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ABSTRACT Channel state information (CSI), which enables wireless systems to adapt their transmission

parameters to instantaneous channel conditions and consequently achieve great performance boost, plays

an increasingly vital role in mobile communications. However, getting accurate CSI is challenging due

mainly to rapid channel variation caused by multi-path fading. The inaccuracy of CSI imposes a severe

impact on the performance of a wide range of adaptive wireless systems, highlighting the significance of

channel prediction that can combat outdated CSI effectively. The aim of this article is to shed light on the

state of the art in this field and then go beyond by proposing a novel predictor that leverages the strong

time-series prediction capability of deep recurrent neural networks incorporating long short-term memory

or gated recurrent unit. In addition to an analytical comparison of computational complexity, performance

evaluation in terms of prediction accuracy is carried out upon multi-antenna fading channels. Numerical

results reveal that deep learning brings a notable performance gain compared with the conventional

predictors built on shallow recurrent neural networks.

INDEX TERMS 5G, artificial Intelligence, channel prediction, channel state information, deep learning,

GRU, LSTM, machine learning, multi-antenna system, recurrent neural network.

I. INTRODUCTION

INWIRELESS communications, the form of signal trans-

mission can be basically categorized into two types:

open-loop and closed-loop. The former is blind to chan-

nel conditions, whereas the latter has to get some channel

knowledge so as to realize efficient transmission, known

as adaptive transmission system (ATS) or adaptive signal-

ing [1]. With the assist of channel state information (CSI),

the transmitter is able to adaptively choose its parameters

such as the transmit power, constellation size, coding rate,

transmit antenna, and precoding codeword to achieve great

performance. In a frequency-division duplex (FDD) system,

the CSI is obtained by estimating received reference signals

at the receiver and then fed back to the transmitter. Due to the

feedback delay, it tends to become outdated under the rapid

channel variation caused by multi-path fading. Although a

time-division duplex (TDD) system avoids the necessity of

feedback by means of channel reciprocity [2], the process-

ing delay still raises inaccuracy, especially in high mobility

or high frequency band scenarios. It has been extensively

recognized that the outdated CSI imposes overwhelming

performance deterioration on a wide variety of wireless

systems, such as multi-input multi-output (MIMO), massive

MIMO (mMIMO), multi-user scheduling, interference align-

ment (IA), beamforming (BF), transmit antenna selection

(TAS), closed-loop transmit antenna diversity (TAD), oppor-

tunistic relaying (OR), coordinated multi-point (CoMP),

orthogonal frequency-division multiplexing (OFDM), mobil-

ity/resource management (MRM), and physical layer security

(PLS). Nowadays, some of 5G usage scenarios, e.g., millime-

ter wave (having shorter wavelength) [3], high-speed train,

vehicle-to-x, and unmanned aerial vehicle [4] (with higher

moving speed), suffer from faster channel fading, further

highlighting the problem of outdated CSI.

To deal with it, researchers have proposed a large number

of algorithms and protocols, which either passively compen-

sate for the performance loss with a cost of scarce wireless

resources [5] or aim to achieve merely part of the full poten-

tial under the assumption of imperfect CSI [6]. In contrast,

an alternative technique, referred to as channel prediction [7],
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provides an efficient solution that can improve the accuracy

of CSI directly without spending extra radio resources. Its

key idea is to forecast future CSI in advance with a time span

that counteracts the induced delay. Through modeling a wire-

less channel into a set of radio propagation parameters, two

statistical prediction approaches - Auto-Regressive (AR) and

Parametric Model (PM) - have been proposed [8]. However,

the modelling is fossilized, leading to a gap between these

models and real channels, and - in addition - the parame-

ter estimation process relying on complex algorithms such

as MUSIC and ESPRIT [9] is tedious, harmed its applica-

bility in practical systems. In 2016 when AlphaGo [10], a

deep learning (DL) computer program developed by Google,

achieved a historic victory versus a human champion in

the game of Go, an exploration on Artificial Intelligence

(AI) was triggered almost in all scientific and engineer-

ing branches [11], [12]. As a classical AI technique, neural

networks (NNs) can avoid the parameter estimation thanks

to its data-driven nature, and therefore attracts the interest

from researchers in the field of channel prediction. Making

use of its capability on time-series prediction [13], a number

of predictors [14] mostly based on recurrent neural networks

(RNNs) were proposed, as surveyed in the next section.

By far the up-to-date prediction approaches are still lim-

ited to shallow neural networks, to the best knowledge of

the authors, deep learning with advanced recurrent structures

such as long short-term memory (LSTM) or gated recurrent

unit (GRU) is still untouched in this field. This article first

conducts a survey in order to shed light on the state of

the art and then go beyond by proposing a novel predic-

tor leveraging the strong time-series prediction capability of

deep learning. The mechanism of a deep RNN that incor-

porates LSTM or GRU memory cells is presented, followed

by an analytical comparison of computational complexity.

Furthermore, performance assessment in terms of prediction

accuracy is carried out upon multi-antenna fading channels,

taking into account a number of factors such as additive

noise, mobility (indicated by the Doppler frequency shift),

MIMO scale, activation function, and number of hidden neu-

rons. The main contributions of this article can be listed as

follows:
• A survey, summarizing the impact of outdated CSI on

the performance of a wide rage of wireless systems

and the existing prediction schemes based on statistical

modeling and neural networks, is provided.

• A novel MIMO channel predictor built on a deep recur-

rent neural network that incorporates LSTM or GRU

memory cells is proposed.

• The computational complexity of predictors based on

RNN, LSTM, and GRU with different hidden layers is

comparatively analyzed.

• Simulation evaluation in terms of prediction accuracy

in multi-antenna fading channels is conducted and some

representative numerical results are explained.

The rest of this article is organized as follows. Section II

surveys the performance deterioration due to the outdated

TABLE 1. List of abbreviations in alphabetical order.

CSI, and the existing prediction schemes. Section III intro-

duces a deep recurrent network with LSTM or GRU hidden

layers and presents the principle of the proposed DL pre-

dictor. Section IV analyzes the complexity of different

predictors. Section V details the simulation configuration and

presents the numerical results. Finally, Section VI closes this

article with our remarks.

II. A SURVEY ON PREVIOUS WORKS

It is well known that timely adaption of transmission

parameters in wireless systems can yield large performance

improvement. From a practical point of view, however, the

channel condition at the time of selecting parameters may

substantially differ from the condition at the instant of using

these parameters to transmit due to multi-path fading. Using

an outdated version of CSI rather than its actual value

severely deteriorates system performance, which has been

extensively reported in the literature. Some representative

works are summarized below and also listed in Table 2.
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TABLE 2. Summary of the impact of outdated CSI and the existing predictive

schemes.

Li et al. investigate the performance degradation of a

MIMO maximal ratio combining system in the presence

of feedback delay and channel estimation error [15], while

the impact of feedback delay on spectral efficiency and bit

error rate (BER) of MIMO is presented in [16]. Truong and

Heath discuss the effect of channel aging in massive MIMO

systems, where the analytical results show how capacity is

lost due to time variation in the channel [17]. The authors

of [18] focus on the challenge that delayed CSI severely

degrades the throughput of multi-user multi-input multi-

output (MU-MIMO) transmission and therefore results in

a preference for single-user transmission. In [19], Yu et al.

deliver unified analyses of BER and outage probability for

MU-MIMO systems with imperfect CSI caused by feed-

back over Rayleigh fading channels. Kim et al. compare the

effects of outdated CSI and channel estimation error on the

outage performance of cooperative distributed beamforming.

It is shown in [20] that outdated CSI seriously degrades the

performance, and therefore the outage probability is bounded

and no diversity is achieved. Conversely, channel estimation

errors merely cause slight performance degradation, and full

diversity order is still achievable. Aquilina and Ratnarajah

analyse the performance of interference alignment under

imperfect CSI [21], and point out that the full degree-of-

freedom gain promised by IA cannot be achieved if the CSI

imperfection exists. In [22], Yu et al. give a unified error

analysis of multi-antenna systems with orthogonal space-

time block coding using transmit antenna selection over

Nakagami-m channels in the presence of feedback delay

and channel estimation error. The authors of [23] derive

closed-form expressions of the average BER for closed-loop

transmit diversity in a time-selective Rayleigh fading channel

containing feedback delay, demonstrating that the advantage

of closed loop over open loop disappears due to the CSI

imperfection. Vicario et al. study the impact of outdated

CSI on opportunistic relaying by analyzing the outage prob-

ability and diversity order of decode-and-forward OR in the

presence of feedback delay [24]. The analytical and numeri-

cal results show that the diversity order of the OR system is

reduced to 1, i.e., no diversity, when CSI is outdated, being

independent of the level of CSI accuracy. The performance

of CoMP systems heavily depends on the feedback qual-

ity and channel imperfection. In [25], therefore, the authors

focus on the impact of quantized and delayed CSI on the

average achievable rate of joint transmission and coordinated

beamforming. Wang et al. report the effect of imperfect CSI

on the performance of radio resource management for an

OFDM system, identifying that the imperfect CSI yields

an error floor [26]. Guharoy and Mehta develop a com-

prehensive analysis for OFDM system performance in the

presence of feedback delays in [27], which augues that small

feedback delays markedly degrade throughput and increase

outage probability even at low vehicular speeds. The effect

of outdated CSI on handover decisions in dense networks is

studied in [28], drawing a conclusion that handover decisions

are very sensitive to the accuracy of CSI. Last but not least,

Yang et al. [29] identify a tight asymptotic lower bound

of the ergodic secrecy capacity under imperfect CSI that

includes both outdated CSI due to the transmission and pro-

cessing delay, and channel estimation errors, proving that the

imperfect CSI greatly reduces the performance of physical

layer security systems.

Compared with the traditional approaches against out-

dated CSI, channel prediction is more efficient since it

improves the accuracy of CSI directly without spending

scarce radio resources. Relying on statistical modeling, the

conventional prediction schemes, mainly including AR and

PM, were designed. By exploiting temporal correlation,

such as [51]–[54], AR models the impulse response of

a time-varying channel as an autoregressive process and

employs a Kalman filter to estimate AR coefficients. As

illustrated in [55]–[57], PM decomposes a fading chan-

nel into a superposition of a finite number of complex

sinusoids, each of which has its respective amplitude,

Doppler shift, and phase, and a channel can be extrapo-

lated from propagation parameters. The rationale is based

on an observation that these parameters change slowly in

comparison with the fading rate. Additionally, some arti-

cles also focus on the application of channel prediction in

dedicated wireless aspects. In [58], for example, Svantesson

and Swindlehurst identify the performance bound for MIMO

channel prediction and verify it through numerical evalua-

tion. Zhou and Giannakis [59] present a predictor based on

pilot symbol assisted modulation for MIMO channels and

then analyze the impact of prediction error on the BER of

a transmit-beamformer. Su et al. discuss whether prediction

is useful for CoMP systems with backhaul latency in time-

varying channels and claim that it provides much higher gain
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over channel estimation [60]. The performance degradation

of TAS systems due to outdated channel knowledge is ana-

lytically determined and a predictive scheme is designed to

mitigate delay-induced degradation in [61].

As mentioned previously, AI shows great potential since

it provides an alternative solution that replaces statistical

modeling with data-driven approaches, therefore, attracting

the interest of researcher in this field. Making use of its capa-

bility on time-series prediction, a recurrent neural network

is first employed to predict narrowband single-input single-

output (SISO) channels in [62] and is further extended to

MIMO flat-fading channels by [63], [64]. To tackle the

frequency selectivity in wideband communications, Ding and

Hirose [70] use a complex-valued NN to predict frequency-

domain channel characteristics, while a frequency-domain

RNN predictor that deal with a frequency-selective MIMO

channel as a set of parallel flat-fading sub-carriers is

proposed in [65]. Reference [71] delivers a predictive method

by means of combining a multi-layer complex-valued NN

with the chirp Z-transform. To lower complexity, the authors

of [66] propose real-valued RNNs to implement multi-step

predictors for long-range prediction [67], and further verify

its effectiveness in a TAS system [68]. In [69], a RNN pre-

dictor is presented, with an emphasis on different training

algorithms. Sui et al. deliver a jointly optimized extreme

learning machine for short-term prediction in [72], while

Tong and Sun explore the application of LSTM for long-term

prediction in their work [73]. In [75], the authors argue for

applying conventional neural network (CNN) to extract CSI

pattern and present a CNN-RNN architecture for CSI aging.

Mehrabi et al. build a decision-directed estimation with deep

feedforword neural network based channel prediction for

MIMO transmission [76]. In addition to channel prediction,

AI methods are also used to tackle classical channel estima-

tion problem, such as [77], [79]. The novelty of the predictor

proposed in this article is mainly that it makes use of deep

recurrent networks with LSTM or GRU layers, which is not

explored in this field until now.

In contrast to the aforementioned “narrow-sense”

prediction that focuses on forecasting future CSI from its

current and past values at the same frequency, a few recent

works discuss an inter-band idea to predict downlink CSI

from uplink channel knowledge. Wang et al. [74] deliver a

hybrid of a convolutional neural network and long short-

term memory to extract the downlink CSI according to

that of uplink channels assuming strong channel correlation.

Arnold et al. present a deep-learning based extrapolation

approach that infers the downlink CSI by solely observing

uplink CSI on an adjacent frequency band [78]. Because of

severe signal attenuation in radio channels, a transceiver suf-

fers from strong self-interference between its emitting signals

in the downlink and incoming signals in the uplink. Hence, a

FDD system must set an enough-wide guard band between its

paired carrier frequencies. For example, LTE band 1 (uplink:

1920 to 1980 MHz, downlink: 2110 to 2170 MHz) has a

duplex spacing of 190 MHz. From the practical perspective,

these inter-band predictive methods, relying on the frequency

correlation among adjacent channels, are infeasible.

III. DEEP LEARNING BASED CHANNEL PREDICTION

This section first introduces the principle of a deep recurrent

neural network incorporating LSTM or GRU layers, and then

illustrates the proposed DL-based channel predictor through

a prediction-aided adaptive MIMO system.

A. DEEP RNN

Differing from feedforward neural networks, recurrent neural

networks have self-connections, feeding the activation from

the previous time step back to the network as input for the

current time step. As a class of classical neural networks,

RNN is good at processing data sequences through storing

indefinite historical information in its internal state, exhibit-

ing great potential in time-series prediction [13]. However,

it suffers from the gradient exploding and vanishing prob-

lems with the gradient-based back-propagation through time

training technique, where a back-propagated error signal is

apt to be very large, leading to oscillating weights, or tends

to zero that implies a prohibitively long training time or

training does not work at all.

To this end, Hochreiter and Schmidhuber designed an ele-

gant RNN structure - long short-term memory - in 1997 in

their pioneer work of [80]. The key innovation of LSTM

to deal with long-term dependency is the introduction of

special units called memory cells in the recurrent hidden

layer and multiplicative gates that regulate the information

flow. In the original structure of LSTM, each memory block

contains two gates: an input gate protecting the memory

contents stored in the cell from perturbation by irrelevant

interference, and an output gate that controls the extent to

which the memory information applied to generate the out-

put activation. To address a weakness of LSTM, namely

the internal state grows indefinitely and eventually cause

the network to break down when processing continual input

streams that are not segmented into subsequences, a forget

gate is added [81]. It scales the internal state of the memory

cell before cycling back through self recurrent connections.

Although its history is not long, LSTM has been applied suc-

cessfully to sequence prediction and labeling tasks. It has

already gotten the state-of-the-art technological results in

many fields such as machine translation, speech recognition,

and handwriting recognition, and has also achieved a great

commercial success, justified by many unprecedented intel-

ligent services such as Google Translate and Apple iPhone

Siri.

Like a deep RNN consisting of multiple recurrent hidden

layers, a deep LSTM network is built by stacking multiple

LSTM layers. Without loss of generality, Fig. 1 shows an

example of a deep LSTM network that consists of an input

layer, three hidden layers, and an output layer. At an arbitrary

time step, as illustrated in the left part of Fig. 1, a data

vector x goes through the input feedforward layer to get d(1),

which is the activation for memory cells in the first hidden
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FIGURE 1. Schematic diagram of a three-hidden-layer deep LSTM network.

layer. Along with the recurrent unit feeding back from the

previous time step, d(2) is generated and then forwarded to

the second hidden layer. This recursive process continues

until the output layer gets y according to d(4). Unrolling the

network through time, as illustrated in the right part of Fig. 1,

the memory block at the lth hidden layer has two internal

states at time step t−1, i.e., the short-term state s
(l)
t−1 and the

long-term state c
(l)
t−1. Traversing the memory cells from the

left to the right, c
(l)
t−1 first throws away some old memories

at the forget gate, integrates new information selected by

the input gate, and then sends out as the current long-term

state c
(l)
t . The input vector d

(l)
t and the previous short-term

memory s
(l)
t−1 are fed into four different fully connected (FC)

layer, generating the activation vectors of gates:

f
(l)
t = σg

(

W
(l)
f d

(l)
t + U

(l)
f s

(l)
t−1 + b

(l)
f

)

, (1)

i
(l)
t = σg

(

W
(l)
i d

(l)
t + U

(l)
i s

(l)
t−1 + b

(l)
i

)

, (2)

o
(l)
t = σg

(

W(l)
o d

(l)
t + U(l)

o s
(l)
t−1 + b(l)

o

)

, (3)

where W and U are weight matrices for the FC lay-

ers, b stands for bias vectors, the subscripts f , i, and o

associate with the forget, input, and output gate, respec-

tively, and σg represents the sigmoid activation function,

defining by

σg(x) =
1

1 + e−x
. (4)

Dropping some old memories at the forget gate, and adding

some new information selected from current memory input

that is defined as

g
(l)
t = σh

(

W(l)
g d

(l)
t + U(l)

g s
(l)
t−1 + b(l)

g

)

, (5)

the previous long-term memory c
(l)
t−1 is thus transformed into

c
(l)
t = f

(l)
t ⊗ c

(l)
t−1 + i

(l)
t ⊗ g

(l)
t , (6)

where ⊗ denotes the Hadamard product (element-wise mul-

tiplication) for matrices, and σh is the hyperbolic tangent

function denoted by tanh, defining by

σh(x) =
e2x − 1

e2x + 1
. (7)

In addition to sigmoid and tanh, there are other com-

monly used activation functions, e.g., the rectified linear

unit (ReLU) that can be written as

σr(x) = max(0, x), (8)

which returns 0 if it receives any negative input, but for any

positive value x it returns that value back. Further, ct passes

through the tanh function and then is filtered by the output

gate to produce the current short-term memory, as well as

the output for this memory block, i.e.,

s
(l)
t = d

(l+1)
t = o

(l)
t ⊗ σh

(

c
(l)
t

)

. (9)

Since the advent of LSTM, its original structure continues

to evolve. Cho et al. [82] proposed a simplified version with

fewer parameters in 2014, known as GRU, which exhibits

even better performance over LSTM on certain smaller data

sets. In a GRU memory block, the short- and long-term states
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FIGURE 2. Block diagram of an adaptive MIMO system integrating a DL predictor

with LSTM layers.

are merged into a single one, and a single gate z
(l)
t is used

to replace the forget and input gates, namely,

z
(l)
t = σg

(

W(l)
z d

(l)
t + U(l)

z s
(l)
t−1 + b(l)

z

)

. (10)

The output gate is removed, but an intermediate state r
(l)
t is

newly introduced, i.e.,

r
(l)
t = σg

(

W(l)
r d

(l)
t + U(l)

r s
(l)
t−1 + b(l)

r

)

. (11)

Likewise, the hidden state at the previous time step trans-

verses the memory cells, drops some old memory, and loads

some now information, resulting in the current state:

s
(l)
t =

(

1 − z
(l)
t

)

⊗ s
(l)
t−1

+ z
(l)
t ⊗ σh

(

W(l)
s d

(l)
t +U(l)

s

(

r
(l)
t ⊗ s

(l)
t−1

)

+b(l)
s

)

. (12)

B. DL-BASED PREDICTOR

To shed light on the operation of the DL predictor, a point-

to-point flat-fading MIMO system with Nt transmit and Nr
receive antennas is studied. Its transmission is modelled as

r[t] = H[t]s[t] + n[t], (13)

where r[t] and s[t] denote the received and transmitted sig-

nal vectors at time step t, respectively, n[t] is the vector of

additive noise, and H[t] represents an Nr×Nt channel matrix,

whose (nr, nt)-entry hnrnt is the complex-valued gain of the

channel between transmit antenna nt and receive antenna

nr. As illustrated in Fig. 2, the transmitter requires CSI

feedback so as to adapt its transmission parameters to a

time-varying channel. Due to feedback delay τ , when the

transmitter uses H[t] to choose parameters, the instanta-

neous channel gain already changes to H[t+τ ]. It is probably

that H[t] �=H[t+τ ], especially in high mobility environment.

Outdated CSI imposes severe performance loss on a wide

variety of adaptive wireless techniques. Hence, it is worth

conducting channel prediction at the receiver to obtain pre-

dicted CSI Ĥ[t+D], where D≥τ , to counteract the effect of

feedback delay, or equivalently, performing prediction at the

transmitter.

As illustrated in Fig. 2, the instantaneous channel matrix

H[t] is estimated at the receiver, which is fed into the predic-

tor, rather than being fed back to the transmitter directly, as

does a typical adaptive MIMO system. Based on an obser-

vation that the magnitude of channel gain, i.e., |hnrnt |, is

already enough for most of adaptive tasks, the prediction is

applied on such real-valued channel data. In order to adapt

the input layer of a neural network, we add a data pre-

processing layer in the predictor, where a channel matrix is

transferred into a vector of channel magnitudes, like:

H[t] →
[

|h11[t]|, |h12[t]|, . . . , |hNrNt [t]|
]T

. (14)

Replacing xt in Fig. 1 with this channel vector and going

through a number of hidden layers, the output layer gener-

ates Ĥ[t+D], which is the D-step prediction. In addition to

the magnitude, the predictor can also be applied to process

complex-valued channel gains. To this end, the predictor

generally needs to be built on a complex-valued deep neu-

ral network, which is not well implemented in current AI

software tools. Instead, a real-valued network is applied to

predict the real and imaginary parts of channel gains, where

the data pre-processing layer transforms H[t] into

[

ℜ(h11[t]), . . . ,ℜ
(

hNrNt [t]
)

,ℑ(h11[t]), . . . ,ℑ
(

hNrNt [t]
)]T

(15)

where ℜ(·) and ℑ(·) denote the real and imaginary units,

respectively. Feeding this vector into the predictor at time t,

Ĥ[t+D] can be obtained after simply combining the pre-

dicted real and imaginary units.

In addition to flat fading channels, the predictor can

also be applied for frequency-selective channels simply

by means of converting it into a set of N narrow-band

sub-carriers through, for example, the OFDM modula-

tion [83]. At the nth sub-carrier, the signal transmission is

represented by

r̃n[t] = H̃n[t]s̃n[t] + ñn[t], n = 0, 1, . . . ,N−1, (16)

where r̃n[t] represents Nr received symbols for sub-

carrier n at time t, s̃n[t] corresponds to Nt transmit

symbols, ñ[t] is a vector of additive noise. H̃n[t] =

[h̃
nrnt
n [t]]Nr×Nt denotes the frequency-domain channel matrix,

where 1≤nr≤Nr, 1≤nt≤Nt, and h̃
nrnt
n ∈C1×1 stands for the

channel frequency response on sub-carrier n between trans-

mit antenna nt and receive antenna nr. The prediction process

on each sub-carrier is as same as that of the flat fading

channel.

IV. COMPUTATIONAL COMPLEXITY

The number of parameters including weights and biases for

a shallow RNN consisting of an input, a hidden, and an

output layer is calculated as follows:

Nrnn = ni × nc + nc × nc + nc × no + nc + no, (17)
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where nc, ni and no denote the number of hidden neurons,

input units, and output units, respectively. The computa-

tional complexity of learning models per parameter and time

step under the typical stochastic gradient descent training

is O(1). Consequently, the complexity per time step in the

training phase can be measured by O(Nrnn). During the

predicting phase, each weight or bias per time step requires

one complex-valued multiplication, amounting to the com-

plexity per prediction of O(Nrnn). According to (1)-(12),

the number of parameters for a shallow LSTM and GRU

network can be derived, which are

Nlstm = 4(ni × nc + nc × nc + nc) + nc × no + no, (18)

and

Ngru = 3(ni × nc + nc × nc + nc) + nc × no + no. (19)

Likewise, the complexity of LSTM and GRU can be

indicated by O(Nlstm) and O(Ngru), respectively.

Suppose a deep recurrent network consists of an input

layer, L hidden layers, and an output layer, where the num-

ber of input units, output units, and hidden neurons or

memory cells are ni, no, and nlc, l = 1, . . . ,L, respectively.

Thus, the number of parameters for a deep RNN can be

computed as

Ndrnn = ni × n1
c + n1

c × n1
c + n1

c

+

L
∑

l=2

(

nl−1
c × nlc + nlc × nlc + nlc

)

+ nLc × no + no. (20)

From the structure of a deep LSTM network as shown

in Fig. 1, we can calculate its number of parameters

as follows:

Ndlstm = 4
(

ni × n1
c + n1

c × n1
c + n1

c

)

+

L
∑

l=2

4
(

nl−1
c × nlc + nlc × nlc + nlc

)

+ nLc × no + no. (21)

To derive that value for a deep GRU network, it is

straightforward to replace the factor of 4 in (21) with 3.

That is,

Ndgru = 3
(

ni × n1
c + n1

c × n1
c + n1

c

)

+

L
∑

l=2

3
(

nl−1
c × nlc + nlc × nlc + nlc

)

+ nLc × no + no. (22)

To utilize a concrete case for comparison, we assume that the

predictors have the same total number of 30 hidden neurons

or memory cells (deep neural networks equally distribute

their neurons among different hidden layers) and prediction

is conducted upon a SISO channel. Then, the number of

network parameters for different predictors are obtained and

FIGURE 3. Comparison on computational complexity.

TABLE 3. The number of parameters (weights and biases) for different recurrent

networks in SISO channels with Nc = 30.

TABLE 4. Simulation configuration.

listed in Table 3. It is interesting to point out that a deeper

network corresponds to lower complexity under the same

number of hidden neurons, as visualized in Fig. 3.

V. PERFORMANCE EVALUATION

A. SIMULATION CONFIGURATION

A performance comparison between the proposed deep

learning predictors and the previous predictors based on

shallow recurrent networks is conducted. Some represen-

tative numerical results in terms of prediction accuracy

are reported in this section. We apply independent and

identically distributed flat-fading MIMO channels having 4

transmit antennas and a single receive antenna as the base-

line. Each subchannel follows the Rayleigh distribution with

an average power gain of 0 dB, where its channel gain h
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is zero-mean circularly-symmetric complex Gaussian ran-

dom variable with a variance of 1, i.e., h∼CN (0, 1). The

maximal Doppler frequency shift is set to fd = 100 Hz,

emulating fast fading environment. To acquire training and

testing data, continuous-time channel responses are sampled

with a rate of fs = 1 KHz, adhering to the assumption of

flat fading. The data set contains a series of 104 consecu-

tive CSI {H[t]|t = 1, 2, . . . , 10000}, with a time interval of

Ts = 1 ms. In our simulation, 75% of the data is allocated

for training and the remaining 25% is testing data.

A conventional RNN predictor, denoted by RNN in the

legend of the figures, is exactly a shallow network consisting

of an input, an output, and a hidden layer. If this hidden layer

is replaced with LSTM or GRU block, the network is trans-

formed into a shallow LSTM or GRU network, respectively,

marked by LSTM and GRU in the legend. The default num-

ber of hidden neurons or memory cells is set to 30, and tanh

is applied as the default activation function. Without loss of

generality, two GRU networks with two and three hidden

layers are employed in our simulation as the representative

setup of the proposed DL predictor, notated by DL(2) and

DL(3), respectively. For a fair comparison, the total number

of hidden neurons among all hidden layers is also 30.

A training process starts from an initial state where

all weights and biases are randomly selected. Recalling

the structure of the deep recurrent network in Fig. 1, the

input of the predictor is xt = H[t] and the output is its

D-step ahead prediction, i.e., yt = Ĥ[t+D]. Mean squared

error (MSE), a metric for measuring prediction accuracy,

is also chosen as the cost function here for training. It is

written as

MSE =
1

T

T
∑

t=1

∥

∥

∥
Ĥ[t + D] − H[t + D]

∥

∥

∥

2
, (23)

where T is the total number of channel samples used for eval-

uation, Ĥ[t+D] denotes the predicted CSI, H[t+D] stands

for its desired value, and ‖ · ‖ notates the Frobenius norm of

a matrix. Using the batch training method, a batch of 256

samples is fed into the network at each epoch, the resul-

tant outputs are compared with the desired values and the

error signals are propagated back through the network to

update the weights and biases by training algorithms such

as the Adam optimizer used in our simulation. The training

process is iteratively carried out until the network reaches a

certain convergence condition. Once it completes, the trained

network can be employed to predict future CSI.

B. PREDICTION ACCURACY

The prediction accuracy of the proposed DL predictors as a

function of the number of hidden neurons is evaluated and

compared with those of three predictors based on shallow

NNs. Starting from Nc = 10 hidden neurons, as summarized

in Table 5, the shallow LSTM and GRU networks achieve

the same result of MSE = 0.0021. The 2-hidden-layer

DL network notably outperforms the conventional predictors

TABLE 5. Comparison of MSE results with different number of hidden neurons.

with an MSE of 0.0013 under the same number of hidden

neurons. The 3-hidden-layer DL network performs not so

well at this point, getting a result of 0.0021 too, because dis-

tributing too few (only 10) neurons in three layers. After that,

it will clearly outperform the conventional predictors. With

the growth of Nc, the performance of predictors improves

with strengthened network capability, until a turn point, at

which the network saturates and the overfitting problem

appears. For instance, the best result of the DL(2) predictor

occurs at Nc = 30, rather than Nc = 100. Regardless the

number of neurons, the optimal results of RNN, LSTM, and

GRU are 0.0015, 0.0012, and 0.0011, respectively, which are

their performance limits, as indicated by the line of lower

bound in Fig. 4(a). Note that Fig. 4 and the following Fig. 5

display MSE values in decibels (dB) for a clear illustration,

calculating by MSEdB = 10 log10(MSE). The deep learning

can break this limit effectively, as shown in this figure, the

performance of two DL predictors is clearly below this lower

bound except the case at Nc = 10. The best performance of

DL(2) and DL(3) are 6.52×10e−4 and 6.39×10e−4, respec-

tively, with a substantial improvement over the shallow NNs.

It is noted that a simplified notation is used in Table 5 due

to space limitation, where for instance 6.52×10e−4 is writ-

ten as 6.52e−4. In summary, deep learning can improve the

accuracy of channel prediction by increasing hidden layers,

instead of stacking a large number of neurons within a single

layer. As we analyzed in the previous section, the complexity

of a deep network is less than a shallow network under the

same number of hidden neurons. Hence, we can remark that

a deep network is not only effective (higher accuracy) but

also efficient (lower complexity) over a shallow network.

To provide a hint about how to determine network hyper-

parameters, i.e., the number of hidden layers and the number

of neurons, performance evaluation of different kinds of deep

RNNs over MIMO fading channels with a typical array scale

of 4 × 2 is carried out. According to the results in Fig. 4(a),

we know that GRU is the best among all shallow neural

network based predictors, which is therefore selected as the

benchmark for comparison here. As shown in Fig. 4(b), GRU

receives its best performance with an MSE of 0.0191 when

its single hidden layer has 60 neurons. At the same point,
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FIGURE 4. Prediction accuracy indicated by MSE (in dB) as a function of the number of hidden neurons.

FIGURE 5. Performance comparisons in terms of: (a) the length of prediction and (b) the strength of additive noise.

DL(2), i.e., a two-hidden-layer deep RNN with 30 neurons

at either layer, as well as DL(4), outperform GRU, lower-

ing the MSE to 0.0144. Due to the problem of overfitting,

the prediction accuracy of GRU drops remarkably with the

number of hidden neurons increases, reaching 0.0412 at 120

neurons. In contrast, the DL predictors can further improve

performance with more neurons, where the result of 0.0134

is achieved by DL(4) with 25 neurons at each hidden layers,

which is determined as the best predictor for 4×2 MIMO

channels.

The MSE results of the predictors in terms of differ-

ent prediction lengths are illustrated in Fig. 5(a). To begin

with one-step ahead mode, i.e., D = 1, which corresponds

to a prediction length of 1 ms as the sampling rate is

fs = 1 KHz. The proposed DL predictors clearly outper-

form three conventional ones, reaping performance gains

from 3 to 5 dB. Increasing D from 1 up to 5 incremen-

tally, the results on longer ranges from 1 ms to 5 ms are

obtained. The longer prediction length, the worse prediction

accuracy, because channel’s temporal correlation weakens.

Under different lengths, deep learning can receive a gain

from 1 to 2 dB compared with shallow networks. It is

worth emphasizing again that the gain is achieved under

the identical number of hidden neurons, implying less com-

plexity in deep networks. In addition, the effect of noise is

observed and illustrated in Fig. 5(b). The horizonal axis of

the figure is the signal-to-noise ratio (SNR) of the chan-

nel samples, where the rightmost “infinity” corresponds to

an extremely large SNR, i.e., noiseless or noise-free. In

noisy channels, three conventional predictors have approx-

imately the same (bad) results. It implies that an effort to

improve accuracy against noise by using LSTM or GRU to

enhance the capability of a shallow network is marginal.

In contrast, deep learning performs a bit well and set a

clear performance border with others, exhibiting a gain of

nearly 1 dB.
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FIGURE 6. Performance comparisons with respect to: (a) activation function and (b) mobility and correlation.

Performance comparisons with respect to different acti-

vation functions and mobility/correlation are also carried

out. As illustrated in Fig. 6(a), the recurrent networks can

collectively achieve their best performance by using tanh,

which is the default activation function in our simulation.

In particular, the prediction accuracy of the conventional

RNN with the linear activation function is obviously weak,

because it cannot deal with nonlinearity. This case, LSTM

and GRU boost the performance with an order of magni-

tude, dropping the MSE value from over 0.025 to less than

0.0025. As we can observe from the figure, deep learning

has the best performance under all kinds of activation func-

tions. Fig. 6(b) compares the performance over 4×2 MIMO

channels under different mobility and antenna correlation.

For a clear illustration, the MSE values are represented

in dB in this figure. The deep learning achieves higher

prediction accuracy in all three mobility scenarios indicated

by the Doppler shift of 50, 100, and 200 Hz. In corre-

lated MIMO channels with correlation coefficient of 0.3, the

deep learning still clearly outperforms the existing shallow

networks.

Last but not least, we explore the impact of recurrent cell

structure on the performance. Using the GRU cell described

in (12) as an example, the coefficients are first swapped to

build a new cell, which is expressed by

s
(l)
t = z

(l)
t ⊗ s

(l)
t−1 +

(

1 − z
(l)
t

)

⊗ σh

(

W(l)
s d

(l)
t + U(l)

s

(

r
(l)
t ⊗ s

(l)
t−1

)

+ b(l)
s

)

.

This customized GRU with 60 hidden neurons in a single

hidden layer achieves an MSE of 0.0161 over 4 × 2 MIMO

channels, approaching closely that of the original GRU, i.e.,

0.016. That is because such swapping does not change the

structure and the new cell adopts itself by generating different

weight matrices and biases in order to get the same objective

(minimizing MSE). Additionally, we change its structure by

nulling a branch, i.e., replacing (1 − z
(l)
t ) in (12) with 0,

resulting in

s
(l)
t = z

(l)
t ⊗ σh

(

W(l)
s d

(l)
t + U(l)

s

(

r
(l)
t ⊗ s

(l)
t−1

)

+ b(l)
s

)

. (24)

It slightly outperforms the original GRU with the resulting

MSE of 0.014. It seems that we can derive a customized

recurrent network dedicated for channel prediction from the

general GRU cell. Last, we continue to nulling another

branch to get

s
(l)
t =

(

1 − z
(l)
t

)

⊗ s
(l)
t−1,

which breaks the structure of the original cell drastically and

the input data is omitted, leading to the MSE of 0.9814, tens

of times higher than the original one.

VI. CONCLUSION

This article first surveyed the impact of outdated CSI

on the performance of adaptive transmission systems, and

identified the state of the art in the area of multi-path

fading channel prediction. On top of this, a novel channel

predictor empowered by a deep recurrent neural network

integrating long short-term memory or gated recurrent unit

were proposed. In addition to an analytical comparison

on computational complexity, the evaluation of prediction

accuracy taking into account a number of affecting fac-

tors such as prediction range, additive noise, number of

hidden neurons, activation function, and mobility were con-

ducted. The numerical results in terms of mean squared

error revealed that deep learning can achieve remarkably

better performance. From the perspective of performance

and complexity, we can remark that a deep network is not

only effective (higher accuracy) but also efficient (lower

complexity) over a shallow network, opening the possi-

bility of its application into a wide variety of wireless
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systems. The positive outcomes reported in this article could

encourage a further exploration of deep learning not only in

fading channel prediction but also other aspects of wireless

communications.
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