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ABSTRACT Recent technological advancements have led to a deluge of medical data from various domains.

However, the recorded data from divergent sources comes poorly annotated, noisy, and unstructured. Hence,

the data is not fully leveraged to establish actionable insights that can be used in clinical applications. These

data recorded in hospital’s Electronic Health Records (EHR) consists of patient information, clinical notes,

charted events, medications, procedures, laboratory test results, diagnosis codes, and so on. Traditional

machine learning and statistical methods have failed to offer insights that can be used by physicians to

treat patients as they need to obtain an expert opinion assisted features before building a benchmark task

model. With the rise of deep learning methods, there is a need to understand how deep learning can

save lives. The purpose of this study was to offer an intuitive explanation for possible use cases of deep

learning with EHR. We reflect on techniques that can be applied by health informatics professionals by

giving technical intuitions and blue prints on how each clinical task can be approached by a deep learning

algorithm.

INDEX TERMS Electronic health records, convolutional neural networks, recurrent neural networks,

adverse drug events, EHR raw features.

I. INTRODUCTION

The Health Information Technology for Economic and Clini-

cal Health (HITECH) Act of 2009 raised an increase in the

adoption of Electronic Health Records (EHR) [1] by hos-

pitals. Hospitals and other points of care have diversified

their efforts in constructing robust Electronic Health Records

facilities to capture and leverage these data which are usually

ill-understood. Currently there is a high ubiquity of health raw

data mainly caused by the abundance of state-of-the-art clini-

cal testing devices and medical Internet of Things (mIoT) [2].

This opportunity is a milestone to healthcare and there is

undoubted belief that precision and personalized healthcare

will be boosted. EHRs contains highly multidimensional,

heterogeneous, multimodal, irregular, time series data like

laboratory test results, doctor notes, medication prescriptions,

demographic information, diagnoses, epidemiology, behav-

ioral data, etc.With these vast data the clinical tasks can range
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from critical care to long term planning. Data in EHR can help

into a choice of treatment, finding patient similarity, integrat-

ing genomics data for personalized treatment, predicting the

hospital Length of Stay (LoS), and predicting patients risks of

readmission. However, due to this high heterogeneity there is

a high probability of missing or erroneous entries resulting

into high reluctance by practitioners in using these usually

expensive technologies, mainly because they still need to use

abductive reasoning in getting clinical insights from them to

perform effective diagnosis.

Though hospitals have effectively used the EHR for

other administrative and corporate tasks like patients log-

ging, assets management, transfers management, and mainly

billing operations, there is a need to find ways to effec-

tively use the EHR for patient’s diagnosis. The only solution

to this is the use of EHR analytic solutions that will sup-

port the physician’s expertise. With the recent achievements

of artificial intelligence, machine learning methods ranging

from simple regression to complex Recurrent Neural Net-

works (RNN) can be used to bridge the inferential gap for
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TABLE 1. Studies that covered deep learning application to HER.

various EHR tasks. However, various complex challenges to

integrate them coupled with the limited availability of labeled

data for training models as well as privacy issues associated

with mistrusts between providers, hinder the effective use

of these learning systems to achieve effective care. Though

deep learning techniques are highly regarded as crosscutting

novelty, there are still tasks in the EHR that can be effi-

ciently be solved by classical machine learning techniques

like regression, random forests and Bayesian techniques.

Machine learning has empowered the newest methods like

computational phenotyping in medical care as well as inte-

grating genomics data into clinical procedures.

A. MOTIVATION FOR THIS WORK

Mining the EHR longitudinal data for clinical insights is a

tiresome aspect of building health analytic solutions. Hospi-

tals use customized EHRs which are comprised of hetero-

geneous mix of elements many of whom are voluminous

and unstructured content. The noisiness and sparsity of the

EHRs requires effective feature extraction and phenotyping

before extracting insights from the data. Though there are

various works done to explore methods used to mine data

from EHR, there is a need to understand the EHR data mining

from an aggregation point of view. For example, adverse

event prediction, a process intended to find impending risk

of a hospitalized patient can be performed by aggregating

insights from doctor’s notes (unstructured text data), MRI

test (image data), ICD-10 nomenclature database (structured

Text data) etc. Hence, this process needs analytic solution to

aggregate insights from these diverging data. In this paper we

intend to help EHR analytic designers to use deep learning

technique for effective analytic techniques to be included in

Clinical Decision Support System (CDSS) by tipping them

with techniques and mechanisms to extract, transform, load,

and leverage disparate EHR data.

B. ORGANIZATION OF THE PAPER

This paper is organized as follows: In Section II, we cover the

related works to review approaches used by various authors

in coming closer to providing a concise insight of using

deep learning methods to EHR. In section III, we cover the

anatomy and structure of EHR data using example from a real

EHR database exploring its various aspect unraveling hidden

patterns. In Section IV, we cover the challenges that an EHR

analytics designer is likely to face. In Section V, we try to tip

developers by give a glance of techniques per clinical task by

covering a successful case study. In Section VI, we conclude

by giving future directions.

C. METHODOLOGY

We considered hospital’s workflow by covering clinical tasks

that can be performed by clinicians. For each task we give

insights about the type of EHR data that can be used.We show

the challenges associated by each task, and we give a blue

print of an appropriate deep learning model by either ana-

lyzing an already made model or proposing how it can be

designed to produce the required insights. Our approach is to

answer the question ‘‘how did they do it?’’ wherever there
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TABLE 2. Anatomy of EHR data (With Intuitions from the MIMICIII data set).

is an existing deep learning solution to an EHR task, and

‘‘how can we do it?’’ from our own perspective. Due to

the high mathematical sophistications behind deep learning

applications to EHR, we try to explain the concepts in sim-

pler terms. However due to complexity of deep learning,

it is impossible to thoroughly explain every concept, hence

a modest understanding of machine learning is required to

understand the content of this work.

II. RELATED WORKS

Using the vastly available EHR data for clinical analytics

has recently gained a big deal of attention. However, few

studies would come up with a complete set of methodolo-

gies and techniques that can be used to mine this unex-

plored big data. More of related researches have focused

on applying data mining methods for an aspect of EHR

data mining. Ching et al. [3] thoroughly discussed opportu-

nities and challenges in using deep learning for biology

and medicine, though this study was much exhaustive it

did not elaborate more on the technical side of the pro-

cesses involved. Reference [4] covered DeepEHR by survey-

ing recent advances in deep learning techniques for EHR.

This study focused on identifying key works done in deep

learning for EHR. The description of theseworks done aswell

as their approaches are detailed in Table 1.

III. ANATOMY OF THE EHR DATA

In this section we cover the structure and anatomy of EHR

data. The EHR is composed of huge longitudinal, time series

data sourced from daily recordings by practitioners and hos-

pital instruments. Each patient record is saved in a table

in EHR warehouse. Though structure of database can vary

depending on specific medical and computing requirements,

examples and cases described in this section are retrieved

from the MIMICIII dataset [109]. A more detailed descrip-

tion of EHR data is found in Table 2 with the following

components being the big constituents.

A. PATIENT INFORMATION

Patient basic information is perhaps the simplest and the

most structured data of the EHR data. It contains basic

information of a patient like his hospital ID, an identifier

which will identify the patients through his stay. It contains
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his gender, date of birth, date of discharge (or death) and

other demographic data. More data related to admission like

admission time, discharge time, admission type (emergency

or elective) insurance information and any other basic infor-

mation of interest. Though the recording of these informa-

tion looks straightforward many workers at hospital do not

consider accurate recordings as one of their critical tasks and

this becomes worse to physicians who are mostly preoccu-

pied by saving lives than proper recording, hence errors in

EHR records can be produced at any point. For instance,

statistics at the English National Health Service (NHS),

showed that about 20,000 adults were recorded in pediatric

outpatient services, similarly 17,000 men were admitted to

obstetrical services, and 8,000 men admitted to gynecology

services [9].

B. CLINICAL NOTES/MANUSCRIPTS

Perhaps the most rich but unstructured, vague and noisy

of all EHR data are the physicians/nurses’ clinical notes.

The 2018 national physician poll [10] showed that though

physicians view the EHR as necessary, they did not view it

as a powerful clinical tool but as a mere data storage tool,

and surprisingly only half of them agreed that using an EHR

detracts from their clinical effectiveness. Moreover, the EHR

does not provide a cognitive support design which is causing

doctor to be reluctant in using the EHR interfaces and the con-

tinuation of relying on their manuscript-based documentation

to reduce clinical burnout. Deep learning methods helps in

transforming these manuscripts into database readable for-

mats. Fig. 1 shows Example of a clinical note as extracted

from the MIMIC III database. Clinical notes can be ana-

lyzed using deep learning models to predict adverse events

like heart attack, death, hospitalization length etc. However,

these notes must be treated by a vectorization and a feature

representation algorithm before being fed to a deep learning

model.

C. LABOLATORY MEASUREMENTS AND MEDICAL IOT

READINGS

EHR has a lab events table that is associated with lab

measurements for each patient. Each laboratory observa-

tion is linked to a lab item which is defined in another

table containing all the definitions for laboratory measure-

ments. The definitions contain the Logical Observation Iden-

tifiers Names and Codes (LOINC) for lab measurements. For

instance, the MIMIC III hospital dataset’s lab items table has

27,854,055 lab events associated to all 60,000 patients.

D. MEDICATION, DIAGNOSIS PROCEDURE AND DRUG

CODES

This EHR sections contain standard codes for diseases and

symptoms described by the International Classification of

Diseases (ICD) [11] and diagnosis related groups codes

DRG (used for identifying billable items that the patient

received) [12]. Drugs are described by their RXnorm drugs

FIGURE 1. Example of a clinical note as extracted from the MIMIC III
database.

classification codes [13], treatment procedures are described

by their Current Procedural Terminology (CPT) codes [14].

E. EHR EVENTS

EHR also contains 21,146,926 rows of input events (ex;

Heart rate, Glucose levels etc...), 330,712,483 charted events,

4,349,218 Output Events, and many other events which

records whatever happens to a patient.

IV. CHALLENGES FOR EHR MINING

EHR Feature engineering is moving away from the usual

expert-driven feature engineering to data-driven paradigms

or the combination of both [28] for sophisticated clinical

tasks like feature construction, risk factors identification and

diseases phenotyping. Hence analytic processes rely on the

capability to find proper machine learning techniques for a

distinct task. For example, while Natural Language Process-

ing (NLP) [29] will help in dissecting clinical insights hidden

in amillion of clinical manuscripts it will be of little to no help

in the understanding of an MRI brain scan. The following

are key challenges that analytical solutions must address to

provide actionable clinical insights.

A. COMPLEXITY OF EHR ANALYTICAL TASKS

Even the NLP which performs better in text-based sentiment

analysis will hardly help in understanding clinical narrative

and terms used in the clinical notes, recorded by medical

expert care staff. The reason is that health care experts

write these notes for individual or co-worker’s reference with

no machine learning applications to sight. Various toolkit

that tailor the NLP for clinical texts have been invented

like CLAMP (Clinical Language Annotation, Modeling, and
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Processing) [30] which is a popular NLP tool that helps clini-

cal applications developers to quickly build customized NLP

pipelines. However, EHR tasks like prediction of clinical

events need amalgamation of structurally diverging data like

lab tests together with charted events and clinical notes. The

more data we incorporate the more predicting accuracy is

achieved. The structure of lab tests come as text flags with

varying unit of measure hence combining them with clinical

notes which are raw texts without a standard becomes a

challenging task. Also, different EHR data do not contribute

equally to illnesses that have to be predicted or detected.

As an example, mental sickness might depend on narratives

in a clinical note than on charted events as there might not

be any events associated with the patient, hence coming up

with a rationalized model that combines these data is a very

complex task.

B. CONTEXTS OF EHR DATA

Even with tools that help people to design customized

pipelines, challenges related to clinical data are hard to sur-

mount. The big challenge comes from the nature of the

data and the kind of insights we want to extract from it.

Clinical experts are human beings who try to find solu-

tions to intervention problems in a causal point of view.

In his study about causality and machine learning, Pearl [31]

argued that intervention questions cannot be answered from

observational statistical information alone. He also argues

that you cannot answer counterfactual question using inter-

vention information. In a clinical example you cannot

re-perform a trial on patients who were treated with a drug

to inspect how they would have behaved had they not

been given the drug. Machine learning algorithms which

are observational algorithms that use statistical data exhibits

these fundamental impediments that make their applications

to clinical questions to require additional extra-statistical

information.

C. SMALL LABELLED DATA

Perhaps, except the clinical notes and the patient’s charted

events used to perform certain deep learning tasks, most of

EHR data lacks labelled ground truth data. Even the model

that is built gets hardly into implementation due to lack of

acceptance. The true outcome of a clinical event is a redun-

dant operation that relies on abductive reasoning of a physi-

cian, hence deep learning gets stranded in this problem. As an

example, you cannot find enough labelled cancer images that

can be used to train a CNN for future predictions. Perhaps the

most appropriate solution to the lack of labelled data seems

to be the use of transfer learning. There are vastly available

labelled data sets that have been trained for other tasks.

these pre-trained models can be used to medical problems

by only tailoring the last layer of the neural network to the

EHR problem in question. Authors in [32] have used transfer

learning on a pre-trained RNN model to establish pheno-

types of various diseases. Another method is to use unsuper-

vised CNNpre-training and perform a supervised fine-tuning.

FIGURE 2. Basic architecture of auto encoders.

Authors in [33] have been able to use this method to classify

lung tissue in high resolution Computed Tomography (CT)

data.

V. POPULAR DEEP EHR ALGORITHMS

Deep learning is a special branch of machine learning that

utilize layered computational nodes with each node in each

layer performing computation on inputs and its respective

weight. A non-linearity function is applied to produce the

node activation. The overall Artificial Neural Network is built

on updating the weights of each node to minimize the final

cost associated with the deviation of output predictions from

the ground truth labels. The neural network first initializes

the parameters (weights and bias) and use the forward prop-

agation to calculate a cost then the chain rule is used to

perform back propagation for weights updates. The process

is referred to as gradient descent due to the process of finding

an optimal path to a minimum cost. Various more advanced

optimization algorithms that solves the basic deep learning

problem have been discovered and used in practice. These

are Stochastic Gradient descent [33], RMS Prop [33], Ada

boost [34], Adam [35] etc. Deep learning is effective than

othermachine learning algorithms as there is no need to spend

more efforts on feature engineering using a domain expert,

rather using raw data as the features can be learned by the

system. However, as we will see in later sections, due to

complexity of EHR data and special intolerance to errors, fea-

ture representation and selection usually assisted by domain

expert might be a key to the success of a deep learning model.

In this section we are going to describe briefly popular deep

learning algorithms used with EHR. A complete reference

of these algorithms and their use with EHR can be found

in Fig. 7.

A. SPARSE AUTO ENCODER

This is an unsupervised representation learning mostly

used for the features engineering stage. They are used for
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FIGURE 3. Basic convolutional neural network.

non-linear dimensionality reduction and comes as a better

alternative to other traditional dimens ionality reduction tech-

niques like principal component analysis (PCA) [36] and

singular value decomposition (SVD) [37]. From Fig. 2, an

auto encoder is used to transform(encode) a much bigger

vector into much smaller data vector by taking the input

x, encoding it to discover latent feature representation then

decoding the latent feature representation to reconstruct the

input. Auto encoders are used in applications that require fea-

tures compression like finding document similarity, feature

reduction etc. Many variations of auto encoders have been

used extensively. Convolutional auto encoders are special

types of autoencoders that do not use fully connected layers

(each node in a layer connected with each node in next layer)

rather using convolutional layers.

B. CONVOLUTIONAL NEURAL NETWORKS(CNN) [38]

Convolutional Neural Networks are special algorithms that

perform extremely well in image classification problems.

In the EHR context CNNs can yield good results in medical

image analysis like mammography, MRI images, CT scans

etc. They can be used to detect and differentiate malignant

cancer cells with the benign cells from medical images.

From Fig. 3, CNN is composed of layers where each layer

is composed of a convolutional layer, a pooling layer and

an activation to produce input to the next layer. CNN are

special architecture where each node from the previous layer

is not connected to each node of the next layer, rather each

layer is composed of a filter(kernel) or several filters that

are applied to the input to produce intermediate values. The

resulting next layer input is a sum of products of each input

feature value with the filter. We say that a filter is convolved

with the input image. Each convolution stage defines certain

attributes of the input such as lines curves and edges. As an

example, if a 256×256 image is input to a CNN the input

layer will be 256×256×3 in size (with 3 representing RGB

channels). the convolutional layer will perform a dot product

between a receptive field and a kernel on all the dimensions

of the input. To minimize the training time and avoiding

overfitting, the pooling layer reduces the dimensionality in

the network by taking a maximum or average of a certain

number of inputs cells. At each layer an output is obtained

by applying a non-linearity function usually Rectified linear

unit(relu). A fully connected layer is added towards the end

of the network followed by a SoftMax layer which produces

the predictions. Various special types of CNNs have been

produced and are being used with EHR like Resnets [39],

VGGNet16 [40], Inception [41] etc.

C. RECURRENT NEURAL NETWORKS (RNN)

With some types of data in EHR like clinical notes, input data

do not have the same length to be used with basic ANN. For

instance, some medical applications can require processing

vast amount of text (like clinical notes, web based medical

queries platforms etc.) to find keywords that are relevant to

standard clinical entities like ICD codes and CPT codes. This

application requires performing a Named Entity Recognition

(NER) [42] as a primordial step to the understanding of the

bulk text. To understand RNN in medical context let’s take

a user who tweets about an Adverse Drug Event (ADE).

Moreover, RNN can be used to identify drug names present

in the tweet in the process of identifying the ADE from the

tweets. With the RNN depicted in Fig. 4 taking the input

tweets as a vector x we want to produce a vector y that

contains 1 in a position that holds a drug name and 0 in a

position that holds any other word. Using an NLP dictionary,

we can build a one hot encoding of each word present in the

document and feed the resulting vectors to the RNN.

D. DEEP TRANSFER LEARNING: SOLVING THE SMALL

LABELLED DATASET ISSUE

One of the greatest impediments of machine learning to EHR

data is to find enough labeled data for training. For instance,

if we are analyzing CT scans to find a malignant tumor,

we may not find enough recorded events that can be used

for training a deep learning model. Transfer learning is a

deep learning technique that takes intuition from the human

learning which uses knowledge gained from one problem

to another problem. In a deep learning world, we can use

the weights learned while modeling one problem to another

problem. As an example, in Fig. 5, we can use a model that

was trained on the cat and dog dataset to MRI images that can

classify if a brain tumor is malignant or benign.

VI. TECHNIQUES FOR HER TASKS

A. CLINICAL ADVERSE EVENT DETECTION

One of the primary tasks of hospitals is to detect a clin-

ical event in real time. All the causes of clinical events
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FIGURE 4. Basic RNN a 1 in the output vector represent a presence of a drug name in the input text.

FIGURE 5. Basic Transfer learning. Weights learned from training a cat classifier are used to predict tumor malignancy from MRI images by only
changing the last layer and introducing weights for the last layer.

including medication, diagnosis, and adverse drug events

etc. can be found buried in longitudinal data in the EHR.

Critical medical events can be conceived as negative changes

in patient’s medical status. Authors in [43] have applied

bi-directional Recurrent Neural Networks (RNN) on EHR

to predict medical events. The experiment used Sequence

labeling techniques for extraction of medical events from

unstructured text in EHR. The study in [44] tried to use

EEC (electroencephalograms) signals from the EHR and

Deep Convolutional Neural Network (DCNN) [45] to detect

Epileptic seizure. First the EEG signal features were extracted

using EMD algorithm [46] to decompose the EEG signals

into oscillation instances with varying frequencies called the

Intrinsic Mode Functions (IMFs). The next step was to feed

the data to a Deep CNN for classifying the seizure into three

classes of epilepsy; ictal (amid seizure), normal, and inter

ictal (amongst seizures).

EHRUse Case: Dermatologist-Level Classification of Skin

Cancer With Deep Neural Networks [47]: One of the big

challenges for health-related detection and classification is

the absence of enough labeled data. In Fig. 6, researchers

combined data from open-access dermatology repositories,

which were annotated by dermatologists as well as data from

the EHR. These skin lesion images were fed to an Incep-

tion V3 [48] Deep CNN which predicted if the subject in

the image is having malignant melanocytic lesion or benign

melanocytic lesion. this work leveraged the power of transfer

learning by using the Inception V3 a special type of deep

CNNwith reduced number of learned parameters. It achieves

this property by performing a factorization into smaller con-

volutions through replacing a 5×5 filter with two 3×3 filers.

This technique helps in reducing the number of parameters

to be learned hence shrinking the computational cost of the

deep network.
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FIGURE 6. Architecture of the skin cancer detection by adapting the Deep CNN inception V3model.

FIGURE 7. Popular deep learning algorithms used with Electronic health
records.

B. CLINICAL ADVERSE EVENT PREDICTION

Clinical adverse Event Prediction sub task by a learning

algorithm is to predict the onset of diseases a process that

predicts the probability that patients might develop certain

diseases given their current clinical status. Specific objec-

tive is to predict future events (hospitalization, suicide risk,

heart failure risk etc...) from longitudinally diverse events.

For intelligent support system to provide patient centered

support each aspect type of data would need a support system.

Choi et al. developed DoctorAI [49] a generic system that

uses Recurrent Neural Networks (RNN) to predict clinical

events via a system that performs multi label prediction using

diagnoses, medication categories and visit time of a patient.

They were able to use each patient visit to predict about diag-

nosis, medication order in the next visit as well as the time to

next visit. Razavian et al. [50] were able to use longitudinal

lab tests to perform early diagnosis of diseases for people who

do not yet have the disease.

Miotto et al. proposed DeepPatient [51] a system that

leverage raw patient data from EHR like medication, diag-

noses, procedures, lab tests by applying them to unsupervised

deep feature learning algorithm to produce patient repre-

sentations that will be applied to perform more advanced

clinical tasks like personalized prescription, drug target-

ing, clinical trial recruitment, detecting patient similarity

etc. Prediction of future clinical events can be achieved

by modeling the EHR record as longitudinal event matrix,

with the horizontal dimension corresponding to the time

stamps and vertical dimension corresponding to the event

values and applying non-standard CNN [52]. Many predic-

tion algorithms leverage various EHR data types to predict

an outcome, however clinical notes contain rich amount of

patient’s data than other sources. Though unstructured they

can be a source of a big number of clinical predictions.

However raw text cannot be applied directly as meaningful

features to deep learning models, hence to acquire vectorized

inputs, before applying deep learning, a word embedding

algorithm like Word2Vec and Doc2Vec must be applied to

produce word vectors that can be understood by the learning

algorithms.

Use Case1 (Using EHR Clinical Notes and Convolutional

Neural networks (CNN) to Predict Death): This sub-section

serves as an intuition and use case of clinical notes generated

at the point of care into predicting adverse future event.

An imminent patient’s death is a result of various time

series events manifested after admission into the hospital.

The unexplored clinical notes produced by physicians or

nurses contain a rich content in a form of text that requires

critical analysis. The process of adverse event prediction is

described in Fig. 8. The task of deep learning is to aggregate

many data with or without known outcome(labels), and to

train a model which can predict an outcome for new sce-

narios. As clinical notes cannot be directly analyzed by the

deep learning model, they are vectorized by a Word2vec
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FIGURE 8. use case scenario clinical notes are vectorized using Word2Vec skip gram model, then using labels obtained from patient history weather he
died or not, train a CNN model which can predict a near future death prediction using patient’s hospital notes.

or Doc2Vec word embedding models that use skip gram

to vectorize textual information. However, clinical notes

contain ambiguous terms as well as important terms that

are related to a certain disease phenotype (as an example

we expect a clinical note written for a patient suffering a

heart attack to contain terms like chest pain, discomfort,

shortness of breath, lightheartedness etc.). Hence, before

vectorization we must dissect the content of the clinical notes

using standard ontologies for medical terminologies like

the (SNOMED CT) [53] or the Unified Medical Language

System (UMLS) [54], [60]. after extracting these words that

are related to patient phenotype the notes can now be fed as

input features to a Word2Vec model for vectorization. These

resulting vectors can now constitute labeled training data for

Convolutional Neural Network which can predict the death

probability (labels are obtained in the end status of a patient

whether he died, or he was discharged).

Use Case2 (Using Charted Clinical Events to Predict Med-

ical Adverse Future Events): Predicting the length of stay and

readmission probability helps in improving quality of care as

well as the potential to decrease unnecessary healthcare costs.

However, being able to aggregate all the patient’s data and

decide on which one that can havemore weight in an intended

prediction is highly an iterative process. Various machine

learning, and statistical models have been deployed to predict

death risks for hospitalized patients. Medical charted events

like ventilator settings, mIoT device’s alarms, laboratory val-

ues, heart rate, MRI readings, code status, mental status, and

so on, can be used to predict patient’s risk of imminent death

or hospitalization period. For instance, a patient in theMIMIC

III database who was admitted with hemorrhagic CVA (Cere-

brovascular accident) hospitalized for 5 days recorded among

others a total of 9172 charted events,68 prescriptions, and

12 microbiology events. These records contain a potential

source of data for prediction. Because all the outcomes are

known (Death or discharge), if we consider each patient and

build a representative vector that accommodates all these

events we can train a deep neural network that can predict

the patient’s outcome. Esteban et al. used Recurrent Neural

Networks (RNNs) and static information like patient gender,

blood type, etc. and dynamic information like clinical charted

events to predict future adverse events [55].

C. EHR DRIVEN PHENOTYPING

Clinical phenotyping is a process of establishing diseases

characteristics. This process is performed by expert opinions

and many years of researches which have already established

phenotypes of each disease. However, with the diversification

and polymorphism of existing diseases coupled with indi-

vidual genetic variations, there is high need to find other

methods to establish disease phenotypes as well as individual

patients’ phenotype using huge data stored in EHRs. Many

studies have used methods that include a mix of clinical

expert opinions and automated methods. A. Neuraz et al. [56]

have developed a method that used the frequency and

TF-IDF [57] to establish the relationship between clinical

phenotype and rare diseases. To access the performance

of deep learning methods to phenotyping tasks, Gehrmann

et al. [58] have thoroughly compared the results of CNNs

with those obtained from concept extraction-based meth-

ods using clinical narratives and those from n-gram based

models. Concept extraction is a popular method utilized

extensively in phenotyping of many diseases. One popular

project is the cTAKES (clinical Text Analysis and Knowl-

edge Extraction System) developed at Mayo [59]. cTAKES

is an openNLP toolkit that can be used to extract clini-

cal meaning from many clinical notes. It produces named

entities from each word in the clinical note and check

its meaning from the UMLS through its concept unique

identifier (CUI).

Use Case 1 (Creating Clinical Phenotypes Using Multi-

Layer Perceptron Deep Neural Network (RNN) on EHR

Data):Arguing with the precision of the International Classi-

fication of Diseases (ICD) codes that establish medical codes

and associated phenotypes, Rashidian et al. [61] used lab

results, patients’ demographics, as well as medication data to

establish a more trustworthy coding scheme using deep learn-

ing for ensuring the credibility of these codes, they partnered
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FIGURE 9. Jointly embedding ICD9 codes with clinical notes in a unified
vector space to establish diseases phenotype and predicting future visits.

with medical experts who verified the trustworthiness of the

model codes vis-a-vis the accepted ICD9 codes. Their model

was found to provide extensive and precise phenotypes than

those described in the ICD9 standard.

Use Case 2 (Embedding Medical Concepts and Words

Into a Unified Vector Space [62]): Most of the studies who

tried to leverage EHR data for patient’s phenotyping used

the embedding of medical codes like the ICD9 and fed the

resulting vectors to a neural network to establish diseases phe-

notypes or to predict a clinical adverse event [63]–[66]. Other

approaches have tried to embed the extracted medical codes

and accompanying words separately. This approach can have

its drawbacks as the words will lose their medical contexts.

Rather than using the normal skip gram where the context

words of the current word are established by calculating the

probability of each neighboring word being a context word,

Bai et al. used a Joint Skip-gram approach to jointly embed

the medical codes and words from clinical notes. it is done

by representing each patient visit by a pair made of diagnosis

codes and words from clinical notes (D, N) where D = {C1,

C2, C3...} and N = {N1, N2, N3.). With the MIMIC III data

set 54,965 such pairs have been obtained. The Joint Skip

gram was used to define the context of the diagnosis code in

question with also other codes in the same visit, as well as all

words in the clinical note. To aggregate data for the model,

for each patient visit, all diagnosis codes and all clinical

notes were extracted. As shown in Fig. 9 Stochastic gradient

algorithmwith negative samplingwas used as an optimization

algorithm to predict ICD-9 codes associated with future visit

as well as establishing diseases phenotypes.

D. PATIENT’S FEATURES REPRESENTATION

To perform an adverse clinical event prediction or any other

EHR task a precise patient representation and stratification

is very paramount. It is highly erroneous to directly feed the

EHR raw data to a deep network to perform clinical tasks

like predictions, clinical trial recruitment or disease detec-

tion because of the high heterogeneity and sparsity. Hence,

before performing these clinical support tasks with deep

networks a feature learning framework which can represent

the patient’s features with less information overlap has to be

constructed from the vastly heterogeneous EHR data. Various

models have represented patients in a form of a 2D vector

with patients on one dimension and amalgamation of each

patient’s records (ICD9 diagnosis, lab tests, clinical notes

content...) in another dimension. A common approach is to

have a clinical domain expert manually annotate the patterns

to look for including the clinical features and the targets of

the learning scheme. However, annotating features using a

domain expert in an ad hoc manner is tiresome and imprecise.

Recently unsupervised deep learning has revolutionized the

process of feature learning and selection. Authors in [67]

have use unsupervised learning for feature selection. First

the EHR raw data was divided into continuous features and

categorical features. Continuous features were first changed

into representational features using stacked auto encoders and

combined with categorical features then SVM was applied

for features selection. The resulting features were fed to a

model which can predict the amount of LVMI (Left Ven-

tricular Mass Index) a common indicator of heart damage

risk.

The most challenging hustle for deep leaning models is

the small size of the input data set. This creates a natural

incompatibility of EHR with deep learning models because

when small data sets are directly fed to a deep network it leads

to overfitting. One approach is to fuse deep features (obtained

by using a deep network) with traditional features like texture

feature, color moment obtained by traditional methods like

Haarlick [68] method. The study in [69] used lung tumor

images and transfer learning techniques using 3 existing CNN

models that were pre-trained on ImageNet public data set [70]

and combined obtained features with traditional features to

predict Survival among Patients with lung adenocarcinoma.

Authors in [71] used a CNN based Coding Network for med-

ical image classification using deep features obtained with

convolutional neural network and some selected traditional

features obtained with a solid background knowledge of med-

ical images like color histogram, color moment and texture

features.

Choi et al. proposedMed2Vec [72] a patient representation

that learns from medical codes associated with a clinical

visit to predicts codes that are likely to characterize the

next visits. The issues addressed in the study are that repre-

sentations obtained from RNN are difficult to interpret and

difficult to scale with high dimensional EHR data. More-

over, these representations fall short of critical information

that is embedded in the patient’s demographic information.

The authors adapted the usual embedding skip-gram model

to medical concepts. The first step of the solution is to

represent a patient’s visit as a unified vector consisting of

codes(diagnosis, subscriptions, etc..).using these codes as

inputs, ReLu activation was applied to obtain an intermedi-

ate vector which was then combined with patient’s demo-

graphic information to produce Vt an intermediate visit vec-

tor and use it to train a SoftMax classifier that is able to

predicts the medical codes of other visits within a context

window.

Use Case 3 (Deep Features Learning From EHR Raw

Data): The most effective method is adopted by authors

in [73], [23]. In these researches, authors argue that super-

vised feature learning lacks an ability to fully grasp novel
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FIGURE 10. Patient’s clinical features representation and selection overview.

FIGURE 11. Potential medical information hidden from social acquaintances and their possible contribution to HER.

patterns and features. They propose a data driven approach

to automatically identify patterns and dependencies in the

data without the need of a domain expert to annotate the

features. Fig. 10 is a blueprint of this novel approach. The first

step is to extract patient data (medication, diagnoses, lab

tests, clinical notes ...). The data is pre-processed including

appropriate embedding of clinical notes, then each patient is

represented as a single vector. The next step is the dimen-

sionality reduction stage which consists of feature represen-

tation and selection using stacked Denoising Autoencoders

(DAE) which are unsupervised learning neural networks that

can generate their own labels from the training data. The

SDAEs are used to transform these patient vectors into more

representative descriptors which can be input of another deep

learning prediction model. The last stage is the use of super-

vised learning to perform various clinical support tasks like

diagnosis proposition, adverse event prediction, clinical trial

recruitment etc. As an example, these features can be used

together with risk factors (like death or ECG readings) to train

a supervised model which can predict adverse events.

E. MEDICATION INFORMATION EXTRACTION

Medication information is an important area of biomedi-

cal research as it contributes greatly to pharmacovigilance,

adverse events’ detection, bio curation assistance, integra-

tive biology etc. Through much of the information can be

extracted from social fabric like social networks, EHR con-

tains also much of the immediate medication information.

However, the process of mining this information from the

EHR can be a lengthy tiresome process as the data is hidden

deep in EHR’s clinical narratives, patient’s encounters, ICU

discharges, and charted events. The task of a computerized

Adverse drug event recognition involves 3 main tasks which

are the Named Entity Recognition (NER) a process of detect-

ing key drug mentions, identifying these named events a pro-

cess of identifying the context of these mentions, and finding
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relationship between them. The medication information

extraction system aims to establish the medications names,

and their signatures like dosages, duration, prescription rea-

sons, complications, frequencies, route of administering, and

any other information deemed necessary by the prescribing

entity. Early use cases include MedEx [74] a system that

automatically extract medication names and their signatures

from clinical narratives using NLP. Authors of MedEx argue

that usual text parsing methods like regular expression can-

not apply in medication information extraction as they fall

short of contextual information out of clinical narratives.

MedEx uses a semantic-based approach with a much finer

granularity.

F. INTEGRATING EHR SOCIAL NETWORK AND WEB DATA

It is most likely that a patient shares clinical insights like

adverse drug event within social acquaintances than with his

physician. With the explosion of social networks, there is

huge, untapped medical insights which can be used together

with hospital’s EHR for clinical support systems. Though

the medical research community agrees that social networks

should be part of the EHR, the modalities of how to go

about it remain a highly debated subject. The concerns of

this reluctance are high noise due to spelling errors, impre-

cise descriptions, and ambiguous or casual use of medical

terms. Some clinical tasks may even depend on social data

than more formal EHR data. For example, recent researches

have shown that these social network services can hold data

related to pharmacovigilance and medication adherence than

EHR because a big number of patients might not return to

hospital to narrate the drug reactions unless there is an acute

condition that resulted into taking the drug. Recently deep

learning models have been applied to SNS data to contribute

to various clinical tasks [75]–[79]. Integration of social media

in the clinical care pipeline helps patients to participate in

self-care, health promotion, and disease prevention efforts

by the public. Ideas on how to integrate the SNS into EHR

argue that these data should be supplemental not overriding

other EHR data like charted events, lab events, lab tests, etc.

Fig. 11 shows a patient message to his acquaintances and

possible EHR tasks that can leverage these types of messages.

VII. CONCLUSION

We have given insights and technical intuitions of how

to leverage the EHR data using deep learning approaches.

We unraveled the technical side of various efforts that have

been invested to apply deep learning models for clinical

knowledge discovery using electronic Health Records vast

data sets. Despite clear success of deep learning for other

hospital’s tasks like billing and patient management there is

still much to do in the application of EHR data with deep

learning methods. Available successes in this domain still

depend on a supervision of a medical domain expert. More

research needs to be done to bring AI and deep leaning on

the patient’s bedside. Unlike other deep learning applica-

tions, the medical field is challenged by the structure of the

data itself and the acceptance of the models by the medical

community. Even if the model might be working from a

computing point of view its adoption will be hindered by the

reluctance by clinicians who still exercise their professions

using abductive reasoning. Though deep learning algorithms

perform better even with little or no feature engineering,

considering high risk factors associated with EHR tasks,

coupled with high longitudinality, sparsity, and noisiness of

EHR data there is a requirement to perform a thorough patient

representation that consists of appropriate patient’s feature

selection and representation before a predictive deep learning

model.
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