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ABSTRACT With the booming development of Internet-of-Things (IoT) and communication technologies

such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide

uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive

amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent

data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing

and on-device computing cannot sufficiently address this problem due to the high latency and the limited

computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by

pushing the data processing from the remote network core to the local network edge, remarkably reducing

the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly

facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video

surveillance and autonomous driving. The convergence of edge computing and deep learning is believed

to bring new possibilities to both interdisciplinary researches and industrial applications. In this article,

we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing

applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge

applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry.

We also highlight the key research challenges and promising research directions therein. We believe this

survey will inspire more researches and contributions in this promising field.

INDEX TERMS Internet of Things, edge computing, deep learning, intelligent edge applications.

I. INTRODUCTION

With the explosive development of the Internet-of-Things

(IoT) aswell as the communication technologies such asWiFi

and 5G, our future world is envisioned as an interconnected

entity where billions of digital devices would provide unin-

terrupted services to both our daily lives and the industry.

As reported by Cisco [1], there will be more than 50 bil-

lion IoT devices connected by the Internet by 2020. Such

numerous IoT devices will generate a myriad of valuable data

which, once being well processed effectively and efficiently,

can empower many groundbreaking applications. Traditional

computing architecture relies on cloud computing to pro-

vide sufficient computation capacity and sustainable energy.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xu Chen.

In this system, IoT devices are responsible to collect the data

and deliver it to the remote powerful cloud, and the cloud

servers will carry out the computation-intensive tasks and dis-

tributed the result back. However, the large latency caused by

the long physical distance can sometimes become unaccept-

able, especially for those latency-sensitive applications like

autonomous driving and highly interactive applications such

as VR gaming. In addition, the huge data communication

also greatly increases the pressure of the backbone network,

bringing large overhead and cost to service providers.

The emerging edge computing [2] provides a promising

solution for this problem. Though with many representa-

tion forms, such as fog computing [3] and cloudlet [4],

the basic idea of edge computing is that the computation

capacity should be deployed close to the data source for data

processing, rather than transmitting the data to places with
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FIGURE 1. The illustration of deep learning enabled edge computing applications.

computation power. In this way, massive numbers of servers

are deployed at the edge of the network and the tasks at

IoT end devices can be offloaded to the edge servers for

instant processing. The paradigm of edge computing brings

many benefits compared to cloud computing. First, since

data computing happens closer to the data source, the com-

munication latency can be largely reduced, facilitating the

development of latency-sensitive applications. Besides, local

computation can better protect data privacy and application

security. Last but not least, data processing at the network

edge can effectively reduce traffic at the backbone network

so as to alleviate the network pressure.

Deep learning has made remarkable breakthroughs in

recent years due to the powerful perception ability. It has

been widely used in various fields such as computer vision [5]

and natural language processing [6]. Besides, its performance

in computer and chess games, e.g., Atari Games [7] and

the game of Go [8], even exceeds the best level of human

players. The confluence of edge computing and deep learning

will undoubtedly sheds a light on address the current chal-

lenges, enabling more desirable applications. On one hand,

the applications of edge computing urgently need the power-

ful processing capabilities of deep learning to handle various

complicated scenarios, such as video analytics [9], trans-

portation control [10], etc. On the other hand, edge computing

has provided specifically designed hardware foundations and

platforms to better support deep learning running at the edge,

e.g., the light-weighted Nvidia Jetson TX2 developing kit.1

Though lots of pioneer efforts have been made towards deep-

learning-enabled edge computing applications, this field is

still in the infant stage.

1https://developer.nvidia.com/embedded/jetson-tx2

Several existing surveys have investigated the conver-

gence of deep learning and edge computing in the literature.

Han et al. [11] presented their understanding on edge com-

puting and deep learning from five aspects, while they did

not make a comprehensive and in-depth overview from the

perspective of applications. Similarly, Chen and Ran [12]

focused on multiple aspects in deep learning and edge com-

puting, but only mentioned a general abstraction for those

emerging applications. Zhou et al. [13] mainly focused on

the deep learning model training and inference with edge

computing. There are also a series of surveys for mobile

edge computing [2], [14]–[16] and deep learning [17], [18],

respectively, while they focused on either of them without a

comprehensive review on the combination. Therefore, a com-

plete survey on the current cutting-edge researches is required

at this time to provide a comprehensive review on deep-

learning-enabled edge computing applications and illuminate

the potential future directions.

To fulfill this gap, in this article, we focus on the con-

fluence of edge computing and deep learning, and conduct

an up-to-date literature review on the latest advances of

leveraging deep learning to empower the edge computing

applications, as illustrated in Fig. 1. We first provide a brief

overview of edge computing and deep learning on concepts,

advantages as well as representative technologies. We then

summarize the deep-learning-enabled edge computing appli-

cations into four representative domains, i.e., smart multi-

media, smart transportation, smart city and smart industry,

which cover a series of crucial applications like video analyt-

ics, autonomous driving, intelligent traffic control, industrial

manufacturing, etc. At last, we discuss some key research

challenges and promising research directions to achieve sta-

ble, robust, and practical edge learning applications. Differ-

ent from existing surveys, this article focused on the deep
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learning enabled edge computing applications, presenting a

comprehensive review and highlighting the challenges and

opportunities.

The rest of this article is organized as follows. We present

the basic paradigm understanding of edge computing and

its advantages in section II. We introduce some deep learn-

ing techniques in section III. The review of deep-learning-

enabled edge applications is summarized in section IV.

We highlight the challenges and research directions in

section V. We at last conclude this article in section VI.

II. EDGE COMPUTING OVERVIEW

The emerging edge computing in recent years has seen suc-

cessful development in various fields given its great poten-

tial in reducing latency and saving cost. Different from the

cloud computing architecture, edge computing enables data

processing at the edge of the network. On one hand, data

computing is put closer to the data source, which greatly

facilitates the development of delay-sensitive applications.

On the other hand, the network traffic is largely reduced

since the local processing avoids much data transmission,

which remarkably saves the cost. In this section, we briefly

introduce some edge computing paradigms and highlight the

key advantages of edge computing.

A. EDGE COMPUTING RELATED PARADIGMS

The key component in edge computing is the edge devices,

which are usually edge servers located closer at the network

end for data processing, communication, caching, etc. There

are also some other paradigms or technologies that share

similar concepts with edge computing. We next discuss and

differentiate some typical paradigms that are related to edge

computing.

1) CLOUDLET

Cloudlet, initiated by Carnegie Mellon University, is envi-

sioned as small clusters with certain computation and storage

capabilities deployed near the mobile devices such as build-

ings and shopping centers for assisted processing, offloading,

caching, etc. Cloudlet usually utilizes virtualization manage-

ment technologies [4] to better support mobile applications.

And an important target of cloudlet is to bring the cloud

advances to mobile users [19], achieving more low-latency

and resourceful processing. Micro data centers (MDCs) [20],

initiated by Microsoft that are similar to the concept of

cloudlet, are a small-scaled version of data centers to extend

the hyperspace cloud data centers. Different MDCs are con-

nected by the backbone network to achieve more efficient

and intelligent computation, caching, andmanagement.MDC

also serves as an important role in managing numerous Inter-

net of Things (IoT) devices [21].

2) FOG COMPUTING

Fog computing [3], first proposed by Cisco, is a computing

paradigm that aims to bring cloud computing services to the

end of the enterprise network. In fog computing, the data

processing is carried out at fog nodes, which are usually

deployed at the network gateway. The fog computing presents

a high-level platform that the numerous IoT devices can be

interconnected through the distributed fog nodes to provide

collaborative services [22]. The fog nodes are also mainly

designed to provide better support for the IoT devices. From

this perspective, compared to other similar edge computing

paradigms, fog computing often stands in alignment with IoT

and emphasizes more on the end side.

3) MOBILE EDGE COMPUTING

The paradigm of mobile edge computing was first standard-

ized by European Telecommunications Standards Institute

(ETSI) [23], which aims to provide sufficient computing

capacities within the radio access network (RAN). It envi-

sions that the computing capacities are placed at the end of

the cellular network, e.g., the wireless base stations. Since

base stations are the important access gate for numerous

IoT devices, mobile edge computing could provide direct

service to the end devices through only one hop, bringing

great convenience for IoT data processing [16].

B. ADVANTAGES OF EDGE COMPUTING

Compared to traditional cloud computing, edge computing

has many unique advantages, including low latency, energy

saving, context-aware service, and privacy as well as security.

We next summarize them as follows.

1) LOW LATENCY

Since edge devices are placed closer to end devices,

which are usually both the data source and the transmis-

sion target of processing results, the transmission latency

can be largely reduced compared to the cloud computing

scenario. For example, the transmission latency is usually

tens (or hundreds) of milliseconds between an end user

and a cloud server, while this number is usually several

milliseconds or even at microsecond level. The emerging

5G technology further enhances the advances of edge com-

puting from the perspective of low latency transmission,

which empowers a series of emerging applications, such as

autonomous driving [24], virtual reality/augmented reality

and healthcare-related applications.

2) ENERGY SAVING

Restricted by the size and usage scenarios, IoT devices

usually have quite limited energy supply, but they are also

expected to perform very complex tasks that are usually

power consuming. It is challenging to design a cost-efficient

solution to well power the numerous distributed IoT devices

given that frequent battery charging/discharging is impracti-

cal in not possible [16]. Edge computing enables the billions

of IoT devices to offload the most power-consuming compu-

tation tasks to the edge servers, which not only greatly reduce

the power consumption but also improves the processing

efficiency.
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FIGURE 2. The structures of different deep learning models.

3) CONTEXT-AWARE SERVICE

Context-aware computing [25] is playing an important role in

IoT and edge computing applications, since good modeling

and reasoning of collected data can highly rely on the context

of the data. With the advantage of the proximity nature,

edge servers can collect more context information to support

the data processing. For example, in the Amazon Go super-

market, video cameras can not only record the goods that

customers select but also predict customers’ interest based on

their staying location, duration and behaviors.

4) PRIVACY AND SECURITY

Compared to cloud computing, edge computing is more

efficient and effective in protecting the data privacy and

application security of users. On one hand, edge servers are

usually geographically distributed clusters that could be man-

aged and maintained by users themselves. Sensitive informa-

tion can be monitored and protected more strictly. On the

other hand, the small-scale nature makes it more concealed

than large-scale data centers, further making it less likely to

become a target of attacks [26].

III. DEEP LEARNING METHODS

Deep learning has been widely applied in many fields with

great success [27], such as computer vision (CV), natural

language processing (NLP), and artificial intelligence (AI).

Compared to traditional machine learning methods, deep

learning has demonstrated powerful information extraction

and processing capabilities, but also requires massive com-

putation resources. The breakthroughs of deep learning have

greatly expanded the edge computing applications in various

scenarios, improving performance, efficiency, and manage-

ment. In this section, we introduce some typical deep learning

models that are widely used for edge computing applications,

including restricted Boltzmann machine (RBM), autoen-

coder (AE), deep neural network (DNN), convolutional neu-

ral network (CNN), recurrent neural network (RNN), and

deep reinforcement learning (DRL). The basic architectures

of these learning models are illustrated in Fig. 2.

A. RESTRICTED BOLTZMANN MACHINE

Restricted Boltzmannmachine (RBM) is a kind of probabilis-

tic graphical models that can be interpreted as stochastic neu-

ral networks [28]. A typical two-layer RBM includes a visible

layer that contains the input we know and a hidden layer that

contains the latent variables, as described in Fig. 2(a). RBMs

are organized as a bipartite graph, where each visible neuron

is connected to all hidden neurons and vice versa, but any two

units are not connected in the same layer. RBMs have seen

successful applications in many fields, such as collaborative

filtering [29] and network anomaly detection [30]. Multiple

stacked RBM layers can form a deep belief network (DBN),

which consists of a visible layer and multiple hidden layers.

The training of a DBN follows a layer-by-layer method,

where each layer is treated as an RBM trained on top of the

previously trained layer [31]. Many applications can benefit

from the structure of DBNs, such as fault detection classi-

fication in industrial environments, threat identification in

security alert systems, and emotional feature extraction out

of images [17].

B. AUTOENCODER

An autoencoder includes an input layer and an output layer

that are connected by one or multiple hidden layers [32],

as illustrated in Fig. 2(b). The shape of the input layer and

the output layer are the same. The AE can be divided into
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two parts, i.e., an encoder and a decoder. The encoder learns

the representative characteristics of the input and transforms

it into other latent features (usually in a compressing way).

And the decoder receives the latent features of the encoder

and aims to reconstruct the original form of the input data,

minimizing the reconstruction error. Similarly, an AE can be

formed as a deep architecture by stacking multiple layers into

the hidden layer. There are several variants and extensions

of AEs, such as sparse AE [33], denoising AE [34], and

variational AE [35].

C. DEEP NEURAL NETWORKS

Compared to the traditional artificial neural network (ANN)

that has shallow structure, deep neural network (DNN)

(or deep fully connected neural network) usually has a deeper

layer structure for more complicated learning tasks [32].

A DNN consists of an input layer, several hidden layers,

and an output layer, where the output of each layer is fed

to the next layer with activation functions. At the last layer,

the final output representing the model prediction is pro-

duced. Optimization algorithms such as Stochastic Gradient

Decent (SGD) [36] and backpropagation [37] are mostly used

in the training process. DNNs are widely used in feature

extraction, classification and function approximation.

D. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are designed to pro-

cess data that comes in the form of multiple arrays, for exam-

ple, a color image composed of three 2D arrays containing

pixel intensities in the three color channels [27]. A CNN

receives 2D data structures and extracts high-level features

through convolutional layers as described in Fig. 2(c), which

is the core of CNN architecture. By going through the 2D data

with a set of moving filters and the pooling functions, CNN

extracts the spatial correlations between adjacent data by

calculating the inner product of the input and the filter. After

that, a pooling block is operated over the output to reduce

the spatial dimensions and generate a high-level abstraction.

Compared to traditional fully connected deep networks, CNN

can effectively decrease the parameter numbers of network

and extract the spatial correlations in the raw data, mitigat-

ing the risk of overfitting [38]. The above advantages make

CNN achieve significant results in many applications, such

as object detection [39] and health monitoring [40].

E. RECURRENT NEURAL NETWORKS

Different from CNNs that are good at abstracting spatial

features, recurrent neural networks (RNNs) are designed for

processing sequential or time-series data. The input to an

RNN includes both the current sample and the previously

observed samples. Specifically, each neuron of an RNN

layer not only receives the output of its previous layer but

also receives the stored state of from previous time steps,

as depicted in Fig. 2(e). With this special architecture, RNN

is able to remember previous information for integrated pro-

cessing with the current information. However, RNNs can

only look back for a few steps due to the gradient explosion

and long-term dependencies. To solve this problem, Long

Short-Term Memory (LSTM) network [41] is proposed to

control the flow of information. In LSTM model, the forget

gate is utilized to control the cell state and decide what to

keep in the memory. Through the learning process, stored

computations in the memory cells are not distorted over time,

which particularly achieves better performance when data is

characterized in long dependency [42]. RNN and LSTM are

widely used in various sequential scenarios, such as language

processing [43] and activity recognition [44].

F. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) [7] is a combination of

deep learning (DL) and reinforcement learning (RL) [45].

It aims to build an agent that is able to learn the best action

choices over a set of states through the interaction with the

environment, so as to maximize the long-term accumulated

rewards. Different from traditional RL, DRL utilizes a deep

neural network to represent the policy given its strong rep-

resentation ability to approximate the value function or the

direct strategy. DRL can be categorized into value-based

models, such as Deep Q-Learning (DQL), Double DQL [46]

and Duel DQL [47], and policy-gradient-based models, such

as deep deterministic policy gradient (DDPG) [48] and asyn-

chronous advantage actor-critic (A3C) [49]. The DRL has

been successfully applied in many fields, such as computer

gaming [7], chess gaming [8] and rate adaptation [50].

IV. EMPOWERING EDGE APPLICATIONS WITH

DEEP LEARNING

A. WHEN EDGE COMPUTING MEETS DEEP LEARNING

Recent years have witnessed the rapid development and the

achieved great success of edge computing and deep learn-

ing in their respective fields. However, the massive amount

of invaluable data generated and collected at the edge side

calls for more powerful and intelligent processing capacities

locally to fully unleash the underlying potentials of big data,

so as to satisfy the ever-increasing demands of various appli-

cations. Fortunately, the recent breakthroughs in deep learn-

ing shed a light on the edge application scenarios, providing

strong ability in information perception, data management,

decision making, etc. The convergence of these two tech-

nologies can further create new opportunities, empowering

the development of many emerging applications. In fact,

edge computing has already been gradually integrated with

artificial intelligence (AI) to achieve edge intelligence. In this

rest of this section, we conduct a comprehensive overview

of state-of-the-art research works on edge computing appli-

cations with deep learning and summarize them in several

aspects, including smart multimedia, smart transportation,

smart city, and smart industry.

B. SMART MULTIMEDIA

The Internet video content has been explosively increasing

in the past years. As estimated by Cisco, the global video
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TABLE 1. Summary of deep-learning-enabled edge computing applications in the field of smart multimedia.

traffic accounted for 75% of the Internet traffic in 2017 and is

estimated to grow four-fold by 2022 [63]. Meanwhile, people

are having an increasingly higher demand for video con-

tent and video watching experience, calling for more intelli-

gent video processing, caching, and delivery, etc. Nowadays,

deep learning is integrated with edge computing to provide

both better video quality of experience (QoE) for viewers

and cost-effective functions to service providers. The rep-

resentative researches on smart multimedia applications are

summarized in Tab. 1.

1) VIDEO ANALYTICS

Nowadays, video analytics [9] are becoming more and more

widely used in different fields such as camera-based surveil-

lance [64] and augmented reality (AR). With the limited

processing capabilities of cameras, traditional video analytics

usually heavily rely on cloud computing for content process-

ing, i.e., the video contents are first streamed to the backend

cloud servers and the processed results are then delivered to

the frontend devices. This processing mode however brings

high latency and consumesmuch bandwidth, unable to satisfy

those latency-sensitive applications, not to mention those

realtime requirements such as object detection [51] and track-

ing [65]. The emergence of edge computing pushes the video

analytics from the remote cloud to the local edge, allowing

the video content to be processed near the data source so

as to enable quick or even realtime response. For example,

Amazon has released the world’s first deep-learning-enabled

video camera, where the locally executed deep learning func-

tion enables realtime objection even without the involvement

of the cloud.

Pioneer researches have conducted efforts towards intel-

ligent video analytics with edge computing. Ren et al. [51]

proposed an edge-computing-based object detection archi-

tecture as well as a preliminary implementation to achieve

distributed and efficient object detection via wireless com-

munications for real-time surveillance applications. They

adopted Faster R-CNN [39] for model training and object

detection, with a well-designed RoI detection algorithm to

balance the detection accuracy and the data compression rate.

Liu et al. [52] developed a CNN-based visual food recog-

nition algorithms to achieve the best-in-class recognition

accuracy, where edge computing was employed to overcome

the system latency and low battery life of mobile devices.

In DeepDecision [53], a distributed infrastructure was pro-

posed to tie together computationally weak frontend devices

(assumed to be smartphones) with more powerful back-end

helpers (the edges) to allow deep learning to choose local

or remote execution. This approach boosts the performance

of CNN, in particular Yolo [54], to achieve higher frame

rate and accuracy. DeepCham [55] leveraged an edge master

server coordinated with several participating users to collabo-

ratively train CNNmodel to achieve better object recognition

accuracy. LAVEA [66] built up a client-edge collaboration

system and solved an optimization offloading problem to

minimize the response time. Nikouei et al. [56] developed

a lightweight convolutional neural network (L-CNN), which

leveraged the depthwise separable convolution feature and

tailored the CNN to be furnished in the resource-constrained

edge devices with reduced filter numbers in each layer.

2) ADAPTIVE STREAMING

Adaptive video streaming [78] is becoming a critical issue

in today’s video delivery to provide the best quality of expe-

rience (QoE) over the Internet. The basic idea is to select

proper video bitrate considering the network states, stabil-

ity, fairness, user’s preference of video quality, etc. Most

existing adaptive streaming approaches [79]–[81] rely on the

client-based adaptation, which aims to adapt to the bandwidth

variations based on several observed or predicted metrics
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such as buffer size and bandwidth situation. The recent

advances in deep learning, particularly deep reinforcement

learning, are leveraged at the client end to automatically learn

the adaptation policy for better QoE [50], [82].

The emergence of edge computing provides an alternative

for adaptive video streaming. Given the intelligence and com-

putation capability, edge nodes can serve as a cache server

or transcoding server to provide edge-based (or edge-cloud-

based) adaptive streaming [83], [84]. This scheme can usually

collect more states from other users and achieve higher fair-

ness, stability, and collaborative intelligence. For example,

De Grazia [57] developed a multi-stage learning system to

manage simultaneous video transmission which guarantees a

minimum quality level for each user. In particular, they used

an unsupervised Restricted Boltzmann Machine (RBM) [28]

to capture the latent features of the input data and a supervised

linear classifier to estimate the characteristics of unknown

videos.Wang et al. [58] designed an edge computing-assisted

framework that leverages DRL to intelligently assign users

to proper edge servers to achieve proper video streaming

services.

3) CACHING

Video content caching [85] is another important applica-

tion that has attracted continuous research efforts for years

given its great benefits in improving multimedia services.

In traditional content delivery network (CDN) architecture,

video contents are usually placed or cached at remote servers,

where the high latency and limited bandwidth between the

end viewers and the remote servers can cause viewing delay

and congestion, seriously undermining the viewers’ QoE.

The emerging edge caching [86], [87] is able to allevi-

ate this problem by pushing the content close to the end

users so as to reduce the access latency and reduce the

network pressure. Traditional content providers may simply

use rule-based solutions such as Least Recently Used (LRU),

Least Frequently Used (LFU) and their variants [88], [89],

or model-based solutions such as [90], [91] given the easy

implementation. These solutions however heavily rely on

dedicated features and are not adaptive enough to the chang-

ing characteristics.

Deep learning brings new opportunities towards intelligent

edge caching using advanced learning techniques to well

capture the hidden features. Li et al. [59] considered the

video propagation as well as popularity evolution patterns

and developed an integration of ARIMA, multiple linear

regression (MLR), and k-nearest neighbor regression (kNN)

to predict the social patterns to improve caching perfor-

mance. Zhang et al. [60] proposed an intelligent edge-assisted

caching framework LSTM-C based on LSTM to better learn

to content popularity patterns both at long and short time

scale. Zhu et al. [61] proposed to leverage DRL to auto-

matically learn an end-to-end caching policy, where the user

requests, network constraints, and external information are

all embedded in the learning environment. Besides individual

caching decisions, collaborative caching is also explored in

recent years to achieve collective intelligence. For exam-

ple, Jiang et al. [62] formulates the D2D caching problem

as a multi-agent multi-armed bandit (MAB) problem and

developed a multi-agent DRL (MADRL) solution to learn a

coordinated caching scheme among multiple agents.

C. SMART TRANSPORTATION

Vehicle is envisioned as the next intelligent information car-

rier after smartphone. The coming era of 5G and mobile

edge computing (MEC) has enabled vehicle information to

be readily accessible anytime and anywhere with low latency,

forming an Internet of Vehicle (IoV) [92]. Integrated with

the latest advances in deep learning, IoV will enable more

intelligent transportation management, such as autonomous

driving [24], traffic prediction, traffic signal control, as sum-

marized in Tab. 2.

1) AUTONOMOUS DRIVING

Intelligent sensing and perception are of the most critical

issues in autonomous driving [24]. The vehicles first collect

the information from various carried sensors such as cameras

and radars, and then conduct an intelligent perception and

decision. Purely using vehicle-based and cloud-based solu-

tions may not well satisfy the requirement of high compu-

tation capacity, realtime feedback, enough redundancy, and

security for autonomous driving. Edge computing however

provides a promising solution with powerful computation and

low-latency communication [105]. With the benefits of V2X

communications [106], part of the learning-based perception

can be offloaded to the edge server for processing.

Many existing works have conducted pioneer efforts

towards autonomous driving. SqueezeDet [67] proposed a

carefully designed CNN-based learning pipeline that not only

achieves high object detection accuracy but also reduces the

model size for energy efficiency. To better understand the

captured object, Chen et al. [68] proposed a monocular 3D

object detection method using state-of-the-art CNN method

based on the fact that objects should be on the ground-plane.

To further improve the accuracy and robustness, MV3D [69]

developed a multi-view 3D deep learning network that takes

both LIDAR point and camera images as a fusion input to

predict 3D boundaries. Besides the road feature extraction,

researchers also dived deeply into the driving control based on

the sensing information. Bojarski et al. [70] proposed an end-

to-end learning architecture without detecting road features.

It directly mapped the raw pixels from a single front-facing

camera to the steering commands.

2) TRAFFIC ANALYSIS AND PREDICTION

Understanding the mobility patterns of the vehicles and peo-

ple is a critical problem for urban traffic management, city

planning, and service provisioning. Given the distributed fea-

tures of mobile edge servers, edge computing is naturally

ideal for vehicle traffic analysis and prediction [107]. Tra-

ditional approaches mostly used time-series analysis [108] or

probabilistic graph analysis [109], which may not sufficiently
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TABLE 2. Summary of deep-learning-enabled edge computing applications in the field of smart transportation.

capture the hidden spatiotemporal relationships therein. As a

powerful learning tool, deep learning stands out as an

effective method in this direction. Liu et al. [110] further

pointed out the potential of applying different deep learning

approaches in urban traffic prediction. Polson et al. [71]

leveraged deep neural network to mine the short term char-

acteristics of the traffic situation of a road segment to pre-

dict the near future traffic pattern. Lv et al. [72] leveraged

a stacked autoencoder (SAE) to learn the generic traffic

features from the historical data. Koesdwiady et al. [73]

further considered the impact of weather on traffic situa-

tions and incorporated the weather information into a deep

belief network for integrated learning. In DeepTransport [74],

the authors considered the mobility analysis at a larger scale,

i.e., the citywide scale. LSTM model is used for future

movement prediction. In [75], the authors revisited the spa-

tiotemporal relationships in traffic patterns and proposed a

novel spatial-temporal dynamic network (STDN) based on

CNN and LSTM, which outperforms the existing prediction

methods.

3) TRAFFIC SIGNAL CONTROL

With the above traffic analysis and prediction, the combina-

tion of edge computing and deep learning actually can do

more things towards intelligent transportation management.

Among them, intelligent traffic signal control [76] is one

of the most representative applications and has also been

explored by researchers for years. A good control policy is

able to reduce the average waiting time, traffic congestion,

and traffic accident. The early traffic signal control methods

usually rely on fuzzy logic [111] or genetic algorithm [112].

The key challenge however lies in how to achieve collabora-

tive and intelligent control among multiple or even citywide

traffic lights for large scale traffic scheduling. Towards this

goal, reinforcement learning (RL) and multi-agent RL turns

out to be a promising solution where each agent (can be

implemented as an edge) will make control policy for a

traffic light considering not only its local traffic situation

but also other agents’ traffic situations. In [76], tabular

Q-learning was first applied in an isolated intersection for

signal control. To improve the collaboration among traffic

lights, Abdoos et al. [10] proposed a multi-agent Q-learning

(MAQL) method that considered the queue length for coop-

erative scheduling. The latest work [77] further integrated

the state-of-the-art actor-critic (A2C) RL algorithm and the

multi-agent learning as a multi-agent actor-critic (MA2C)

approach to comprehensively combine the traffic features for

intelligent control.

D. SMART CITY

Smart city [113] is another important application scenario for

deep-learning-enabled edge computing. The geo-distributed

big data [114] in a city naturally requires a distributed com-

puting paradigm for local processing and management. The

integration of edge computing and deep learning enables the

deep penetration of computing intelligence into every corner

of a city, forming a smart city that can provide more efficient,

economic, energy-saving, and convenient services [115],

[116]. We next discuss the combinational advantages in the

main components of the smart city, including the smart home,

smart building, and smart grid, as in Tab. 3.

1) SMART HOME

Smart IoT has been widely explored in smart home sce-

narios to provide not only convenient control but also

intelligent sensing [117]. Considering the privacy issue in
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TABLE 3. Summary of deep-learning-enabled edge computing applications in the field of smart city.

the home scenario, edge computing is a good choice to

provide local computation and processing, especially for

the computation-intensive deep-learning-based applications.

Dhakal AND Ramakrishnan [93] developed an automated

home/business monitoring system which resides on Net-

work Function Virtualization (NFV) edge servers perform-

ing online learning on streaming data coming from homes

and businesses in the neighborhood. Leveraging the latest

advances of deep learning, the ubiquitous wireless signals

can also be used for smart interaction between human and

devices. For example, SignFi [94] exploited the CSI sig-

nals of WiFi and was able to identify 276 sign language

gestures including the head, arm, hand, and finger with

CNN for classification. Wang et al. [95] analyzed the impact

patterns of moving humans on the WiFi signals and lever-

aged a combined CNN and LSTM to recognize differ-

ent gestures and activities. Such method can be used for

remote control of home devices such as lights and televi-

sions [118]. Mohammadi et al. [96] explored more possi-

bilities of deep learning approaches and proposed a novel

semisupervised DRL based method for indoor localization.

Such edge-intelligence-enabled solution can be widely used

for smart home, including intrusion detection, gesture-based

interaction, fall detection, etc.

2) SMART BUILDING

Achieving intelligent monitoring, sensing, and control in the

building environment requires more comprehensive percep-

tion and processing compared to the home environment given

the complex architecture. In this context, edge computing

plays an important role in data processing, orchestration, and

privacy preserving. Recently, many efforts [119]–[121] have

been made towards smart building to reduce energy con-

sumption, improve the building security, enhance the sensing

capacity of buildings, etc. Zheng et al. [97], [98] focused on

the chiller sequencing problem to reduce the electricity con-

sumption in buildings. They leveraged multi-task learning to

predict the performance of a chiller and further strike a good

balance between the electricity consumption and ease of use

for real-world deployment. Yuce and Rezgui [99] proposed

a neural-network-based model to perform regression analy-

sis of energy consumption within a building. Thokala [100]

further considered the heterogeneity in the electrical load and

proposed to use both SVM and partial RNN to forecast future

load.

3) SMART GRID

The smart grid is an electricity distribution network with

smart meters deployed at various locations to measure the

realtime status information [127]. Smart grid is also an

important use case for edge computing or fog computing.

Edge collectors at the edge ingest the data generated by

grid sensors and devices, where some data for protection

and control loops even require real-time processing (from

milliseconds to sub-seconds) [3]. Deep learning together with

the edge computing empowers the grid with more intelli-

gent protection, control, and management. He et al. [101]

proposed a deep-learning-based mechanism that integrated

deep belief network (DBN) and RBM to detect the attack

behavior of false data injection in realtime. Considering the

sequential behavior of attacks for smart grid, Yan et al. [102]

further proposed a reinforcement learning-based approach

to identify critical attack sequences with consideration of

physical system behaviors. Shi et al. [103] proposed a novel

pooling-based RNN network to forecast the household load

addressing the over-fitting issue. Pricing is another important

issue towards smart grid, which greatly affects customers’

using behaviors in many aspects, e.g., the economy-driven
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TABLE 4. Summary of deep-learning-enabled edge computing applications in the field of smart industry.

electric vehicle charging [128]. For instance, Wan et al. [104]

jointly considered the electricity price and battery energy

of electric vehicles and proposed a model-free DRL based

model to automatically determine the charging policy.

E. SMART INDUSTRY

In the coming era of industry 4.0, we are experiencing a

revolution of smart industry, which has two main principles,

i.e., production automation and smart data analysis [123]. The

former is one of ourmain objectives that could greatly liberate

the productivity and the latter is one of the most effective

methods towards our objectives. The recent advances of edge

computing migrate the massive computation from the remote

cloud to the local edge, enabling more low-latency and secure

manufacturing [129]. And deep learning further empowers

more effective local analysis and prediction [130] at the edge

node of industry instead of the cloud. We summarize them in

the next two parts as illustrated in Tab. 4.

1) SMART MANUFACTURING

Smart manufacturing is the key component of the smart

industry, which highly relies on the intelligent processing

of deep learning and quick response of edge computing.

The combination of deep learning and edge computing

has been applied in many aspects of industry manufactur-

ing, such as manufacture inspection and fault assessment.

Weimer et al. [122] developed a novel CNN-based archi-

tecture for fast and reliable industrial inspection, which

can automatically generate meaningful features for a spe-

cific inspection task from a huge amount of raw data with

minimal human interaction. Li et al. [123] proposed an edge-

computing-based model that is able to offload the compu-

tation burden to the fog nodes to deal with extremely large

data. A CNN-based model together with an early-exit design

is used in this model, which largely improved the inspection

accuracy and robustness. Zhao et al. [124] further combined

CNN with bi-directional LSTM to propose a novel machine

health monitoring system.

2) SMART INDUSTRIAL ANALYSIS

Besides the manufacture inspection and monitoring,

the application of edge computing and deep learning also

enables much intelligent industrial analysis. Wu et al. [125]

focused on the remaining useful life estimation of the engi-

neered system and proposed to use vanilla LSTM neural

networks to get good remaining lifetime prediction accuracy.

Wang et al. [126] focused on the remaining lifetime analysis

of backup batteries in the wireless base stations. They pro-

posed to useDNN-based architecture to accurately predict the

remaining energy and remaining lifetime of batteries, which

further enables an informed power configuration among base

stations.

V. RESEARCH CHALLENGES AND DIRECTIONS

Though the convergence of edge computing and deep

learning has revealed great potentials and prompted the fast

development of many applications, there still exist various

problems in achieving stable, robust, and practical usage,

which calls for continuous efforts in this field from many

perspectives. We next discuss some key research challenges

and promising directions.

A. MODEL TRAINING

The performance of deep-learning-enabled edge applications

highly relies on how the learning models are performed in

the edge computing architecture, where the model training

is an important process. It is well known that model train-

ing is often computation-intensive, consuming massive CPU

and GPU resources, especially for those deep models. Edge

servers are usually challenging, or at least not cost-efficient,

to solely take the model training tasks. Besides, in many

applications, the data is distributed collected from multiple

edge servers and it is difficult for a single edge server to

obtain the whole information for model training. Sharing the

raw data among the edge nodes is not a good solution since

it will consume massive communication resources. Towards

this direction, distributed learning [131] and federated learn-

ing [132] are two promising models to address this problem.

The early idea of distributed learning is to design a decen-

tralized Stochastic Gradient Descent (SGD) algorithm in the

edge computing environment. The key challenge exists in

reducing the communication cost for gradient updates while

preserving the training accuracy. Recent efforts have been

made towards this direction, e.g., delivering the important

gradient first [133]. Federated learning is another promising

method emerging in recent years to train deep neural net-

works as it leaves the raw data on clients and only aggregates
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the intermediate updates from each client. In the edge appli-

cation scenario, it can also reduce the communication cost

and improve resource utilization [134].

B. MODEL INFERENCE

As many outstanding learning models are getting bigger

and deeper, traditional large-scale learning models are often

deployed in a centralized cloud and receive the raw input data

from the distributed end devices, which can cause high delay.

Edge servers provide alternative solutions for model deploy-

ment, where the edge and cloud can work collaboratively to

handle the massive amounts of learning takes. A promising

direction is model partition for deep neural networks, where

the end, edge, and cloud will execute part of the learning

models, respectively. For example, Kang et al. [135] devel-

oped a lightweight scheduler to automatically partition DNN

computation between mobile devices and data centers at the

granularity of neural network layers. And Huang et al. [136]

further explored the partitioning problem in the edge com-

puting scenario, and developed a partitioning strategy among

the device, edge, and cloud, which aimed to reduce the exe-

cution delay. Another promising direction is the early exit

of inference (EEoI) [137] for deep neural networks. Since

passing through the whole deep networks is both time- and

energy-consuming for edge servers, EEoI allows the infer-

ence to exit early if verified by some predefined models.

C. APPLICATION ENHANCEMENT

The integration of deep learning and edge computing

has achieved remarkable improvement for many applica-

tion scenarios, yet there are still some critical applica-

tions desiring for real breakthroughs. Real-time VR gaming

and autonomous driving are two most representative appli-

cations. Both these two applications require ultra low-

delay interactions and powerful computations. The emerging

5G communication technology together with edge learning

brings new possibilities towards a feasible solution, where

the main computation such as video rendering as well as

video analytics can be conducted at local edges and the

processing results can be delivered to the end in near real time,

e.g., millisecond-level interaction. Despite of the preliminary

foundation of feasibility, there is still a long way to go before

the practical application.

D. HARDWARE AND SOFTWARE OPTIMIZATION

In addition to the model and application enhancement,

the system-level optimization for deep learning and edge

computing is also a challenging yet promising direction.Most

of the existing hardware architecture, software platform,

and programming abstraction are particularly designed for

the cloud-based computing paradigm. Yet the edge learning

emphasizes some different aspects compared to cloud com-

puting, such as energy-efficiency, light-weight architecture,

and edge-oriented computation framework. For example,

from the perspective of the hardware architecture optimiza-

tion, Du et al. [138] studied Cortex-M micro-controllers and

proposed a streaming hardware accelerator to better CNN

in edge devices. Besides, FPGA-based edge computing plat-

forms are also developed to support deep learning compu-

tation offloading from mobile devices to the edge FPGA

platform [139]. For the software perspective, many incor-

porations have proposed their own software platforms or

services to support edge-level learning and computing, such

as Amazon’s Greengrass2 and Microsoft’s Azure IoT Edge.3

For the perspective of programming abstraction, there are also

some frameworks specially designed for edge scenario, such

as MXNet [140], Tensorflow Lite4 and CoreML.5 Though

with these existing systems and frameworks, there still need

a lot of efforts to integrate them to achieve a more practi-

cal and high-performance system for general edge learning

applications.

VI. CONCLUSION

In this article, we mainly investigated how the recent

advances of deep learning can be leveraged to improve the

novel edge computing applications. We first introduced the

basic concepts and paradigms of edge computing, highlight-

ing its key advantages. We then present some representative

deep learning models that can be used in edge computing,

such as autoencoder, CNN, RNN, DRL, etc. A comprehen-

sive survey on the latest deep learning empowered edge

computing applications is next conducted from four domains,

including smart multimedia, smart transportation, smart city,

and smart industry. Finally, we discussed the key challenges

and future research directions on improving the intelligent

edge computing applications. We hope this survey is able

to elicit more discussion and inspiration on the convergence

of edge computing and deep learning, so as to facilitate

the development of deep-learning-enabled edge computing

applications.
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