
Deep Learning for Event-Driven Stock Prediction

Xiao Ding†∗, Yue Zhang‡, Ting Liu†, Junwen Duan†

†Research Center for Social Computing and Information Retrieval
Harbin Institute of Technology, China
{xding, tliu, jwduan}@ir.hit.edu.cn

‡Singapore University of Technology and Design
yue zhang@sutd.edu.sg

Abstract

We propose a deep learning method for event-
driven stock market prediction. First, events are
extracted from news text, and represented as dense
vectors, trained using a novel neural tensor net-
work. Second, a deep convolutional neural network
is used to model both short-term and long-term in-
fluences of events on stock price movements. Ex-
perimental results show that our model can achieve
nearly 6% improvements on S&P 500 index predic-
tion and individual stock prediction, respectively,
compared to state-of-the-art baseline methods. In
addition, market simulation results show that our
system is more capable of making profits than pre-
viously reported systems trained on S&P 500 stock
historical data.

1 Introduction

It has been shown that the financial market is “information-
ally efficient” [Fama, 1965] — stock prices reflect all known
information, and the price movement is in response to news or
events. As web information grows, recent work has applied
Natural Language Processing (NLP) techniques to explore fi-
nancial news for predicting market volatility.

Pioneering work mainly uses simple features from news
documents, such as bags-of-words, noun phrases, and named
entities [Kogan et al., 2009; Schumaker and Chen, 2009]. Al-
though useful, these features do not capture structured rela-
tions, which limits their potentials. For example, representing
the event “Microsoft sues Barnes & Noble.” using term-level
features {“Microsoft”, “sues”, “Barnes”, “Noble”} alone, it
can be difficult to accurately predict the price movements
of Microsoft Inc. and Barnes & Noble Inc., respectively, as
the unstructured terms cannot differentiate the accuser (“Mi-
crosoft”) and defendant (“Barnes & Noble”).

Recent advances in computing power and NLP technology
enables more accurate models of events with structures. Us-
ing open information extraction (Open IE) to obtain struc-
tured events representations, we find that the actor and object

∗This work was done while the first author was visiting Singa-
pore University of Technology and Design

Figure 1: Example news influence of Google Inc.

of events can be better captured [Ding et al., 2014]. For ex-
ample, a structured representation of the event above can be
(Actor = Microsoft, Action = sues, Object = Barnes & Noble).
They report improvements on stock market prediction using
their structured representation instead of words as features.

One disadvantage of structured representations of events
is that they lead to increased sparsity, which potentially lim-
its the predictive power. We propose to address this issue by
representing structured events using event embeddings, which
are dense vectors. Embeddings are trained such that similar
events, such as (Actor = Nvidia fourth quarter results, Action
= miss, Object = views) and (Actor = Delta profit, Action =
didn’t reach, Object = estimates), have similar vectors, even if
they do not share common words. In theory, embeddings are
appropriate for achieving good results with a density estima-
tor (e.g. convolutional neural network), which can misbehave
in high dimensions [Bengio et al., 2005]. We train event em-
beddings using a novel neural tensor network (NTN), which
can learn the semantic compositionality over event arguments
by combining them multiplicatively instead of only implic-
itly, as with standard neural networks.

For the predictive model, we propose to use deep learning
[Bengio, 2009] to capture the influence of news events over
a history that is longer than a day. Research shows dimin-
ishing effects of reported events on stock market volatility.
For example, Xie et al. [2013], Tetlock et al. [2008] and
Ding et al. [2014] show that the performance of daily predic-
tion is better than weekly and monthly prediction. As shown
in Figure 1, the influences of three actual events for Google

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2327

Inc. in the year 2012 was the highest on the second day, but
gradually weakened over time. Despite the relatively weaker
effects of long-term events, the volatility of stock markets is
still affected by them. However, little previous work quanti-
tively models combined short-term and long-term effects of
events. To fill in this gap, we treat history news as daily event
sequences, using a convolutional neural network (CNN) to
perform semantic composition over the input event sequence,
and a pooling layer to extract the most representative global
features. Then a feedforward neural network is used to asso-
ciate the global features with stock trends through a shared
hidden layer and a output layer.

Experiments on large-scale financial news datasets from
Reuters and Bloomberg show that event embeddings can ef-
fectively address the problem of event sparsity. In addi-
tion, the CNN model gives significant improvement by us-
ing longer-term event history. The accuracies of both S&P
500 index prediction and individual stock prediction by our
approach outperform state-of-the-art baseline methods by
nearly 6%. Market simulation shows that our model is more
capable of making profits compared to previous methods. To
our knowledge, we are the first to use a deep learning model
for event-driven stock market prediction, which gives the best
reported results in the literature.

2 Neural Tensor Network for Learning Event

Embeddings

2.1 Event Representation and Extraction

We follow our previous work [Ding et al., 2014] and represent
an event as a tuple E = (O1, P,O2, T), where P is the action,
O1 is the actor and O2 is the object on which the action is
performed. T is the timestamp of the event, which is mainly
used for aligning stock data with news data, and not for event
embeddings. For example, the event “Jan 13, 2014 - Google
Acquires Smart Thermostat Maker Nest For for $3.2 billion.”
is modeled as: (Actor = Google, Action = acquires, Object =
Nest, Time = Jan 13, 2014).

We extract structured events from free text using Open IE
technology and dependency parsing. Given a sentence ob-
tained from news text, we first use ReVerb [Fader et al., 2011]

to extract the candidate tuples of the event (O′

1, P
′, O′

2), and
then parse the sentence with ZPar [Zhang and Clark, 2011] to
extract the subject, object and predicate. We assume that O′

1,
O′

2, and P ′ should contain the subject, object, and predicate,
respectively. If this is not the case, the candidate tuple is fil-
tered out. Redundancy in large news data allows this method
to capture major events with high recalls.

2.2 Event Embedding

Events are extremely sparse. Our previous work used back-
off features (e.g. (O1, P), (P,O2), O1, P , O2) to address this
issue, and we generalized verbs into verb classes, so that sim-
ilar actions become one feature [Ding et al., 2014]. In con-
trast, our goal is to automatically learn embeddings for struc-
tured event tuples E = (O1, P,O2), which draw more funda-
mental relations between events, even if they do not share the
same action, actor or object.

Figure 2: Neural tensor network for event embeddings.

Our task is related to previous work on learning distributed
representations of multi-relational data from knowledge bases
[Bordes et al., 2011; Socher et al., 2013], which learns the
embedding of (e1, R, e2), where e1 and e2 are named entities
and R is the relation type. However, learning structured event
embedding has two significant differences.

First, the number of relation types in knowledge bases is
limited. Hence, most previous work models a relation type
by using a matrix or a tensor, and train a model for each spe-
cific relation type. However, as introduced in the previous
section, we extract events based on Open IE technology, and
the event types is an open set. Therefore, it is more difficult
to train a specific model for each event type. To address this
issue, we represent the action P as a vector, which shares the
dimensionality with event arguments.

Second, the goal of relational database embedding is to be
able to state whether two entities (e1, e2) are in a certain rela-
tion R. When R is symmetric, e1 and e2 have interchangeable
roles. In contrast, each argument of the event has a specific
role, which is not interchangeable. To address this difference,
we design a novel neural tensor network to embed structured
events, in which the role of argument is explicitly modeled.
As illustrated in Figure 2, two tensors, T1 and T2, are used
to model the roles of O1 and O2, respectively. O1T1P and
PT2O2 are used to construct two role-dependent embeddings
R1 and R2, respectively. A third tensor, T3, is used for se-
mantic compositionality over R1 and R2, and generate a com-
plete structured embedding U for E = (O1, P,O2).

Neural Tensor Network

The input of neural tensor network is word embeddings and
the output is event embeddings. We learn the initial word rep-
resentation of d-dimensions (d = 100) from large-scale finan-
cial news corpus, using the skip-gram algorithm [Mikolov et
al., 2013]. As most event arguments consist of several words,
we represent the actor, action and object as the average of its
word embeddings, respectively, allowing the sharing of statis-
tical strength between the words describing each component
(e.g. Nokia’s mobile phone business and Nokia).

From Figure 2, R1 ∈ R
d is computed by:

R1 = f(OT
1 T

[1:k]
1 P +W

[

O1

P

]

+ b) (1)

2328

Algorithm 1: Event Embedding Training Process

Input: E = (E1, E2, · · · , En) a set of event tuples; the
model EELM

Output: updated model EELM ′

1 random replace the event argument and got the corrupted
event tuple

2 Er ← (Er
1 , E

r
2 , · · · , E

r
n)

3 while E 6= [] do

4 loss ← max (0 , 1 − f (Ei) + f (E r
i
) + λ‖Φ‖22

5 if loss > 0 then
6 Update(Φ)
7 else
8 E ← E/{Ei}
9 return EELM

where T
[1:k]
1 ∈ R

d×d×k is a tensor, and the bilinear tensor

product OT
1 T

[1:k]
1 P is a vector r ∈ R

k, where each entry

is computed by one slice of the tensor (ri = OT
1 T

[i]
1 P, i =

1, · · · , k). The other parameters are a standard feed-forward
neural network, where W ∈ R

k×2d is the weight matrix, b ∈
R

k is the bias vector, and f = tanh is the activation function.
R2 and U are computed in the same way as R1.

We also experiment with randomly initialized word vectors
as the input of NTN, which is commonly used in related work
on structured embedding [Bordes et al., 2011; Jenatton et al.,
2012]. In our case, pre-trained word embeddings give slightly
better results than randomly initialized embeddings.

Training

We extract more than 10 million events from Reuters finan-
cial news and Bloomberg financial news as the training data
for event embeddings. The training algorithm repeats for N
iterations over the training examples, which is a set of event
tuples E = (O1, P,O2), extracted from the training corpus
using the method in Section 2.1. In each iteration, the train-
ing procedure is shown in Algorithm 1.

We assume that event tuples in the training set should be
given a higher score than corrupted tuples, in which one of
the event arguments is replaced with a random argument.
The corrupted event tuple is denoted as Er = (Or

1, P,O2).
Specifically, we replace each word in O1 with a random word
wr in our dictionary D (it contains all the words in the train-
ing data) and derive a corrupted Or

1. We calculate the margin
loss of the above two event tuples as:

loss(E ,E
r) = max(0 , 1 − f (E) + f (E r)) + λ‖Φ‖22 , (2)

where Φ = (T1, T2, T3,W, b) is the set of parameters. The
standard L2 regularization weight λ is set as 0.0001. If the
loss loss(E,Er) = max(0, 1 − f(E) + f(Er)) is equal to
zero, the algorithm continues to process the next event tuple.
Otherwise, the parameters are updated to minimize the loss
using the standard back-propagation (BP) algorithm. The it-
eration number N is set to 500.

Figure 3: Architecture of the prediction model based on a
deep convolutional neural network.

3 Deep Prediction Model

We model long-term events as events over the past month,
mid-term events as events over the past week, and short-term
events as events on the past day of the stock price change. As
shown in Figure 3, the prediction model learns the effect of
these three different time spans on stock prices based on the
framework of a CNN.

The input to the model is a sequence of event embeddings,
where events are arranged in chronological order. Embed-
dings of the events on each day are averaged as a single input
unit (U). The output of the model is a binary class, where
Class +1 represents that the stock price will increase, and
Class -1 represents that the stock price will decrease. As
shown in Figure 3, for long-term (left) and mid-term (mid-
dle) news, the narrow convolution operation is used to com-
bine l (l = 3) neighbour events. It can be viewed as feature
extraction based on sliding window, which can capture local
information through combinations of vectors in a window.

For our task, it is necessary to utilize all local features and
predict stock price movements globally. Hence, we use a max
pooling layer on top of the convolutional layer, which forces
the network to retain only the most useful local features pro-
duced by the convolutional layer. Note that the convolution
operation is only applied to the long-term and mid-term event
embeddings, because the unit of timing is one day.

Formally, given a series of input event embeddings U =
(U1, U2, · · · , Un), where Ui ∈ R

d, a one-dimensional con-
volution function takes the dot product of the weight vector
W1 ∈ R

l with each l events (sliding window) in U to obtain
a new sequence Q:

Qj = W
T
1 Uj−l+1:j (3)

To determine the most representative features globally, we
perform a max pooling operation over Q.

Vj = maxQ(j, ·), (4)

where Q(j, ·) is the j-th row of matrix Q. After max pooling,
we obtain the feature vector V . For long-term and mid-term
events, we obtain the feature vector V l and V m, respectively.

2329

Training Development Test
#documents 442,933 110,733 110,733
#words 333,287,477 83,247,132 83,321,869
#events 295,791 34,868 35,603
time interval 02/10/2006 -

18/06/2012
19/06/2012 -
21/02/2013

22/02/2013 -
21/11/2013

Table 1: Statistics of datasets.

For short-term events, we obtain the feature vector V s by di-
rectly using its averaged event embeddings Us. The feature
layer is the combination of long-term, mid-term and short-
term feature vectors V C = (V l, V m, V s).

To correlate the feature vector V C and stock prices, we
use a feedforward neural network with one hidden layer and
one output layer. Formally, let the values of the output layer
be ycls (cls ∈ {+1,−1}), its input be netcls , and Y be the
neuron vector of the hidden layer; then: ycls = f(netcls) =
σ(WT

3 · Y) and Y = σ(WT
2 · V

C), where σ is the sigmoid
function, W2 is the weight vector between the hidden layer
and the feature layer, and W3 is the weight vector between
the neuron cls of the output layer and the hidden layer.

4 Experiments

4.1 Experimental Settings

We use financial news from Reuters and Bloomberg over the
period from October 2006 to November 2013, released by
Ding et al. [2014]1. Randinsky et al. [2012] and Ding et al.
[2014] show that news titles are more useful for prediction
compared to news contents. This paper extracts events only
from news titles. We conduct our experiments on predicting
the Standard & Poor’s 500 stock (S&P 500) index and its in-
dividual stocks, obtaining indices and prices from Yahoo Fi-
nance. Detail statistics of training, development (tuning) and
test sets are shown in Table 1.

Following Das and Chen [2007] and Xie et al. [2013],
the standard measure of accuracy (Acc) and Matthews Cor-
relation Cofficient (MCC) are used to evaluate S&P 500 in-
dex prediction and individual stock prediction. Following
Lavrenko et al. [2000], we also evaluate the profitability of
our proposed model.

4.2 Baselines and Proposed Models

The baselines are two state-of-the-art financial-news-based
stock market prediction systems: Luss and d’Aspremont et
al. [2012] propose using bags-of-words to represent news
documents, and constructing the prediction model by using
Support Vector Machines (SVMs). Ding et al. [2014] report
a system that uses structured event tuples E = (O1, P,O2) to
represent news documents, and investigates the complex hid-
den relationships between events and stock price movements
by using a standard feedforward neural network.

In contrast to the baselines, we use a neural tensor network
to learn event embeddings for representing news documents,
and build a prediction model based on a deep CNN. To make
detailed analysis, we construct the following five models:

1http://ir.hit.edu.cn/∼xding/index english.htm

Acc MCC
Luss and d’Aspremont [2012] 56.42% 0.0711
Ding et al. [2014] (E-NN) 58.94% 0.1649
WB-NN 60.25% 0.1958
WB-CNN 61.73% 0.2147
E-CNN 61.45% 0.2036
EB-NN 62.84% 0.3472
EB-CNN 65.08% 0.4357

Table 2: Development results of index prediction.

• WB-NN: word embeddings input and standard neural
network prediction model [Ding et al., 2014];

• WB-CNN: word embeddings input and convolutional
neural network prediction model (this paper);

• E-CNN: structured events tuple [Ding et al., 2014] input
and convolutional neural network prediction model (this
paper);

• EB-NN: event embeddings input (this paper) and stan-
dard neural network prediction model [Ding et al.,
2014];

• EB-CNN: event embeddings input and convolutional
neural network prediction model (this paper).

A word embedding input (WB) consists of the sum of each
word in a document; it addresses sparsity in word-based in-
puts, and can serve as a baseline embedding method. The
standard feedforward neural network (NN) is used as a base-
line to compare with the deep CNN.

4.3 Development Results

S&P 500 Index Prediction

We test the influence of event embeddings by comparing them
with the structured event representation [Ding et al., 2014],
and the CNN model by comparison with the standard feed-
forward neural network model [Ding et al., 2014]. The ex-
perimental results are shown in Table 2. We find that:

(1) Comparison between the word-embedding-based mod-
els and event-embedding-based models (e.g. WB-NN vs EB-
NN and WB-CNN vs EB-CNN) confirms our previous con-
clusion [Ding et al., 2014]: events are better features than
words for stock market prediction.

(2) Event embedding is useful for the task of stock market
prediction. Given the same prediction model (CNN or NN),
the event embeddings based methods (EB-NN and EB-CNN)
achieve consistently better performance than the events-based
methods (E-NN and E-CNN). This is likely due to the follow-
ing reasons. First, low-dimensional dense vector can effec-
tively alleviate the problem of feature sparsity. In fact, using
word embeddings of events (WB-NN) only, we can achieve
better performance than Ding et al. [2014] (E-NN). This con-
trast demonstrates the importance of reducing sparsity, which
rivals the effect of structured information.

Second, we can learn deeper semantic relations between
event embeddings, by modeling the semantic compositional-
ity over word embeddings. For example, the two events E1 =
(Actor = Nvidia fourth quarter results, Action = miss, Object
= views) in the training data and E2 =(Actor = Delta profit,

2330

(a) Accuarcy (b) MCC

Figure 4: Development results of individual stock prediction (companies are named by their ticker symbols).

Average Profit
Luss and d’Aspremont [2012] $8,694
Ding et al. [2014] $10,456
EB-CNN $16,785

Table 3: Averaged profit of 15 individual companies.

Action = didn’t reach, Object = estimates) in the development
data result in different features by Ding et al. [2014] even af-
ter backing-off, as the actor and the object of E1 and E2 are
different, and the predicates of these two events cannot be
generalized to the same verb class. However, the semantic
distance of these two event embeddings are very small in our
model, even though they do not have similar word embed-
dings. As a result, E1 can serve as a relative training example
for predicting using E2 in our model.

(3) CNN-based prediction models are more powerful than
NN-based prediction models (e.g. WB-CNN vs WB-NN,
EB-CNN vs EB-NN, and E-CNN vs E-NN). This is mainly
because CNN can quantitively analyze the influence of the
history events over longer terms, and can extract the most
representative feature vector for the prediction model.

Individual Stock Prediction

We compare our approach with the baselines on individual
stock prediction using the development dataset. We use the 15
companies selected by Ding et al. [2014] from S&P 500. The
list consists of samples from high-ranking, middle-ranking,
and low-ranking companies from S&P 500 according to the
Fortune Magazine. The results are shown in Figure 4 (as
space is limited, we only show comparison between EB-CNN
and the two baselines). We find that:

(1) Our model achieves consistently better performance
compared to the baseline methods, on both individual stock
prediction and S&P 500 index prediction.

(2) Our model achieves relatively higher improvements on
those lower fortune ranking companies, for which fewer news
are available. For the baseline methods, the prediction results
of low-ranking companies dramatically decrease. However,
our model considers the diminishing influence of monthly
news and weekly news, which are important features for indi-
vidual stock prediction. Hence, even without daily news, our
model can also give relatively accurate prediction results.

Index Prediction Individual Stock Prediction
Acc MCC Acc MCC Profit

Luss [2012] 56.38% 0.07 58.74% 0.25 $8,671
Ding [2014] 58.83% 0.16 61.47% 0.31 $10,375
EB-CNN 64.21% 0.40 65.48% 0.41 $16,774

Table 4: Final results on the test dataset.

Market Simulation

We simulate real stock trading by following the strategy pro-
posed by Lavrenko et al. [2000], which mimics the behavior
of a daily trader who uses our model in a simple way. If the
model indicates that an individual stock price will increase
the next day, the fictitious trader will invest in $10,000 worth
of that stock at the opening price. After a purchase, the trader
will hold the stock for one day. During the holding time, if the
stock can make a profit of 2% or more, the trader sells imme-
diately. Otherwise, at the end of the day, the trader sells the
stock at the closing price. The same strategy is used for short-
ing, if the model indicates that an individual stock price will
decrease. If the trader can buy the stock at a price 1% lower
than shorted, he/she buys the stock to cover. Otherwise, the
trader buys the stock at the closing price.

We use the same training, development and test dataset
as shown in Table 1, for the simulation. Table 3 summa-
rizes the average cumulative profits over the 15 companies
in Section 4.3. These results are obtained on the develop-
ment data. The cumulative earnings of our model averaged
$16,785 (which means that trading $10,000 worth of stocks
would result in a net profit of $16,785), which is higher than
Luss and d’Aspremont [2012] ($8,694) and Ding et al. [2014]

($10,456). Except for the reasons analyzed in Sections 4.3,
we notice that if there is no news reported for an individual
stock on the previous day, their models cannot predict the
trend of the stock price movements on a day, because they
do not leverage long-term and mid-term news. This does not
hurt the evaluation results of accuracy and MCC, but can hurt
the real profit.

To verify the statistical significance of our earnings, we
perform a randomization test [Edgington and Onghena, 2007]

by randomly buying or shorting for 1000 trials. The mean
profit over the randomized test is -$9,865 and the perfor-
mance of our model is significant at the 1% level.

2331

Stock Profit of Lavrenko et al. [2000] Profit of EBCNN
IBM $47,000 $42,000
Lucent $20,000 $27,000
Yahoo $19,000 $32,000
Amazon $14,000 $35,000
Disney -$53,000 $7,000
AOL -$18,000 $14,000
Intel -$14,000 $8,000
Oracle -$13,000 $17,000

Table 5: Profit compared with Lavrenko et al. [2000]. (there
are 4 negative profit stocks out of 15 which are not included
in this table)

4.4 Final Results

Table 4 shows the final experimental results on the test
dataset, where Luss [2012] is the model of Luss and
d’Aspremont [2012] and Ding [2014] is the model of our
previous work. As space is limited, we only show the av-
erage prediction results of 15 individual stocks. The results
demonstrate consistently better performance, which indicates
the robustness of our model.

Market Simulation

To compare with Lavrenko et al. [2000], Table 5 shows the
profit for eight companies (i.e., IBM, Lucent, Yahoo, Ama-
zon, Disney, AOL, Intel and Oracle) selected by them. We
use for training data news between October and December
1999, and for test data news of 40 days starting on January
3rd, 2000, which is the same with Lavrenko et al. [2000].
Except for IBM, we achieve consistently better performance.

Better trading strategies. To further investigate the effec-
tiveness of our model, we buy or sell stocks according to the
classification probability. If the uptrend probability is higher
than a threshold β, we buy $10,000 worth of the stock. If
the downtrend probability is higher than β, we short $10,000
worth of the stock. Otherwise, we do not buy or short the
stock. The results are shown in Figure 5. We find that the
best profit can be achieved when the threshold β is set as 0.7.
Using this strategy, the overall profit is $82,000, significantly
higher than $21,000 by using Lavrenko et al. [2000]’s strat-
egy. The results suggest space for further improvement. Ex-
ploration of sophisticated trading strategies are beyond the
scope of this paper.

5 Related Work

Efficient Market Hypothesis (EMH) [Fama, 1965] states that
the price of a security reflects all of the information available,
and that everyone has a certain degree of access to the infor-
mation. Despite 50 years of studies from the fields of finance,
computer science and other research communities, the debate
continues over what kinds of information can be useful for
stock market prediction. In Artificial Intelligence (AI), three
sources of information has been the most exploited for algo-
rithmic stock market prediction.

First, some prediction techniques leverage historical and
time-series data [Taylor and Xu, 1997; Andersen and Boller-
slev, 1997; Taylor, 2007]. Researchers believed that predic-
tions can be made through careful averaging of historical

Figure 5: Influence of threshold.

price and volume movements and comparing them against
current prices. It is also believed that there are certain high
or low psychological price barriers, such as support and resis-
tance levels. However, these methods ignore one key source
of market volatility: financial news.

With advances of NLP techniques, various studies have
found that financial news can dramatically affect the share
price of a security [Cutler et al., 1998; Tetlock et al., 2008;
Luss and d’Aspremont, 2012; Xie et al., 2013; Wang and
Hua, 2014]. Recently, we proposed using structured events
to represent news, which can indicate the actors and objects
of events [Ding et al., 2014] . However, modeling complex
event structures directly, their work is challenged by the new
problem of sparsity. To this end, this paper proposes learning
event embedding.

Apart from events, sentiment is another perspective of deep
semantic analysis of news documents [Das and Chen, 2007;
Tetlock, 2007; Tetlock et al., 2008; Bollen et al., 2011;
Si et al., 2013]. Tetlock [2007] examines how qualitative
information (i.e. the fraction of negative words in a partic-
ular news column) is incorporated in aggregate market valua-
tions. Bollen and Zeng [2011] find that large-scale collective
emotions (representing public moods) on Twitter is correlated
with the volatility of Dow Jones Industrial Average (DJIA). Si
et al. [2014] propose to regress topic-sentiment time-series
and stock’s price time series. Their work is orthogonal to
event-driven stock market prediction.

6 Conclusion

We demonstrated that deep learning is useful for event-driven
stock price movement prediction by proposing a novel neu-
ral tensor network for learning event embeddings, and using
a deep convolutional neural network to model the combined
influence of long-term events and short-term events on stock
price movements. Experimental results showed that event-
embeddings-based document representations are better than
discrete events-based methods, and deep convolutional neu-
ral network can capture longer-term influence of news event
than standard feedforward neural network. In market simu-
lation, a simple greedy strategy allowed our model to yield
more profit compared with previous work.

Acknowledgments

We thank the anonymous reviewers for their constructive
comments, and gratefully acknowledge the support of the Na-

2332

tional Basic Research Program (973 Program) of China via
Grant 2014CB340503, the National Natural Science Founda-
tion of China (NSFC) via Grant 61133012 and 61472107, the
TL SUTD grant IGDST1403012 and SRG ISTD 2012 038
from Singapore University of Technology and Design. We
are grateful to Siddharth Agrawal for discussions in working
with neural tensor network.

References

[Andersen and Bollerslev, 1997] Torben G Andersen and
Tim Bollerslev. Intraday periodicity and volatility persis-
tence in financial markets. Journal of empirical finance,
4(2):115–158, 1997.

[Bengio et al., 2005] Yoshua Bengio, Hugo Larochelle, and
Pascal Vincent. Non-local manifold parzen windows. In
Proc. of NIPS, pages 115–122, 2005.

[Bengio, 2009] Yoshua Bengio. Learning deep architectures
for ai. Foundations and trends R© in Machine Learning,
2(1):1–127, 2009.

[Bollen et al., 2011] Johan Bollen, Huina Mao, and Xiaojun
Zeng. Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8, 2011.

[Bordes et al., 2011] Antoine Bordes, Jason Weston, Ronan
Collobert, Yoshua Bengio, et al. Learning structured em-
beddings of knowledge bases. In Proc. of AAAI, 2011.

[Cutler et al., 1998] David M Cutler, James M Poterba, and
Lawrence H Summers. What moves stock prices? Bern-
stein, Peter L. and Frank L. Fabozzi, pages 56–63, 1998.

[Das and Chen, 2007] Sanjiv R Das and Mike Y Chen. Ya-
hoo! for amazon: Sentiment extraction from small talk on
the web. Management Science, 53(9):1375–1388, 2007.

[Ding et al., 2014] Xiao Ding, Yue Zhang, Ting Liu, and
Junwen Duan. Using structured events to predict stock
price movement: An empirical investigation. In Proc. of
EMNLP, pages 1415–1425, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[Edgington and Onghena, 2007] Eugene Edgington and
Patrick Onghena. Randomization tests. CRC Press, 2007.

[Fader et al., 2011] Anthony Fader, Stephen Soderland, and
Oren Etzioni. Identifying relations for open information
extraction. In Proc. of EMNLP, pages 1535–1545. Asso-
ciation for Computational Linguistics, 2011.

[Fama, 1965] Eugene F Fama. The behavior of stock-market
prices. The journal of Business, 38(1):34–105, 1965.

[Jenatton et al., 2012] Rodolphe Jenatton, Nicolas L Roux,
Antoine Bordes, and Guillaume R Obozinski. A latent
factor model for highly multi-relational data. In Proc. of
NIPS, pages 3167–3175, 2012.

[Kogan et al., 2009] Shimon Kogan, Dimitry Levin,
Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith.
Predicting risk from financial reports with regression. In
Proc. of NAACL, pages 272–280, 2009.

[Lavrenko et al., 2000] Victor Lavrenko, Matt Schmill,
Dawn Lawrie, Paul Ogilvie, David Jensen, and James

Allan. Mining of concurrent text and time series. In
KDD-2000 Workshop on Text Mining, pages 37–44, 2000.

[Luss and d’Aspremont, 2012] Ronny Luss and Alexan-
dre d’Aspremont. Predicting abnormal returns from
news using text classification. Quantitative Finance,
(doi:10.1080/14697688.2012.672762):1–14, 2012.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[Radinsky et al., 2012] Kira Radinsky, Sagie Davidovich,
and Shaul Markovitch. Learning causality for news events
prediction. In Proc. of WWW, pages 909–918. ACM, 2012.

[Schumaker and Chen, 2009] Robert P Schumaker and
Hsinchun Chen. Textual analysis of stock market predic-
tion using breaking financial news: The azfin text system.
TOIS, 27(2):12, 2009.

[Si et al., 2013] Jianfeng Si, Arjun Mukherjee, Bing Liu,
Qing Li, Huayi Li, and Xiaotie Deng. Exploiting topic
based twitter sentiment for stock prediction. In Proc. of
ACL, pages 24–29, Sofia, Bulgaria, August 2013.

[Si et al., 2014] Jianfeng Si, Arjun Mukherjee, Bing Liu,
Sinno Jialin Pan, Qing Li, and Huayi Li. Exploiting so-
cial relations and sentiment for stock prediction. In Proc.
of EMNLP, pages 1139–1145, Doha, Qatar, 2014.

[Socher et al., 2013] Richard Socher, Danqi Chen, Christo-
pher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Proc.
of NIPS, pages 926–934, 2013.

[Taylor and Xu, 1997] Stephen J Taylor and Xinzhong Xu.
The incremental volatility information in one million for-
eign exchange quotations. Journal of Empirical Finance,
4(4):317–340, 1997.

[Taylor, 2007] Stephen J Taylor. Modelling financial time
series. 2007.

[Tetlock et al., 2008] Paul C Tetlock, Maytal Saar-
Tsechansky, and Sofus Macskassy. More than words:
Quantifying language to measure firms’ fundamentals.
The Journal of Finance, 63(3):1437–1467, 2008.

[Tetlock, 2007] Paul C Tetlock. Giving content to investor
sentiment: The role of media in the stock market. The
Journal of Finance, 62(3):1139–1168, 2007.

[Wang and Hua, 2014] William Yang Wang and Zhenhao
Hua. A semiparametric gaussian copula regression model
for predicting financial risks from earnings calls. In Proc.
of ACL, pages 1155–1165, 2014.

[Xie et al., 2013] Boyi Xie, Rebecca J. Passonneau, Leon
Wu, and Germán G. Creamer. Semantic frames to predict
stock price movement. In Proc. of ACL, pages 873–883,
2013.

[Zhang and Clark, 2011] Yue Zhang and Stephen Clark.
Syntactic processing using the generalized perceptron and
beam search. Computational Linguistics, 37(1):105–151,
2011.

2333

