein target 

feature extraction. Researches have been done to show that the addition of protein features 

makes the DL model perform better (31,54). From the aspect of DL modeling, both the 

choice of different DL architectures and the configuration of hyper-parameters are very 

important for achieving good performance.

Besides, other differences between DL methods and traditional shallow ML methods were 

explored by other researchers. Lenselink et al. found that DL methods and traditional 

shallow ML methods performed similarly on randomly split data; however, they had 

significant differences when the data were split by congeneric chemical series (such as by 

the nature of publishing) (54). They thought that compounds published together were 

usually very similar in chemical structure and splitting in such a way could make the 

validation more in line with the experiments performed.

The Limitation of Deep Learning and Future Perspective

Because of the advance of feature learning, DL can reach a high accuracy of identification 

under the premise that the training set should contain a tremendous amount of data. With 

very limited data, the DL techniques cannot achieve an unbiased estimate of the 

generalization so that they may not be as practical as some traditional shallow ML methods 

(11,35). Also, with the rapid increase of time complexity because of the complication of the 

network architecture, stronger hardware facilities and advanced programming skills are 

required to grant the feasibility and effectiveness of DL methods. In addition, although DL 

methods usually have outstanding performance in practice, the tuning of the hyper-

parameters in DL modeling is often tricky. Also, it is hard to know how many hidden layers 

and nodes could be enough to establish the best simulation without redundancy for a specific 

DL modeling. Finally, the strategy for unsupervised learning in DL is inspiring but still 

falling far behind (35). In the real-world application, especially in drug discovery, most of 

the data are nonlabeled data, with plenty of information contained. Exploring and 

developing novel unsupervised learning methods using DL methods, as well as mining 

useful information from those data are still difficult.

Although DL methods have been successfully applied in many areas, the adaptation of the 

algorithms is still a problem for the chemistry-centric modeling in small molecule drug 

discovery, especially for RNNs and CNNs, which are powerful but have higher restrictions 

on the format of input data. On the other hand, DL systems are considered as a “black box” 

systems; thus, they are hard for interpretation and have limited power to engage in logical 

reasoning. Those factors limit the application and approbation of DL in many domains such 

as clinical data analysis. In such cases, the interpretation of a structure-activity relationship 

(SAR) study is more practical from the descriptor perspective. However, regular features 

commonly used by the traditional ML models in current chemoinformatics studies to 

describe the small molecules, such as molecular fingerprints (21,63,82,83), physicochemical 

properties, topological properties, and thermodynamics properties (70), are not fully 

appropriate to be used in DL architecture (84). Thus, the development of more interpretable 
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descriptors is dire. Specifically, since DL methods belong to representation learning thT can 

automatically abstract features from raw data, there are two very important problems to DL 

modeling: (1) how to optimize DL architectures to abstract useful features and (2) how to 

interpret those features. As discussed above, several recent studies started to use chemical 

data in a raw format to construct their DL models, indicating that conventional feature 

engineering may no longer be necessary for chemistry.

Beyond that, compared to the amount of big data for training the DL models such as the 

AlphaGo, the size of chemoinformatics databases for DL modeling is far behind. In spite of 

the size of the major database, like ChEMBL, which has reached the magnitude of a million, 

the actual available data for building a specific model is still limited (53). An increasing 

number of researchers are changing their strategies from chemistry-centric modeling to 

combined methods, which not only consider the chemical features of the small molecules, 

but also include target protein information, as well as other types of data, such as the DTI 

network (59,85,86).

Overall, small molecule drug discovery will become more and more complex. Designed for 

intricate simulation, DL should have the capability to handle that complexity. Also, with DL 

methods, we should not restrict ourselves in the traditional predictions on biological 

activities, ADMET properties, or pharmacokinetic simulations, but it may also be possible to 

integrate all the data and information systematically and achieve a new level of AI in drug 

discovery.
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Fig. 1. 
Architecture of artificial neural networks
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Fig. 2. 
Comparison of number of publications using different machine learning methods in small 

molecule drug discovery in recent one decade (SVM: support vector machine, ANN: 

artificial neural network, Bayesian: Bayesian methods including naive Bayes classifier and 

Bayesian network)
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Fig. 3. 
The explosive growth of published bioactivity data (a) and chemicals (b) for small molecule 

drug discovery in ChEMBL database (based on ChEMBL database releases from 2010 to 

2017)
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Fig. 4. 
a Structure of convolutional layer. b Architecture of convolutional neural network (LeNet-5)
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Fig. 5. 
Framework of basic recurrent neural network. Recurrent neural network consists of input 

units (x, the vector representing the matrix of input data) and hidden units (s, the vector 

representing the matrix in the hidden layer), and output units (o, the vector representing the 

matrix of output data). U, V, and W are the weight matrixes for the transition from x to s, s 
to s, and s to o, respectively
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Table I

Summary of Current Deep Learning Packages

Package Name Platform/API Resources

TensorFlow Python https://www.tensorflow.org/

Torch Lua http://torch.ch/

Theano Python http://deeplearning.net/software/theano/

Caffe C++/Python http://caffe.berkeleyvision.org/

DL4J Java https://github.com/deeplearning4j/deeplearning4j

Paddle Python http://paddlepaddle.org/

Keras Python https://keras.io/

CNTK C++/Python https://www.microsoft.com/en-us/cognitive-toolkit/

MxNet R/Python/Julia http://mxnet.io/

AlexNet MATLAB https://www.mathworks.com/products/matlab.html

PyTorch Python http://pytorch.org/

DeepChem Python https://deepchem.io/
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Table II

Summary of recent representative applications of DL in small molecular drug discovery

Method Prediction Dataset Features Reference

RNN Compound aqueous solubility Multiple dataset with size of 1144, 
1026, 74, 125

Molecular graph Lusci et al. (65)

DNN Drug target interactions 2710 ligands & 836 targets Molecular descriptors and 
protein features

Wang et al. (60)

DNN Drug target interactions MATADOR dataset and STITCH 
dataset

Molecular descriptors Wang and Zeng 
(56)

DNN permeability 663 + 209 chemical compounds Molecular descriptors Shin et al. (66)

DNN Toxicity Tox21 dataset Molecular fingerprints and 
descriptors

Unterthiner et al. 
(67)

RNN Compound protein interaction ChEMBL database; BindingDB Molecular fingerprints and 
protein sequence

Wang et al. (62)

CNN Biological Activity ChEMBL database, DUDE dataset Molecular Graph (AtomNet) Wallach et al. (61)

CNN Virtual Screening DUDE dataset Molecular Graph and docking 
result

Pereira et al. (68)

Auto-Encoder Virtual Screening 6252 Fingerprints Kadurin et al. (75)

CNN Biological Activity/Toxicity 41193/8014 2D chemical structure image Goh et al. (73, 74)

RNN Biological Activity 756 SMILES Bjerrum (71)

DNN Biological Activity ChEMBL database Molecular descriptors and 
fingerprints

Lenselink et al. 
(54)

RNN Generating focused molecular 
libraries

ChEMBL database SMILES Segler et al. (77)

RNN Generating novel molecules ChEMBL database SMILES Olivecrona et al. 
(78)

Gan Generating novel molecules Multiple datasets SMILES Guimaraes et al. 
(79)

CNN the Kohn-Sham kinetic energy 3D electron density Fingerprints Yao and Parkhill 
(70)
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