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Abstract—Electrocardiography (ECG) is a very common,
non-invasive diagnostic procedure and its interpretation
is increasingly supported by algorithms. The progress in
the field of automatic ECG analysis has up to now been
hampered by a lack of appropriate datasets for training
as well as a lack of well-defined evaluation procedures to
ensure comparability of different algorithms. To alleviate
these issues, we put forward first benchmarking results
for the recently published, freely accessible clinical 12-lead
ECG dataset PTB-XL, covering a variety of tasks from dif-
ferent ECG statement prediction tasks to age and sex pre-
diction. Among the investigated deep-learning-based time-
series classification algorithms, we find that convolutional
neural networks, in particular resnet- and inception-based
architectures, show the strongest performance across all
tasks. We find consistent results on the ICBEB2018 chal-
lenge ECG dataset and discuss prospects of transfer learn-
ing using classifiers pretrained on PTB-XL. These bench-
marking results are complemented by deeper insights into
the classification algorithm in terms of hidden stratification,
model uncertainty and an exploratory interpretability anal-
ysis, which provide connecting points for future research
on the dataset. Our results emphasize the prospects of
deep-learning-based algorithms in the field of ECG analy-
sis, not only in terms of quantitative accuracy but also in
terms of clinically equally important further quality metrics
such as uncertainty quantification and interpretability. With
this resource, we aim to establish the PTB-XL dataset as
a resource for structured benchmarking of ECG analysis
algorithms and encourage other researchers in the field to
join these efforts.

Index Terms—Decision support systems, electrocardio
graphy, machine learning algorithms.

Manuscript received July 1, 2020; revised August 26, 2020; accepted
September 5, 2020. Date of publication September 9, 2020; date of
current version May 11, 2021. This work was supported by the Bun-
desministerium für Bildung und Forschung through the BIFOLD - Berlin
Institute for the Foundations of Learning and Data Grant 01IS18025A
and Grant 01IS18037A and by the EMPIR project 18HLT07 MedalCare.
(Nils Strodthoff and Patrick Wagner contributed equally to this work.)
(Corresponding authors: Nils Strodthoff; Wojciech Samek.)

Nils Strodthoff, Patrick Wagner, and Wojciech Samek are with the
Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany (e-mail:
nils.strodthoff@hhi.fraunhofer.de; patrick.wagner@hhi.fraunhofer.de;
wojciech.samek@hhi.fraunhofer.de).

Tobias Schaeffter is with the Physikalisch-Technische Bundesanstalt,
and Technical University Berlin, 10587 Berlin, Germany, and also
with King’s College London, London WC2R 2LS, U.K. (e-mail:
tobias.schaeffter@ptb.de).

Digital Object Identifier 10.1109/JBHI.2020.3022989

I. INTRODUCTION

C
ARDIOVASCULAR diseases (CVDs) rank among dis-

eases of highest mortality [1] and were in this respect only

recently surpassed by cancer in high-income countries [2]. Elec-

trocardiography (ECG) is a non-invasive tool to assess the gen-

eral cardiac condition of a patient and is therefore as first-in-line

examination for diagnosis of CVD. In the US, during about 5%

of the office visits an ECG was ordered or provided [3]. In spite

of these numbers, ECG interpretation remains a difficult task

even for cardiologists [4] but even more so for residents, general

practitioners [4], [5] or doctors in the emergency room who have

to interpret ECGs urgently. A second major application area that

will even grow in importance in the future is the telemedicine,

in particular the monitoring of Holter ECGs. In both of these

exemplary cases medical personnel could profit from significant

reliefs if they were supported by advanced decision support

systems relying on automatic ECG interpretation algorithms.

During recent years, we have witnessed remarkable advances

in automatic ECG interpretation algorithms. In particular, deep-

learning-based approaches have reached or even surpassed

cardiologist-level performance for selected subtasks [6]–[10] or

enabled statements that were very difficult to make for cardiolo-

gists e.g. to accurately infer age and sex from the ECG [11]. Due

to the apparent simplicity and reduced dimensionality compared

to imaging data, also the broader machine learning community

has gained a lot of interest in ECG classification as documented

by numerous research papers each year, see [12] for a recent

review.

We see deep learning algorithms in the domain of computer

vision as a role model for the deep learning algorithms in the field

of ECG analysis. The tremendous advances for example in the

field of image recognition relied crucially on the availability of

large datasets and the competitive environment of classification

challenges with clear evaluation procedures. In reverse, we see

these two aspects as two major issues that hamper the progress in

algorithmic ECG analysis: First, open ECG datasets are typically

very small [13] and existing large datasets remain inaccessible

for the general public. This issue has been at least partially

resolved by the publication of the PTB-XL dataset [14], [15]

hosted by PhysioNet [16], which represents the to-date largest

freely accessible ECG dataset. In addition, many of the freely

accessible databases contain only single lead recordings, which

makes comprehensive diagnosis and clinical validation difficult.

Large and comprehensive databases with 12-lead recordings,

however, are rather an exception such as [17] focusing on
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arrhythmia, which is why the underlying data set is of great

importance for the development of algorithmic solutions. Sec-

ond, the existing datasets typically provide only the raw data,

but there exist no clearly defined benchmarking tasks with

corresponding evaluation procedures. This severely restricts the

comparability of different algorithms, as experimental details

such as sample selection, train-test splits, evaluation metrics and

score estimation can largely impact the final result. To address

this second issue, we propose a range of different tasks show-

casing the variability of the dataset ranging from the prediction

of ECG statements to age and sex prediction. For these tasks,

we present first benchmarking results for deep-learning-based

time series classification algorithms. We use the ICBEB2018

dataset to illustrate the promising prospects of transfer learning

especially in the small dataset regime establishing PTB-XL as a

pretraining resource for generic ECG classifiers, very much like

ImageNet [18] in the computer vision domain.

Finally, assessing the quantitative accuracy is an important

but by far not the only important aspect for decision support

systems in the medical domain. To develop algorithms that create

actual clinical impact, the topics of interpretability, robustness

in a general sense and model uncertainty deserve particular

attention. Such insights, which go beyond benchmarking results,

are discussed in the second part of the results section highlighting

various promising directions for future research. In particular,

we present a first evaluation of the diagnosis likelihood infor-

mation provided within the dataset in comparison to model

uncertainty as well as an outlook to possible applications of

interpretability methods in the field. To summarize, our main

contributions in this article are the following:
� We propose different benchmarking tasks on the recently

published PTB-XL dataset [15] ranging from ECG state-

ment prediction from different subsets of ECG statements

and label granularities to age and sex prediction within a

structured evaluation methodology.
� We implement and adapt different state-of-the-art deep-

learning-based time series classification algorithms and

adapt recent image classification algorithms to the ECG

context including a new resnet-adaptation (xresnet1d101)

that turns out to be the best-performing algorithm across

all tasks. For full reproducibility, we release the full source

code, trained models and the benchmarking infrastructure

in a corresponding code repository [19].
� We provide the first reliable assessment of transfer learn-

ing in the ECG context demonstrating the promising

prospects of transfer learning from PTB-XL to other ECG

classification datasets in the small dataset regime.
� We provide evidence for the phenomenon of hidden strat-

ification, a first evaluation of the diagnosis likelihood

information provided within the dataset in comparison

to model uncertainty and present an outlook to possible

applications of interpretability methods in the field.

II. MATERIALS & METHODS

A. PTB-XL and IBEB2018 Datasets

In this section, we briefly introduce the PTB-XL dataset [15]

that underlies most experiments presented below. The PTB-XL

Fig. 1. Summary of the PTB-XL dataset [15] in terms of diagnostic
superclasses, where NORM: normal ECG, MI: myocardial infarction,
CD: conduction disturbance, STTC: ST/T-changes, HYP: hypertrophy.

dataset comprises 21837 clinical 12-lead ECG records of 10

seconds length from 18885 patients, where 52% were male and

48% were female. The ECG statements used for annotation are

conform to the SCP-ECG standard [20] and were assigned to

three non-mutually exclusive categories diag (short for diagnos-

tic statements such as “anterior myocardial infarction”), form

(related to notable changes of particular segments within the

ECG such as “abnormal QRS complex”) and rhythm (related to

particular changes of the rhythm such as “atrial fibrillation”). In

total, there are 71 different statements, which decompose into

44 diagnostic, 12 rhythm and 19 form statements, 4 of which

are also used as diagnostic ECG statements. For diagnostic

statements also a hierarchical organization into five coarse super-

classes and 24 sub-classes is provided, see Fig. 1 for a graphical

summary in terms of diagnostic superclasses. For further details

on the dataset, the annotation scheme, and other ECG datasets we

refer the reader to the original publication [15]. To summarize,

PTB-XL does not only stand out by its size as the to-date largest

publicly accessible clinical ECG dataset but also through its rich

set of ECG annotations and further metadata, which turns the

dataset into an ideal resource for the training and evaluation of

machine learning algorithms. Throughout this paper we use the

recommended train-test splits provided by PTB-XL [15], which

consider patient assignments and use input data at a sampling

frequency of 100 Hz.

Beyond analyses on the PTB-XL dataset itself, we see fur-

ther application of it as generic pretraining resource for ECG

classification task, in a similar way as ImageNet [18] is com-

monly used for pretraining image classification algorithms.

One freely accessible dataset from the literature that is large

enough to reliably quantify the effects of transfer learning is

the ICBEB2018 dataset, which is based on data released for the

1st China Physiological Signal Challenge 2018 held during the

7th International Conference on Biomedical Engineering and

Biotechnology (ICBEB 2018) [21]. It comprises 6877 12-lead

ECGs lasting between 6 and 60 seconds. Each ECG record is

annotated by up to three statements by up to three reviewers

taken from a set of nine classes (one normal and eight abnormal

classes, see Fig. 2). We use the union of labels turning the dataset

into a multi-label dataset. As the original test set is not available,

we divide the original training sets into 10 folds by stratified

sampling preserving the overall label distribution in each fold

following [15].
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Fig. 2. Summary of the ICBEB2018 dataset [21] in terms of ECG
statements, where RBBB/LBBB: right/left bundle branch block, AFIB:
atrial fibrillation, 1AVB: first-degree AV block, NORM: normal ECG,
VPC: ventricular premature complex, STD_: non-specific ST depres-
sion, STE_: non-specific ST elevation.

By default for both datasets, we train a classifier from scratch

by training on the first eight folds using the ninth and tenth fold

as validation and test sets, respectively.

B. Time Series Classification Algorithms

In this work, we address different prediction task based on

ECG data,
� inferring diagnostic ECG statements at three different

label granularites (multilabel classification),
� inferring ECG statements related to the rhythm of the ECG

signal (multilabel classification),
� inferring ECG statements related to the form of the signal

(multilabel classification),
� inferring a subject’s sex (binary classification),
� inferring a subject’s age (regression),

all of which can be broadly characterized as time series clas-

sification/regression tasks. For benchmarking different classifi-

cation algorithms, we focus on algorithms that operate on raw

multivariate time series data. Deep learning approaches for time

series classification are covered in a variety of recent, excellent

reviews [22]–[24].

We evaluate adaptations of a range of different algorithms

from the literature that can be broadly categorized as convo-

lutional neural networks and recurrent neural networks, both

operating on the raw ECG signal, as well as feature-based ap-

proaches. The convolutional neural networks can be further sub-

divided into standard feed-forward architectures, resnet-based

architectures and inception-based architectures. Standard feed-

forward architectures include fully convolutional networks [25]

(fcn_wang) or Deep4Net [26] (schirrmeister), which is often

used for EEG classification. Resnet-based architectures were

proposed for time series classification already a while ago, see

e.g. [25] (resnet1d_wang), and were successfully applied in

different large-scale studies [10], [27]. Here we also propose

and evaluate a range of additional one-dimensional adaptations

of resnet-based architectures inspired by recent improved resnet-

architectures such as xresnets [28] (xresnet1dxxx). For compar-

ison, we also adapt standard resnet [25], [29] (resnet1d_wang,

resnet1dxxx) and wide resnet [30] (wrn1d_22) architectures. As

final convolutional architecture we report on InceptionTime [31]

(inception1d), an adaptation of the popular inception architec-

ture to the time series domain. In general, our implementations

follow the implementations of the architectures described in the

original publications and reference implementations as closely

as possible. The most significant modification in our implemen-

tations is the use of a concat-pooling layer [32] as pooling layer,

which aggregates the result of a global average pooling layer and

a max pooling layer along the feature dimension. For resnets, we

slightly enlarge the kernel sizes to 5 as this slightly improved the

performance, consistent with observations in the literature [25],

[31]. All convolutional models then use the same fully connected

classification head with a single hidden layer with 128 hidden

units, batch normalization and dropout of 0.25 and 0.5 at the

first/second fully connected layer, respectively. As for recurrent

neural networks, we consider unidirectional and bidirectional

LSTMs [33] and GRUs [34] (lstm,gru,lstm_bidir,gru_bidir)

with two layers and 256 hidden units, whose outputs are aggre-

gated using a concat pooling layer [35]. For reasons of clarity,

we only report the performance for selected representatives

including the best-performing method for each group. Typically

the differences within the different groups are rather small.

For completeness, the full results including all architectures are

available in the accompanying code repository [19]. Finally, in

addition to single-model-performance, we also report the per-

formance of an ensemble formed by averaging the predictions of

all considered models. The ensemble results are only supposed

to serve as rough orientation as the focus of this work is on

single-model performance.

With the sole exception of sex prediction, where we use

mean-squared error as loss functions, we optimize binary cross-

entropy, which is appropriate for multi-label classification prob-

lems. We use 1-cycle learning rate scheduling during train-

ing [36] and the AdamW optimizer [37]. During finetuning

a pretrained classifier for transfer learning from PTB-XL to

ICBEB2018, we use gradual unfreezing and discriminative

learning rates [32], [35] to avoid catastrophic forgetting i.e.

overwriting information captured during the initial training

phase on PTB-XL. Deep-learning models were implemented

using PyTorch [38], fast.ai [32] and Keras [39]. We release our

implementations in the accompanying code repository [19].

During training, we follow the sliding window approach that

is commonly used in time series classification, see e.g. [24], [26],

[40], [41]. Here, the classifier is trained on random segments of

fixed length taken from the full record. This allows to easily

incorporate records of different length and effectively serves as

data augmentation. During test time, we use test time augmenta-

tion. This means we divide the record into segments of the given

window size that overlap by half of the window size and obtain

model predictions for each of the segments. These predictions

are then aggregated using the element-wise maximum (or mean

in case of age and sex prediction) in order to produce a single

prediction for the whole sample. This procedure considerably

increases the overall performance compared to the performance

on random sliding windows without any aggregation. If not

mentioned otherwise, we use a fixed window size of 2.5 seconds.

Feature-based approaches, where a classifier is trained on

precomputed statistical features such as Fourier or Wavelet

coefficients have been the predominant approach in the ECG
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analysis literature until fairly recently, see [42], [43] for reviews.

Similar to the image domain, there is increasing evidence that

deep learning algorithms trained in an end-to-end fashion are

able to outperform feature-based approaches [41], [44]. To the

best of our knowledge, there is no public implementation of a

state-of-the-art feature-based algorithm for multi-channel ECG

classification. Nevertheless, we wanted to present a feature-

based approach for comparability and loosely followed [45] and

trained a classifier on wavelet features. More specifically, we

compute a multilevel (5 level) 1 d discrete wavelet transform

(Daubechies db6) for each lead independently leveraging the

implementation from [46]. From the resulting coefficients we

compute a variety of statistical features such as entropy, 5%,

25%, 75% and 95% percentiles, median, mean, standard de-

viation, variance, root of squared means, number of zero and

mean crossings. Different from [45], the features were then

used to train a shallow neural network with a single hidden

layer (Wavelet+NN) in order to be able to address multi-label

classification problems with a large number of classes in a

straightforward manner.

To encourage future benchmarking on this dataset, we release

our repository [19] used to produce the results presented below

along with instructions on how to evaluate the performance

of custom classifiers in this framework. Finally, we would

like to stress that the deep learning models were trained on

the original time series data without any further preprocessing

such as removing baseline wander and/or filtering, which are

commonly used in literature approaches but introduce further

hyperparameters into the approach.

III. BENCHMARKING RESULTS ON PTB-XL AND ICBEB2018

A. Tasks and Metrics

PTB-XL comes with a variety of labels and further metadata.

The presented experiments in this section serve two purposes:

on the one hand, we provide first benchmarking results for future

reference and, on the other hand, they illustrate the versatility of

analyses that can be carried out based on the PTB-XL dataset. In

Section III-B, we evaluate classifiers for different selections and

granularities of ECG statements, which represents the core of our

analysis. It is complemented by Section III-C, where we validate

our findings on the ICBEB2018 dataset and investigate aspects

of transfer learning using PTB-XL for pretraining. Finally, we

illustrate ways of leveraging further metadata within PTB-XL

to construct age and sex prediction models, see Section III-D.

As primary performance metric for all classification exper-

iments, we report the macro-averaged area under the receiver

operating characteristic curve (henceforth referred to as AUC),

which is obtained by averaging class-wise AUCs over all classes.

Here, we focus on metrics that can be evaluated based on soft

classifier outputs, where no thresholding has been applied yet, as

this allows to get a more complete picture of the discriminative

power of a given classification algorithm. In addition, it disen-

tangles the selection of an appropriate classifier from the issue

of threshold optimization, that will anyway have to be adjusted

to match the clinical requirements rather than to optimize a

certain global target metric. In our setting, macro-averaging is

preferred, since we expect class imbalance and do not want

the score to be dominated by a few large classes. In addition,

the distribution of pathologies in the dataset does not follow the

natural distribution in the population but rather reflects the data

collection process. As a final comment, metrics for multi-label

classification problems are a wide field, see [47] for a review

on multi-label classification metrics and algorithms. On the

most fundamental level, one distinguishes sample-centric and

label-centric metrics (such as macro AUC), see e.g. [48]. For

completeness, we also provide results for sample-centric metrics

in the code repository.

For ICBEB2018, which was recently selected as training

dataset for the PhysioNet/CinC challenge 2020, we report

for reasons of comparability two further performance metrics

that were used as evaluation metrics during the first stage

of the challenge, namely a macro-averaged Fβ-score (β = 2)

and a macro-averaged Gβ-score with β = 2, where Gβ =
TP/(TP + FP + β · FN), in both cases with sample weights

chosen inversely proportional to the number of labels. Values of

β > 1 allow to assign more weight to recall than precision, which

might be a desirable property. However, applying this equally

to the NORM-class seems questionable since high precision

is required in this case. In addition, the corresponding scores

are sensitive to the chosen classification threshold, which we

determine by maximizing the Fβ /Gβ-score on the training set,

which is an undesirable aspect as it entangles the discriminative

performance of the classification algorithm with the process

of threshold determination. To assess the uncertainty of the

classifiers’ scores, we provide 95% confidence intervals via

empirical bootstrapping on the test set, in our case with 10,000

iterations. More specifically, we report the point estimate from

evaluating on the whole test set and estimate lower and upper

confidence intervals using the bootstrap examples. In this case,

non-overlapping confidence intervals signify statistically signif-

icant differences between the classifiers whereas the converse

is not true [49]. To circumvent this issue, we also calculate

bootstrap estimates of the difference of the best-performing

and all other classifiers. If the corresponding confidence inter-

vals for the difference do not cover zero, the two classifiers

are considered statistically significant at a confidence level of

0.05 in this case. In summary tables, we typically report only

the point estimate and the maximal absolute deviation between

point estimate and lower and upper bound, where for example

0.743(09) is supposed to be understood as 0.743± 0.009. We

deliberately decided not to exclude sparsely populated classes

from the evaluation. Due to the stratified sampling procedure

underlying the fold assignments in [15] point estimates can be

evaluated for all metrics. However, during the bootstrap process

it is not guaranteed that at least one positive sample for each class

is contained in each bootstrap sample. In such a case, metrics

such as the term-centric macro-AUC cannot be evaluated. To

circumvent this issue, we discard such bootstrap samples and

redraw until we find at least one positive sample for each

class.

B. ECG Statement Prediction on PTB-XL

We start by introducing, performing and evaluating all exper-

iments that are directly related to ECG-statements, where we
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TABLE I
OVERALL DISCRIMINATIVE PERFORMANCE OF ECG CLASSIFICATION

ALGORITHMS ON PTB-XL IN TERMS OF MACRO AUC. FOR EACH

EXPERIMENT THE BEST-PERFORMING SINGLE MODEL IS UNDERLINED AND

MARKED IN BOLD FACE. ALL MODELS THAT DO NOT PERFORM

STATISTICALLY SIGNIFICANTLY WORSE THAN THE BEST-PERFORMING MODEL

ARE ALSO MARKED IN BOLD FACE. THE ENSEMBLE SCORE IS UNDERLINED

IF THE ENSEMBLE PERFORMS STATISTICALLY SIGNIFICANTLY BETTER THAN

THE BEST SINGLE MODEL. FOR ALL RESULTS, WE ALSO INDICATE 95%
CONFIDENCE INTERVALS OBTAINED VIA BOOTSTRAPPING ON THE TEST SET.

cover the three different major categories diagnostic diag., form

and rhythm and level (sub-diag. and super-diag. as proposed

in [15]). For each experiment, we select only samples with at

least one label in the given label selection.

In Table I, we report the results for all six experiments

each applied to all models (as introduced in Section II-B).

In all six experiments, deep-learning-based methods show a

high predictive performance. The best-performing resnet or

inception-based models reach macro AUCs ranging from 0.89 in

the form category, over around 0.93 in the diagnostic categories

to 0.96 in the rhythm category. These results can in principle

be used for a rudimentary assessment of the difficulty of the

different prediction tasks. However, one has to keep in mind

that for example the form prediction task has a considerably

smaller training set compared to the other experiments due to

approximately 12 k ECGs without any form annotations.

As first general observation upon investigating the differ-

ent model performances in more detail, we find that resnet-

architectures and inception-based architectures perform best

across all experiments and significantly outperform other in-

vestigated convolutional architectures for selected experiments

such as all, diag. and form. These results support well-known

findings from the imaging domain in the sense that more modern

convolutional architectures involving skip-connections such as

resnet- or inception-based architectures allow to train deeper and

more performant models as compared to standard feed-forward

convolutional architectures. Architectural improvements seem

to carry over from the imaging domain, for example xresnets

perform significantly better than their standard resnet counter-

parts. Across all categories, the newly proposed xresnet1d101-

model either represents the best-performing result or does not

perform significantly worse than the best-performing model. In

this context, it is worth noting that it performs on par or even

outperforms the recently proposed inception1d-model that was

specifically engineered toward time series classification. Recur-

rent architectures are consistently slightly less performant than

their convolutional counterparts but, at least for sub-diagnostic

and rhythm statements, still competitive.

The second general observation is that the performances of

both convolutional as well as recurrent deep learning models

TABLE II
CLASSIFICATION PERFORMANCE ON THE ICBEB2018 DATASET. IN ADDITION

TO MACRO-AUC, WE ALSO REPORT THE TERM-CENTRIC Fβ=2 AND Gβ=2

USED IN THE PHYSIONET/CINC CHALLENGE 2020. THE NOTATION

FOLLOWS THE ONE INTRODUCED IN TABLE I.

is significantly better than the performance of the baseline

algorithm operating on wavelet features in line with literature

results [41], [44]. However, this statement has to be taken

with caution, as the performance of feature-based classifiers is

typically rather sensitive to details of feature selection choice

of derived and details of the preprocessing procedure. Note

that the classifier from [45] included a number of additional

features and preprocessing steps and might therefore lead to

an improved score compared to our implementation. We also

tested for different classifiers like decision trees or support vector

machines, different input features based on Fourier coefficients.

However, we did not observe any improvements compared to

the presented baseline result. A detailed comparison between

deep-learning-based and feature-based approaches is beyond the

scope of this manuscript. In fact, the results for feature-based

approaches were only included to provide a rough orientation

for the reader.

As third observation, it is notable that forming ensemble mod-

els leads in many case to slight performance increases. However,

only in the super-diagnostic case the ensemble outperforms

the best-performing single model in a statistically significant

manner.

C. ECG Statement Prediction on ICBEB2018 and
Transfer Learning

We start by analyzing the classification performance of clas-

sifiers trained on ICBEB2018 from scratch as an independent

validation of the results obtained on PTB-XL. Table II shows

the performance of classifiers that were trained using the the

same experimental setup as in Section III-B. Nevertheless, both

Fβ and Gβ show a quantitative similarity in terms of rank-

ing compared to our threshold-free AUC metric. Comparing

to the quantitative classification performance on PTB-XL as

presented in Section III-B, we see a largely consistent picture

on ICBEB2018 in the sense of a similar ranking of the different

classifiers. A noticeable observation is the fact that the relative

performance of the xresnet101-model is even stronger in the

sense that it outperforms all other classifiers in terms of macro

AUC in a statistically significant manner, whereas it remains

compatible with inception1d and resnet1d_wang in terms of

Fβ=2 and Gβ=2.
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Fig. 3. Effect of transfer learning from PTB-XL to ICBEB2018 upon
varying the size of the ICBEB2018 training set. Cases where the dif-
ference between pretraining and training from scratch is statistically
significant are marked by dashed brackets.

In the next experiment, we leverage PTB-XL by finetun-

ing a classifier trained on PTB-XL on ICBEB2018 data. To

this end, we take a classifier trained on PTB (using all ECG

statements) and replace the top layer of the fully connected

classification head to account for the different number ECG

statements in ICBEB2018. This classifier is then finetuned on

ICBEB2018 data. The nine ECG statements from ICBEB2018

are a subset of the ECG statements used in PTB-XL, but the

latter annotation scheme is much more exact distinguishing com-

plete from incomplete bundle branch blocks and differentiating

ST-elevation into non-specific ST-elevations and myocardial

infarction or ischemic ECG changes. Here we aim to provide

a proof-of-concept for finetuning of ECG classifiers. A detailed

investigation of the impact of the differences between the label

distributions between the source and the target dataset is there-

fore beyond the scope of this article.

To systematically investigate the transition into the small

dataset regime, we do not only present results for finetuning

on the full dataset (8 training folds) but for the full range of

one eighth to eight training folds i.e. from 85 to 5500 train-

ing samples. For each training size and fixed model architec-

ture (xresnet1d101), we compare models trained from scratch

to models that pretrained on PTB-XL and then finetuned on

ICBEB2018 and assess the statistical significance of the corre-

sponding performance differences. Fig. 3 summarizes the results

of this experiment, and illustrates the fact that pretraining and

training from scratch do not deviate significantly for large dataset

sizes. However, the performance gap between both approaches

widens for smaller training sets and becomes significant (even

at a confidence level below 0.0005) for a single training fold or

fractions of it. Most notably, the performance of the finetuned

model remains much more stable upon decreasing the size of

the training set and consequently outperforms the model trained

from scratch by a large margin in the the case of small training

sizes. In the most extreme case of one eighth of the original

training fold corresponds to 85 samples, where the performance

of the finetuned classifier only drops by about 10% in terms of

AUC compared to a classifier trained on a training set that is 64

times larger. Since the small dataset regime is the most natural

TABLE III
AGE REGRESSION PERFORMANCE FOR MODELS TRAINED ON ALL PATIENTS

AND EVALUATED ON ALL/NORMAL/ABNORMAL SUBPOPULATIONS IN TERMS

OF MEAN ABSOLUTE ERROR (MAE) AND R-SQUARED (R2). THE NOTATION

FOLLOWS THE ONE INTRODUCED IN TABLE I.

application domain for pretraining on a generic ECG dataset,

we see this as a very encouraging sign for future applications of

PTB-XL as a pretraining resource for relatively small datasets.

D. Age Regression and Sex Classification

The following experiment is inspired by the recent work

from [11] that demonstrated that deep neural networks are ca-

pable of accurately inferring age and sex from standard 12-lead

ECGs. The motivation for such a prediction task is two-fold: on

the one hand, it illustrates the diagnostic potential within ECGs

that is difficult to extract for humans but can be uncovered with

algorithmic support. On the other hand, in particular the age

inference task potentially allows to reach a better understanding

of age-induced changes in the ECG.

Here, we look into both tasks again based on PTB-XL. The

experiment is supposed to illustrate the possibility of leveraging

demographic metadata in the PTB-XL dataset. We applied the

same model architectures from Section III-B but with adjusted

final layers, where for sex prediction a binary and for age

prediction a linear output neuron was trained and optimized such

that the binary cross-entropy or mean squared error is minimized

respectively. Both networks were trained separately but with the

same train-test-splits and identical hyperparameters as in previ-

ous experiments, except that for final output prediction where

we computed the mean of all windows instead of the maximum

(as used above). In order to study the effect of pathologies on

performance for this task, in addition to all subjects we also

evaluated the models only for normal subjects and for abnormal

subjects. Here, we define the set of normal records as the set of

records with NORM as the only diagnostic label and the set of

abnormal records as its complement.

The results for the age regression experiment are shown

in Table III. Overall, testing only on normal subjects yielded

better results in each category as compared to testing only on

abnormal or all subjects (MAE = 6.86 compared to MAE =
7.38 and MAE = 7.16 respectively). These observations are

in line with [11], [50]. In this experiment, the best-performing

models are inception1d and resnet1d_wang, which outperform

xreset1d101 in certain subcategories. Furthermore, the results

are competitive in comparison to [11], who reported a value of

MAE = 6.9 years (R-squared = 0.7) but with thirty times more

data (≈20 k versus ≈750 k samples [11]).

Table IV shows the corresponding results for sex prediction.

As already suggested in [51], [52] the differences between male
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TABLE IV
SEX PREDICTION PERFORMANCE FOR MODELS TRAINED ON ALL PATIENTS

AND EVALUATED ON ALL/NORMAL/ABNORMAL SUBPOPULATIONS IN TERMS

OF ACCURACY (ACC) AND AREA UNDER THE RECEIVER OPERATING CURVE

(AUC). THE NOTATION FOLLOWS THE ONE INTRODUCED IN TABLE I.

and female are also present in ECG, which is also confirmed by

our model yielding a accuracy of 84.9%(89.8%) and an AUC

of 0.92(0.96) on all(normal) patients. This performance level,

in particular on the normal subpopulation, is competitive with

results from the literature [11] (90.4% accuracy and an AUC of

0.97). In the sex prediction experiment, xresnet1d101 represents

the best-performing model across all subpopulations but with

consistently high scores for inception1d and even bidirectional

recurrent architectures (lstm_bidir). As a final word of caution,

we want to stress that the results for age and sex prediction

algorithms are not directly comparable across different datasets

due to different dataset distributions not only in terms of the

labels themselves but also in terms of co-occurring diseases. This

is apparent from the performance differences of our classifier for

both subtasks when evaluated on the full dataset and on the two

different subpopulations.

IV. DEEPER INSIGHTS FROM CLASSIFICATION MODELS

Until now we investigated our experiments quantitatively in

order to compare different model architectures. However, a

quantitative evaluation focusing on overall predictive perfor-

mance, as presented in the previous section, might not take

important qualitative aspects into account, such as the pre-

dictive performance for single, potentially sparsely populated

ECG statements. Here, we focus our analysis on a single

xresnet1d101-model, but we verified that the results presented

below are largely consistent across different model architectures.

A. Hierarchical Organization of Diagnostic Labels

As first analysis, we cover the hierarchical organization of

diagnostic labels and its impact on predictive performance. The

PTB-XL dataset provides proposed assignments to one of five

superclasses and one of 23 subclasses for each diagnostic ECG

statement, which represents one possible ontology that can be

used to organize ECG statements. In Fig. 4, we show the hi-

erarchical decomposition (tree-like structure) for the diagnostic

labels in sub- and superclasses, where we propagated predictions

from experiment diag. upwards the hierarchy over sub-diag.

to super-diag. by summing up prediction probabilities of the

corresponding child nodes and limiting the output probabilities

to one. We experimented with other aggregation strategies such

as using the maximum or the mean of the predictions of the

child nodes but observed only minor impact on the results. The

same holds for models trained on the specific level, where no

Fig. 4. Hierarchical decomposition of class-specific AUCs onto sub-
classes and individual diagnostic statements exhibiting hidden stratifi-
cation, i.e., inferior algorithmic performance on certain diagnostic sub-
populations that remains hidden when considering only the superior
superclass performance, see the description in Section IV-B for details.
AUC is given in square brackets and the number of label occurrences in
the test set in parentheses. The transparency of each colored node is
relative to the minimum and maximum AUC in the last layer.

propagation is needed. The training of hierarchical classifiers is

a topic with a rich history in the machine learning literature, see

for example [53] for a dedicated review and [54] for a recent

deep learning approach to the topic. Extensive experiments on

this topic are beyond the scope of this manuscript, but our first

experiments on this topic indicate that the performance of a

model trained on a coarser granularity is largely compatible or in

some cases even slightly inferior to a model trained on the finest

label granularity and propagating prediction scores upwards the

label hierarchy.

B. Hidden Stratification and Co-Occurring Pathologies

The hierarchical organization of the diagnostic labels allows

for deeper insights and potential pitfalls of model evaluation that

are crucial for clinical applications. In particular, we focus on

the issue of hidden stratification that was put forward in [55]

and describes potential inferior algorithmic performance on

certain diagnostic subpopulations that remains hidden if only

the superclass performance is reported. In Fig. 4, we illustrate

how the label AUC of a particular superclass or subclass de-

composes into the label AUCs of the corresponding subclasses.

One trivial reason for weak classifier performance are ECG

statement classes that are too scarcely populated to allow training
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Fig. 5. AUC curves for two subset of samples revealing hidden strat-
ification within the IVCD class. While the samples from the low-error
cluster are mostly samples without NORM as additional label, samples
from the high error cluster are mostly with co-occurring NORM.

a discriminative classifier on them and for which also the score

estimate on the test set is unreliable due to the small sample size.

However, there are further ECG statements that stand out from

other members of the same subclass, where the performance

deficiency cannot only be attributed to effects of small sample

sizes. For example, consider the classes NST_ (non-specific ST

changes), LAO/LAE (left atrial overload/enlargement) and IVCD

(non-specific intraventricular conduction disturbance (block)) in

the bottom layer of the hierarchy, where the classifier shows a

weak performance, which is in fact hidden when reporting only

the corresponding superclass or subclass performance measures.

At least for NST_ and IVCD, these findings can be explained by

the fact that both statements are by definition non-specific ECG

statements and potentially subsume rather heterogeneous groups

of findings.

Although identifying hidden stratification is straightforward

to identify in hindsight given the hierarchical organization of

the diagnostic labels, [55] also demonstrated how to identify

groups of samples exhibiting hidden stratification for a given

class label under consideration using an unsupervised clustering

approach. For demonstration, we carried out such a comparable

analysis for IVCD in order to understand the comparably weak

classification performance on the particular statement compared

to other conduction disturbances. Indeed, clustering the model’s

output probabilities with k-means clustering revealed two clus-

ters, where one cluster performed much better than the other

as can be seen in Fig. 5. Interestingly, it turned out that the

two clusters largely align with the presence/absence of NORM

as additional ECG statement. The blue line (all) represents the

performance as is (AUC 0.74), the green line is the performance

for samples out of one cluster (AUC 0.59, for which most

of the sample were also associated with NORM), the orange

line for the second cluster (AUC 0.91, predominantly samples

without NORM). As can be seen clearly, samples with IVCD in

combination with NORM are much harder to classify.

These kinds of investigations are very important for the iden-

tification of hidden stratification in the model which are induced

by data and their respective labels [55]. Models trained on coarse

labels might hide this kind of clinically relevant stratification,

Fig. 6. Relation between model uncertainty (standard deviation of
ensemble predictions as in [56]) and diagnosis likelihood as quantified
by the annotating cardiologist, see Section IV-C for details.

because of both subtle discriminative features and low preva-

lence. At this point, it remains to stress that the PTB-XL dataset

does not provide any clinical ground truth on the considered

samples but only provides cardiologists’ annotations based on

the ECG signal itself, which could compromise the analysis.

However, we still see an in-depth study towards the identifica-

tion subgroups with certain combinations of co-occurring ECG

statements/pathologies, along the lines of the example of IVCD

presented above, as a promising direction for future research

in the sense that it can potentially provide pointers for future

clinical investigations.

C. Model Uncertainty and Diagnosis Likelihoods

Besides this hierarchical organization of diagnostic labels,

PTB-XL comes along with associated likelihoods for each di-

agnostic label ranging from 15 to 100, where 15 indicates less

and 100 strong confidence for one label. These likelihoods were

extracted from the original ECG report string for all diagnostic

statements based on certain keywords [15]. It is important to

stress that this likelihood information represents an individual

uncertainty assessment of the annotating cardiologist and is

therefore not directly comparable to uncertainty assessments

from inter-rater agreement, which is not available for PTB-XL.

As an initial experiment to assess the quality of this likelihood

information, we compare the likelihoods to model uncertainty

estimates for a model trained on diagnostic statements. To

quantify the model uncertainty, we follow the simple yet very

powerful approach put forward in [56] that defines model un-

certainty via the variance of an ensemble of identical models for

different random initializations. Here, we use an ensemble of

10 models and for simplicity even omit the optional stabilizing

adversarial training step, which was reported to lead to slightly

improved uncertainty estimates [56], in this first exploratory

analysis. In Fig. 6, we plot model uncertainty versus diagnosis

likelihood and observe the expected monotonic behavior. Only

the likelihood 100 stands out from this trend and shows a number

of outliers. One possible explanation for this observation is an

overconfidence of human annotators when it comes to seemingly

very obvious statements that goes in with the human inabil-

ity to precisely quantify uncertainties, which is a well-known

phenomenon in cognitive psychology, see e.g. [57]. However,

we perceive the overall alignment of diagnosis likelihood with

model uncertainty as an interesting observation as it correlates
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Fig. 7. Two exemplary attribution maps for a resnet model for the classes PVC (left) and PACE (right).

perceived human uncertainty with algorithmic uncertainty, a

statement that is normally impossible for clinical datasets due

to the unavailability of appropriate labels.

D. Prospects of Interpretability Methods

The acceptance of machine learning and in particular deep

learning algorithms in the clinical context is often limited by

the fact that data-driven algorithms are perceived as black boxes

by doctors. In this direction, the recent advances in the field

of explainable AI has the prospect to at least partially alle-

viate this issue by allowing the clinician to align indicative

features for the classification decision with medical background

knowledge. In particular, we consider post-hoc interpretability

that can be applied for a trained model, see e.g. [58]. The

general applicability of interpretability methods to multivari-

ate timeseries and in particular ECG data was demonstrated

in [41], see also [59], [60] for further accounts on interpretability

methods for ECG data. Here, we focus on exemplary for the

form statement “premature ventricular complex” (PVC) and

the rhythm statement PACE indicating an active pacemaker. The

main reason for choosing these particular classes is the easy

verifiable also for non-cardiologists. In Fig. 7, we show two

exemplary but representative attribution maps obtained via the

ǫ-rule with ǫ = 0.1within the framework of layer-wise relevance

propagation [61]. For PVC the relevance is located at the extra

systole across all leads. For PACE, the relevance is scattered

across the whole signal aligning nicely with the characteristic

pacemaker spikes (just before each QRS complex) in each beat.

It is a non-trivial finding that the relevance patterns for the two

ECG statements from above align with medical knowledge. A

more extensive, statistical analysis of the attribution maps both

within patients across different beats and across different ECGs

with common pathologies along with the relevance distribution

onto the different leads is a promising direction for future work.

V. SUMMARY AND CONCLUSION

Electrocardiography is among the most common diagnos-

tic procedures carried out in hospitals and doctor’s offices.

We envision a lot potential for automatic ECG interpretation

algorithms in different medical application domains, but we

see the current progress in the field hampered by the lack of

appropriate benchmarking datasets and well-defined evaluation

procedure. We propose a variety of benchmarking tasks based

on the PTB-XL dataset [15] and put forward first baseline results

for deep-learning-based time classification algorithms that are

supposed to guide future researchers working on this dataset.

We find that modern resnet- or inception-based convolutional

architectures and in particular a newly proposed resnet-variant

xresnet1d101 show the best performance but recurrent archi-

tectures are also competitive for selected prediction tasks. Fur-

thermore, we demonstrate the prospects of transfer learning

by finetuning a classifier pretrained on PTB-XL on a different

target dataset, which turns out to be particularly effective in the

small dataset regime. Finally, we provide different directions

for further in-depth studies on the dataset ranging from the

analysis of co-occurring pathologies, over the correlation of

human-provided diagnosis likelihoods with model uncertainties

to the application of interpretability methods. We release the

training and evaluation code for all ECG statement prediction

tasks, trained models as well as the complete model predictions

in an accompanying code repository [19].
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