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Abstract. The simulation of seismic waves is a core task in

many geophysical applications. Numerical methods such as

finite difference (FD) modelling and spectral element meth-

ods (SEMs) are the most popular techniques for simulating

seismic waves, but disadvantages such as their computational

cost prohibit their use for many tasks. In this work, we inves-

tigate the potential of deep learning for aiding seismic simu-

lation in the solid Earth sciences. We present two deep neu-

ral networks which are able to simulate the seismic response

at multiple locations in horizontally layered and faulted 2-D

acoustic media an order of magnitude faster than traditional

finite difference modelling. The first network is able to sim-

ulate the seismic response in horizontally layered media and

uses a WaveNet network architecture design. The second net-

work is significantly more general than the first and is able to

simulate the seismic response in faulted media with arbitrary

layers, fault properties and an arbitrary location of the seis-

mic source on the surface of the media, using a conditional

autoencoder design. We test the sensitivity of the accuracy

of both networks to different network hyperparameters and

show that the WaveNet network can be retrained to carry out

fast seismic inversion in the same media. We find that are

there are challenges when extending our methods to more

complex, elastic and 3-D Earth models; for example, the

accuracy of both networks is reduced when they are tested

on models outside of their training distribution. We discuss

further research directions which could address these chal-

lenges and potentially yield useful tools for practical simula-

tion tasks.

1 Introduction

Seismic simulations are essential for addressing many out-

standing questions in geophysics. In seismic hazard analy-

sis, they are a key tool for quantifying the ground motion

of potential earthquakes (Boore, 2003; Cui et al., 2010). In

oil and gas prospecting, they allow the seismic response of

hydrocarbon reservoirs to be modelled (Chopra and Marfurt,

2007; Lumley, 2001). In geophysical surveying, they show

how the subsurface is illuminated by different survey de-

signs (Xie et al., 2006). In global geophysics, they are used

to obtain snapshots of the Earth’s interior dynamics by to-

mography (Hosseini et al., 2019; Bozdağ et al., 2016), to de-

cipher source and path effects from individual seismograms

(Krischer et al., 2017) and to model wave effects of complex

structures (Thorne et al., 2020; Ni et al., 2002). In seismic

inversion, they are used to estimate the elastic properties of a

medium given its seismic response (Tarantola, 1987; Schus-

ter, 2017) and in full-waveform inversion (Fichtner, 2010;

Virieux and Operto, 2009), a technique used to image the 3-D

structure of the subsurface, they are used up to tens of thou-

sands of times to improve on estimates of a medium’s elastic

properties. In planetary science, seismic simulations play a

central role in understanding novel recordings on Mars (Van

Driel et al., 2019).

Numerous methods exist for simulating seismic waves, the

most popular in fully heterogeneous media being finite dif-

ference (FD) and spectral element methods (SEMs) (Igel,

2017; Moczo et al., 2007; Komatitsch and Tromp, 1999).

They are able to capture a large range of physics, including

the effects of undulating solid–fluid interfaces (Leng et al.,

2019), intrinsic attenuation (van Driel and Nissen-Meyer,

2014a) and anisotropy (van Driel and Nissen-Meyer, 2014b).

These methods solve for the propagation of the full seismic
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wavefield by discretising the elastodynamic equations of mo-

tion. For an acoustic heterogeneous medium, these are given

by the scalar linear equation of motion:

ρ∇ ·
(
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ρ
∇p

)

− 1

v2

∂2p

∂t2
= −ρ

∂2f

∂t2
, (1)

where p is the acoustic pressure, f is a point source of vol-

ume injection (the seismic source), and v = √
κ/ρ is the ve-

locity of the medium, with ρ the density of the medium and

κ the adiabatic compression modulus (Long et al., 2013).

Whilst FD and spectral element methods are the primary

means of simulation in complex media, a major disadvantage

of these methods is their computational cost (Bohlen, 2002;

Leng et al., 2016). Typical FD or SEM simulations can in-

volve billions of degrees of freedom, and at each time step the

wavefield must be iteratively updated at each 3-D grid point.

For many practical geophysical applications, this is often

prohibitively expensive. For example, in global seismology,

one may be interested in modelling waves up to 1 Hz in fre-

quency to resolve small-scale heterogeneities in the mantle

and a single simulation of this type with conventional tech-

niques can cost around 40 million CPU hours (Leng et al.,

2019). At crustal scales, industrial seismic imaging requires

wave modelling up to tens of Hertz in frequency carried out

hundreds of thousands of times for each explosion in a seis-

mic survey, and such requirements can easily fill the largest

supercomputers on Earth. Any improvement in efficiency is

welcome, not least due to the high financial and environmen-

tal costs of high-performance computing.

In some applications, large parts of the Earth model may

be relatively smooth or simple. This simplicity can be taken

advantage of, for example, in the complexity-adapted SEM

introduced by Leng et al. (2016), and can deliver a large

speedup compared to standard numerical modelling. Pseudo-

analytical methods such as ray tracing and amplitude-versus-

offset modelling (Aki and Richards, 1980; Vinje et al., 1993)

are another approach which can provide significant speedups,

albeit being approximate. We note that many applications are

constrained and driven by a sparse set of observations on the

surface of an Earth model. For these applications, we are

typically only interested in modelling the seismic response

at these points to decipher seismic origin or the 3-D struc-

ture beneath the surface, yet fully numerical methods still

need to iterate the entire wavefield through all points in the

model at all points in time. Any shortcut to avoid computing

these massive 4-D wavefields might lead to drastic efficiency

improvements. In short, the points above suggest that alter-

native and advantageous methods to capture accurate wave

physics may be possible for these challenging problems.

The field of machine learning has seen an explosion in

growth over the last decade. This has been primarily driven

by advancements in deep learning, which has provided more

powerful algorithms allowing much more difficult problems

to be learned (Goodfellow et al., 2016). This progress has led

to a surge in the use of deep learning techniques across many

areas of science. In particular, deep neural networks have re-

cently shown promise in their ability to make fast yet suf-

ficiently accurate predictions of physical phenomena (Guo

et al., 2016; Lerer et al., 2016; Paganini et al., 2018). These

approaches are able to learn about highly non-linear physics

and often offer much faster inference times than traditional

simulation.

In this work, we ask whether the latest deep learning tech-

niques can aid seismic simulation tasks relevant to the solid

Earth sciences. We investigate the use of deep neural net-

works and discuss the challenges and opportunities when us-

ing them for practical seismic simulation tasks. Our contri-

bution is as follows:

– We present two deep neural networks which are able

to simulate seismic waves in 2-D acoustic media an or-

der of magnitude faster than FD simulation. The first

network uses a WaveNet network architecture (van den

Oord et al., 2016) and is able to accurately simulate the

pressure response from a fixed point source at multi-

ple locations in a horizontally layered velocity model.

The second is significantly more general; it uses a con-

ditional autoencoder network design and is able to simu-

late the seismic response at multiple locations in faulted

media with arbitrary layers, fault properties and an ar-

bitrary location of the source on the surface of the me-

dia. In contrast to the classical methods, both networks

simulate the seismic response in a single inference step,

without needing to iteratively model the seismic wave-

field through time, resulting in a significant speedup

compared to FD simulation.

– We test the sensitivity of the accuracy of both networks

to different network designs, present a loss function

with a time-varying gain which improves training con-

vergence and show that fast seismic inversion in hor-

izontally layered media can also be carried out by re-

training the WaveNet network.

– We find challenges when extending our methods to

more complex, elastic and 3-D Earth models and dis-

cuss further research directions which could address

these challenges and yield useful tools for practical sim-

ulation tasks.

In Sect. 2, we consider the simple case of simulating seis-

mic waves in horizontally layered 2-D acoustic Earth models

using a WaveNet deep neural network. In Sect. 3, we move on

to the task of simulating more complex faulted Earth models

using a conditional autoencoder network. In Sect. 4, we dis-

cuss the challenges of extending our approaches to practical

simulation tasks and future research directions.
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1.1 Related work

The use of machine learning and neural networks in geo-

physics is not new (Van Der Baan and Jutten, 2000). For ex-

ample, Murat and Rudman (1992) used neural networks to

carry out automated first break picking, Dowla et al. (1990)

used a neural network to discriminate between earthquakes

and nuclear explosions and Poulton et al. (1992) used them

for electromagnetic inversion of a conductive target. In seis-

mic inversion, Röth and Tarantola (1994) used a neural net-

work to estimate the velocity of 1-D, layered, constant thick-

ness velocity profiles from seismic amplitudes and Nath et al.

(1999) used neural networks for cross-well travel-time to-

mography. However, these early approaches only used shal-

low network designs with small numbers of free parameters

which limits the expressivity of neural networks and the com-

plexity of problems they can learn about (Goodfellow et al.,

2016).

The field of machine learning has grown rapidly over the

last decade, primarily because of advances in deep learn-

ing. The availability of larger datasets, discovery of methods

which allow deeper networks to be trained and availability of

more powerful computing architectures (mostly GPUs) has

allowed much more complex problems to be learnt (Goodfel-

low et al., 2016), leading to a surge in the use of deep learn-

ing in many different research areas. For example, in physics,

Lerer et al. (2016) presented a deep convolutional network

which could accurately predict whether randomly stacked

wooden towers would fall or remain stable, given 2-D im-

ages of the tower. Guo et al. (2016) demonstrated that convo-

lutional neural networks could estimate flow fields in com-

plex computational fluid dynamics (CFD) calculations 2 or-

ders of magnitude faster than a traditional GPU-accelerated

CFD solver, and Paganini et al. (2018) used a conditional

generative adversarial network to simulate particle showers

in particle colliders.

A resurgence is occurring in geophysics too (Bergen et al.,

2019; Kong et al., 2019). Early examples of deep learning

include Devilee et al. (1999), who used deep probabilistic

neural networks to estimate crustal thicknesses from sur-

face wave velocities and Valentine and Trampert (2012), who

used a deep autoencoder to compress seismic waveforms.

More recently, Perol et al. (2018) presented an earthquake

identification method using convolutional networks which

is orders of magnitude faster than traditional techniques. In

seismic inversion, Araya-Polo et al. (2018) proposed an ef-

ficient deep learning concept for carrying out seismic to-

mography using the semblance of common midpoint receiver

gathers. Wu and Lin (2018) proposed a convolutional autoen-

coder network to carry out seismic inversion, whilst Yang and

Ma (2019) adapted a U-net network design for the same pur-

pose. Richardson (2018) demonstrated that a recurrent neural

network framework can be used to carry out full-waveform

inversion (FWI). Sun and Demanet (2018) showed a method

for using deep learning to extrapolate low-frequency seismic

energy to improve the convergence of FWI algorithms. In

seismic simulation, Zhu et al. (2017) presented a multi-scale

convolutional network for predicting the evolution of the full

seismic wavefield in heterogeneous media. Their method was

able to approximate the wavefield kinematics over multiple

time steps, although it suffered from the accumulation of er-

ror over time and did not offer a reduction in computational

time. Moseley et al. (2018) showed that a convolutional net-

work with a recursive loss function can simulate the full

wavefield in horizontally layered acoustic media. Krischer

and Fichtner (2017) used a generative adversarial network to

simulate seismograms from radially symmetric and smooth

Earth models.

In this work, we present fast methods for simulating seis-

mic waves in horizontally layered and faulted 2-D acoustic

media, which offer a significant reduction in computation

time compared to Zhu et al. (2017). We also present a fast

method for seismic inversion of horizontally layered acous-

tic media, which is more general than the original approach

proposed by Röth and Tarantola (1994) because it is able to

invert velocity models with varying numbers of layers and

varying layer thicknesses. We restrict ourselves to 2-D acous-

tic media and discuss implications for 3-D elastic media be-

low.

2 Fast seismic simulation in 2-D horizontally layered

acoustic media using WaveNet

First, we consider the simple case of simulating seismic

waves in horizontally layered 2-D acoustic Earth models. We

train a deep neural network with a WaveNet architecture to

simulate the seismic response recorded at multiple receiver

locations in the Earth model, horizontally offset from a point

source emitted at the surface of the model. As mentioned

above, many seismic applications are concerned with sparse

observations similar to this setup. A key difference of this ap-

proach compared to FD and SEM simulations is that the net-

work computes the seismic response at the surface in a single

inference step, without needing to iteratively model the seis-

mic wavefield through time, potentially offering a significant

speedup. Whilst we concentrate on simple velocity models

here, more complex faulted Earth models are considered in

Sect. 3.

An example simulation we wish to learn is shown in Fig. 1

and our simulation workflow is shown in Fig. 2. The input to

the network is a horizontally layered velocity profile and the

output of the network is a simulation of the pressure response

recorded at each receiver location. We will now discuss deep

neural networks, our WaveNet architecture, our simulation

workflow and our training methodology in more detail below.
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Figure 1. Ground truth FD simulation example. (a) A 20 Hz Ricker seismic source is emitted close to the surface and propagates through

a 2-D horizontally layered acoustic Earth model. The black circle shows the source location. A total of 11 receivers are placed at the same

depth as the source with a horizontal spacing of 50 m (red triangles). The full wavefield is overlain for a single snapshot in time. Note

seismic reflections occur at each velocity interface. (b) The Earth velocity model. The Earth model has a constant density of 2200 kg m−2.

(c) The resulting ground truth pressure response recorded by each of the receivers, using FD modelling. A t2.5 gain is applied to the receiver

responses for display.

2.1 Deep neural networks and the WaveNet network

A neural network is a network of simple computational ele-

ments, known as neurons, which perform mathematical op-

erations on multidimensional arrays or tensors (Goodfellow

et al., 2016). The composition of these neurons together de-

fines a mathematical function of the network’s input. Each

neuron has a set of free parameters, or weights, which are

tuned using optimisation, allowing the network’s function to

be learned, given a set of training data. In deep learning, the

neurons are typically arranged in multiple layers, which al-

lows the network to learn highly non-linear functions.

A standard building block in deep learning is the convo-

lutional layer, where all neurons in the layer share the same

weight tensor and each neuron has a limited field of view of

its input tensor. The output of the layer is achieved by cross

correlating the weight tensor with the input tensor. Multiple

weight tensors, or filters, can be used to increase the depth of

the output tensor. Such designs have achieved state-of-the-art

performance across a wide range of machine learning tasks

(Gu et al., 2018).

The WaveNet network proposed by van den Oord et al.

(2016) makes multiple alterations to the standard convolu-

tional layer for its use with time series. Each convolutional

layer is made causal; that is, the receptive field of each neu-

ron only contains samples from the input layer whose sample

times are before or the same as the current neuron’s sam-

ple time. Furthermore, the WaveNet exponentially dilates the

width of its causal connections with layer depth. This al-

lows the field of view of its neurons to increase exponen-

tially with layer depth, without needing a large number of

layers. These modifications are made to honour time series

prediction tasks which are causal and to better model input

data which vary over multiple timescales. The WaveNet net-

work recently achieved state-of-the-art performance in text-

to-speech synthesis.

2.2 Simulation workflow

Our workflow consists of a preprocessing step, where we

convert each input velocity model into its corresponding nor-

mal incidence reflectivity series sampled in time (Fig. 2a),

followed by a simulation step, where it is passed to a

WaveNet network to simulate the pressure response recorded

by each receiver (Fig. 2b).

The reflectivity series is typically used in exploration seis-

mology (Russell, 1988) and contains values of the ratio of the

amplitude of the reflected wave to the incident wave for each

interface in a velocity model. For acoustic waves at normal

incidence, these values are given by

Solid Earth, 11, 1527–1549, 2020 https://doi.org/10.5194/se-11-1527-2020
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Figure 2. Our WaveNet simulation workflow. Given a 1-D Earth velocity profile as input (a), our WaveNet deep neural network (b) outputs

a simulation of the pressure responses at the 11 receiver locations in Fig. 1. The raw input 1-D velocity profile sampled in depth is converted

into its normal incidence reflectivity series sampled in time before being input into the network. The network is composed of nine time-

dilated causally connected convolutional layers with a filter width of two samples and dilation rates which increase exponentially with layer

depth. Each hidden layer of the network has the same length as the input reflectivity series, 256 channels and a rectified linear unit (ReLU)

activation function. A final causally connected convolutional layer with a filter width of 101 samples, 11 output channels and an identity

activation is used to generate the output simulation.

R = ρ2v2 − ρ1v1

ρ2v2 + ρ1v1
, (2)

where ρ1, v1 and ρ2, v2 are the densities and P-wave veloc-

ities across the interface. The series is usually expressed in

time and each reflectivity value occurs at the time at which

the primary reflection of the source from the corresponding

velocity interface arrives at a given receiver. The arrival times

can be computed by carrying out a depth-to-time conversion

of the reflectivity values using the input velocity model.

We chose to convert the velocity model to its reflectiv-

ity series and use the causal WaveNet architecture to con-

strain our workflow. For horizontally layered velocity models

and receivers horizontally offset from the source, the receiver

pressure recordings are causally correlated to the normal in-

cidence reflectively series of the zero-offset receiver. Intu-

itively, a seismic reflection recorded after a short time has

only travelled through a shallow part of the velocity model

and the pressure responses are at most dependent on the past

samples in this reflectivity series. By preprocessing the in-

put velocity model into its corresponding reflectivity series

and using the causal WaveNet architecture to simulate the

receiver response, we can constrain the network so that it

honours this causal correlation.

We input the 1-D profile of a 2-D horizontally layered ve-

locity model, with a depth of 640 m and a step size of 5 m.

We use Eq. (2) and a standard 1-D depth to time conversion

to convert the velocity model into its normal incidence re-

flectivity series. The output reflectivity series has a length of

1 s and a sample rate of 2 ms. An example output reflectivity

series is shown in Fig. 2a.

Figure 3. Distribution of layer velocity and layer thickness over all

examples in the training set.

The reflectivity series is passed to the WaveNet network,

which contains nine causally connected convolutional layers

(Fig. 2b). Each convolutional layer has the same length as

the input reflectivity series, 256 hidden channels, a receptive

field width of two samples and a rectified linear unit (ReLU)

activation function (Nair and Hinton, 2010). Similar to the

original WaveNet design, we use exponentially increasing di-

lations at each layer to ensure that the first sample in the input

reflectivity series is in the receptive field of the last sample of

the output simulation. We add a final causally connected con-

volutional layer with 11 output channels, a filter width of 101

samples and an identity activation to generate the output sim-

ulation, where each output channel corresponds to a receiver

prediction. This results in the network having 1 333 515 free

parameters in total.

2.3 Training data generation

To train the network, we generate 50 000 synthetic ground

truth example simulations using the SEISMIC_CPML code,

which performs second-order acoustic FD modelling (Ko-
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matitsch and Martin, 2007). Each example simulation uses a

randomly sampled 2-D horizontally layered velocity model

with a width and depth of 640 m and a sample rate of 5 m

in both directions. (Fig. 1b). For all simulations, we use a

constant density model of 2200 kg m−2.

In each simulation, the layer velocities and layer thick-

ness are randomly sampled from log-normal distributions.

We also add a small velocity gradient randomly sampled

from a normal distribution to each model such that the veloc-

ity values tend to increase with depth, to be more Earth real-

istic. The distributions over layer velocities and layer thick-

nesses for the entire training set are shown in Fig. 3.

We use a 20 Hz Ricker source emitted close to the sur-

face and record the pressure response at 11 receiver loca-

tions placed symmetrically around the source, horizontally

offset every 50 m (Fig. 1a). We use a convolutional perfectly

matched layer boundary condition such that waves which

reach the edge of the model are absorbed with negligible

reflection. We run each simulation for 1 s and use a 0.5 ms

sample rate to maintain accurate FD fidelity. We downsam-

ple the resulting receiver pressure responses to 2 ms before

using them for training.

We run 50 000 simulations and extract a training example

from each simulation, where each training example consists

of a 1-D layered velocity profile and the recorded pressure

response at each of the 11 receivers. We withhold 10 000 of

these examples as a validation set to measure the generalisa-

tion performance of the network during training.

2.4 Training process

The network is trained using the Adam stochastic gradient

descent algorithm (Kingma and Ba, 2014). This algorithm

computes the gradient of a loss function with respect to the

free parameters of the network over a randomly selected sub-

set, or batch, of the training examples. This gradient is used

to iteratively update the parameter values, with a step size

controlled by a learning rate parameter. We propose a L2 loss

function with a time-varying gain function for this task, given

by

L = 1

N
‖G(Ŷ − Y )‖2

2, (3)

where Ŷ is the simulated receiver pressure response from

the network, Y is the ground truth receiver pressure response

from FD modelling, and N is the number of training exam-

ples in each batch. The gain function G has the form G = tg ,

where t is the sample time and g is a hyperparameter which

determines the strength of the gain. We add this to empiri-

cally account for the attenuation of the wavefield caused by

spherical spreading, by increasing the weight of samples at

later times. In this section, we use a fixed value of g = 2.5.

We use a learning rate of 1 × 10−5, a batch size of 20 train-

ing examples and run training over 500 000 gradient descent

steps.

2.5 Comparison to 2-D ray tracing

We compare the WaveNet simulation to an efficient, quasi-

analytical 2-D ray-tracing algorithm which assumes horizon-

tally layered media. We modify the 2-D horizontally layered

ray-tracing bisection algorithm from the Consortium for Re-

search in Elastic Wave Exploration Seismology (CREWES)

seismic modelling library (Margrave and Lamoureux, 2018)

to include Zoeppritz modelling of the reflection and transmis-

sion coefficients at each velocity interface (Aki and Richards,

1980) and 2-D spherical spreading attenuation (Gutenberg,

1936; Newman, 1973) during ray tracing. The output of the

algorithm is a primary reflectivity series for each receiver,

which we convolve with the source signature used in FD

modelling to obtain an estimate of the receiver responses.

2.6 Results

Whilst training the WaveNet, the losses over the training and

validation datasets converge to similar values, suggesting the

network is generalising well to examples in the validation

dataset. To assess the performance of the trained network,

we generate a random test set of 1000 unseen examples. The

simulations for four randomly selected examples from this

test set are compared to the ground truth FD modelling sim-

ulation in Fig. 4. We also compare the WaveNet simulation

to 2-D ray tracing in Fig. 5. For nearly all time samples, the

network is able to simulate the receiver pressure responses.

The WaveNet is able to predict the normal moveout (NMO)

of the primary layer reflections with receiver offset, the di-

rect arrivals at the start of each receiver recording and the

spherical spreading loss of the wavefield over time, though

the network struggles to accurately simulate the multiple re-

verberations at the end of the receiver recordings.

We plot the histogram of the average absolute amplitude

difference between the ground truth FD simulation and the

simulation from the WaveNet and 2-D ray tracing over the

test set in Fig. A1d in the Appendix, and observe that the

WaveNet simulation has a lower average amplitude differ-

ence than 2-D ray tracing. Small differences in phase and

amplitude at larger offsets are the main source of discrep-

ancy between the 2-D ray tracing and FD simulation, which

can be seen in Fig. 5, and are likely due to errors both in the

ray tracing approximation and in using discretisation in the

FD simulation. The WaveNet predictions are consistent and

stable across the test set, and their closer amplitude match

to the FD simulation is perhaps to be expected because the

network is trained to directly match the FD simulation rather

than the 2-D ray tracing.

We compare the sensitivity of the network’s accuracy to

two different convolutional network designs in Fig. A1. Their

main differences to the WaveNet design is that both net-

works use standard rather than causal convolutional layers

and the second network uses exponential dilations whilst the

first does not. Both networks have nine convolutional layers,

Solid Earth, 11, 1527–1549, 2020 https://doi.org/10.5194/se-11-1527-2020
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Figure 4. WaveNet simulations for four randomly selected examples in the test set. Red shows the input velocity model, its corresponding re-

flectivity series and the ground truth pressure response from FD simulation at the 11 receiver locations. Green shows the WaveNet simulation

given the input reflectivity series for each example. A t2.5 gain is applied to the receiver responses for display.

each with 256 hidden channels, filter sizes of 3, ReLU activa-

tions for all hidden layers and an identity activation function

for the output layer, with 1 387 531 free parameters in total.

We observe that the convolutional network without dilations

does not converge during training, whilst the dilated convo-

lutional network has a higher average absolute amplitude dif-

ference over the test set from the ground truth FD simulation

than the WaveNet network (Fig. A1d).

The generalisation ability of the WaveNet outside of its

training distribution is tested in Fig. 6. We generate four ve-

locity models with a much smaller average layer thickness

than the training set and compare the WaveNet simulation to

the ground truth FD simulation. We find that the WaveNet is

able to make an accurate prediction of the seismic response,

but it struggles to simulate the multiple reflections and some-

times the interference between the direct arrival and primary

reflections.

We compare the average time taken to generate 100 simu-

lations to FD simulation and 2-D ray tracing in Table 1. We

find that on a single CPU core, the WaveNet is 19 times faster

than FD simulation, and using a GPU and the TensorFlow li-

brary (Abadi et al., 2015) it is 549 times faster. This speedup

is likely to be higher than if the GPU was used for acceler-

ating existing numerical methods (Rietmann et al., 2012). In

https://doi.org/10.5194/se-11-1527-2020 Solid Earth, 11, 1527–1549, 2020
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Figure 5. Comparison of WaveNet simulation to 2-D ray tracing. We compare the WaveNet simulation to 2-D ray tracing for two of the

examples in Fig. 4. Red shows the input velocity model, its corresponding reflectivity series and the ground truth pressure responses from FD

simulation. Green shows the WaveNet simulation (left) and 2-D ray tracing simulation (right). A t2.5 gain is applied to the receiver responses

for display.

this case, the specialised 2-D ray tracing algorithm offers a

similar speedup to the WaveNet network. The network takes

approximately 12 h to train on one Nvidia Tesla K80 GPU,

although this training step is only required once and subse-

quent simulation steps are fast.

3 Fast seismic simulation in 2-D faulted acoustic media

using a conditional autoencoder

The WaveNet architecture we implemented above is limited

in that it is only able to simulate horizontally layered Earth

models. In this section, we present a second network which is

significantly more general; it simulates seismic waves in 2-D

faulted acoustic media with arbitrary layers, fault properties
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Figure 6. Generalisation ability of the WaveNet. The WaveNet simulations (green) for four velocity models with much smaller average layer

thicknesses than the training distribution are compared to ground truth FD simulation. Red shows the input velocity model, its corresponding

reflectivity series and the ground truth pressure responses from FD simulation.

and an arbitrary location of the seismic source on the surface

of the media.

This is a much more challenging task to learn for multiple

reasons. Firstly, the media varies along both dimensions and

the resulting seismic wavefield has more complex kinematics

than the wavefields in horizontally layered media. Secondly,

we allow the output of the network to be conditioned on the

input source location which requires the network to learn the

effect of the source location. Thirdly, we input the velocity

model directly into the network without conversion to a re-

flectivity series beforehand; the network must learn to carry

out its own depth to time conversion to simulate the receiver

responses. We chose this approach over our WaveNet work-

flow because we note that for non-horizontally layered media

the pressure responses are not causally correlated to the nor-

mal incidence reflectivity series in general and our previous

causality assumption does not hold.

Similar to Sect. 2, we simulate the seismic response

recorded by a set of receivers horizontally offset from a point

source emitted within the Earth model. An example simula-

tion we wish to learn is shown in Fig. 7. We will now discuss

the network architecture and training process in more detail

below.
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Figure 7. Ground truth FD simulation example, with a 2-D faulted media. (a) The black circle shows the source location. Overall, 32

receivers are placed at the same depth as the source with a horizontal spacing of 15 m (red triangles). The full wavefield pressure is overlain

for a single snapshot in time. (b) The Earth velocity model. (c) The resulting ground truth pressure response recorded by each receiver, using

FD modelling. A t2.5 gain is applied to the receiver responses for display.

Table 1. Speed comparison of simulation and inversion methods. The time shown is the average time taken to generate 100 simulations (or

100 velocity predictions for the inverse WaveNet) on either a single core of a 2.2 GHz Intel Core i7 processor or a Nvidia Tesla K80 GPU.

For simulation methods, the speedup factor compared to FD simulation is shown in brackets. The inverse WaveNet is faster than the forward

WaveNet because it has fewer hidden channels in its architecture and therefore requires less computation.

Method Average CPU time (s) Average GPU time (s) Training time (days)

2-D FD simulation 73 ± 1 (1×) – –

2-D ray tracing 2.2 ± 0.1 (33×) – –

WaveNet (forward) 3.79 ± 0.03 (19×) 0.133 ± 0.001 (549×) 0.5

Conditional autoencoder 3.3 ± 0.1 (22×) 0.180 ± 0.003 (406×) 4

WaveNet (inverse) 1.27 ± 0.02 0.051 ± 0.001 0.5

3.1 Conditional autoencoder architecture

Our simulation workflow is shown in Fig. 8. Instead of pre-

processing the input velocity model to its associated reflec-

tivity model, we input the velocity model directly into the

network. The network is conditioned on the source position,

which is allowed to vary along the surface of the Earth model.

The output of the network is a simulation of the pressure re-

sponses recorded at 32 fixed receiver locations in the model

shown in Fig. 7.

We use a conditional autoencoder network design, shown

in Fig. 8. The network is composed of 10 convolutional lay-

ers which reduce the spatial dimensions of the input velocity

model until it has a 1 × 1 shape with 1024 hidden channels.

We term this tensor the latent vector. The input source po-

sition is concatenated onto the latent vector and 14 convo-

lutional layers are used to expand the size of the latent vec-

tor until its output shape is the same as the target receiver

gather. We choose this encoder–decoder architecture to force

the network to compress the velocity model into a set of

salient features before expanding them to infer the receiver

responses. All hidden layers use ReLU activation functions

and the final output layer uses an identity activation function.
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Figure 8. Our conditional autoencoder simulation workflow. Given a 2-D velocity model and source location as input, a conditional autoen-

coder network outputs a simulation of the pressure responses at the receiver locations in Fig. 7. The network is composed of 24 convolutional

layers and concatenates the input source location with its latent vector.

The resulting network has 18 382 296 free parameters. The

full parameterisation of the network is shown in Table A1.

3.2 Training process

We use the same training data generation process described

by Sect. 2.3. When generating velocity models, we add a

fault to the model. We randomly sample the length, normal

or reverse direction, slip distance and orientation of the fault.

Example velocity models drawn from this process are shown

in Fig. 9. We generate 100 000 example velocity models and

for each model chose three random source locations along

the top of the model. This generates a total of 300 000 syn-

thetic ground truth example simulations to use for training

the network. We withhold 60 000 of these examples to use as

a validation set during training.

We train using the same training process and loss func-

tion described in Sect. 2.4, except that we employ a L1 norm

instead of a L2 norm in the loss function (Eq. 3). We use

a learning rate of 1 × 10−4, a batch size of 100 examples

and run training over 3 000 000 gradient descent steps. We

use batch normalisation (Ioffe and Szegedy, 2015) after each

convolutional layer to help regularise the network during

training.

3.3 Results

During training the losses over the training and validation

datasets converge to similar values and we test the perfor-

mance of the trained network using a test set of 1000 un-

seen examples. The output simulations for eight randomly

selected velocity models and source positions from this set

are shown in Fig. 9. We observe that the network is able

to simulate the kinematics of the primary reflections and in

most cases is able to capture their relative amplitudes. We

also plot the network simulation when varying the source lo-

cation over two velocity models from the test set in Fig. 10

and find that the network is able to generalise well over dif-

ferent source locations.

We test the accuracy of the simulation when using differ-

ent network designs and training hyperparameters, shown in

Fig. A2. We compare example simulations from the test set

when using our baseline conditional autoencoder network,

when halving the number of hidden channels for all layers,

when using an L2 loss function during training, when using

gain exponents of g = 0 and g = 5 in the loss function and

when removing two layers from the encoder and eight lay-

ers from the decoder. We plot the histogram of the average

absolute amplitude difference between the ground truth FD

simulation and the network simulation over the test set for

all of the cases above, and observe that in all cases the sim-

ulations are less accurate than our baseline approach. With-

out the gain in the loss function, the network only learns to

simulate the direct arrival and the first few reflections in the

receiver responses. With a gain exponent of g = 5, the net-

work simulation is unstable and it fails to simulate the first

0.2 s of the receiver responses. When using the network with

fewer layers, the simulations have edge artefacts, whilst the

network with half the number of hidden channels is closest to

the baseline accuracy. In testing, we find that training a net-

work with the same number of layers but without using a bot-

tleneck design to reduce the velocity model to a 1×1×1024

latent vector does not converge.

We compare the accuracy of the conditional autoencoder

to the WaveNet network in Fig. A3. We plot the simulation

from both networks for an example model in the horizontally

layered velocity model test set and the histogram of the aver-

age absolute amplitude difference between the ground truth

FD simulation and the WaveNet and conditional autoencoder

simulations over this test set. Both networks are able to ac-

curately simulate the receiver responses, and the WaveNet

simulation is slightly more accurate than the conditional au-

toencoder, though of course the latter is more general.

We test the generalisation ability of the conditional au-

toencoder outside of its training distribution by inputting ran-

domly selected 640×640 m boxes from the publicly available

2-D Marmousi P-wave velocity model (Martin et al., 2006)

into the network. This velocity model contains much more
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Figure 9. Conditional autoencoder simulations for eight randomly selected examples in the test set. White circles show the input source

location. The left simulation plots show the network predictions, the middle simulation plots show the ground truth FD simulations and the

right simulation plots show the difference. A t2.5 gain is applied for display.

complex faulting at multiple scales, higher dips and more

layer variability than our training dataset. The resulting net-

work simulations are shown in Fig. 11. We calculate the near-

est neighbour to the input velocity model in the set of training

velocity models, defined as the training model with the low-

est L1 difference summed over all velocity values from the

input velocity model and show this alongside each example.

We find that the network is not able to accurately simulate

the full seismic response from velocity models which have

large dips and/or complex faulting (Fig. 11e, f, h) that are

absent in the training set. This observation is similar to most

studies which analyse the generalisability of deep neural net-

works outside their training set (e.g. Zhang and Lin, 2018

and Earp and Curtis, 2020). However, encouragingly, the net-

work is able to mimic the response from velocity models with

small dips (Fig. 11d, g), even though the nearest training-set

neighbour contains a fault, whereas the Marmousi layers are

continuous.

We compare the average time taken to generate 100 simu-

lations using the conditional autoencoder network to FD sim-

ulation in Table 1. We find that on a single CPU core the

network is 22 times faster than FD simulation and when us-

ing a GPU and the PyTorch library (Pytorch, 2016), it is 406

times faster. This is comparable to the speedup obtained with

the WaveNet. It is likely that 2-D ray tracing will not offer

the same speedup as observed in Sect. 2.6, because comput-

ing ray paths through these models is likely to be more de-

manding. The network takes approximately 4 d to train on

Solid Earth, 11, 1527–1549, 2020 https://doi.org/10.5194/se-11-1527-2020



B. Moseley et al.: Deep learning for fast simulation of seismic waves in complex media 1539

Figure 10. Conditional autoencoder simulation accuracy when varying the source location. The network simulation is shown for six different

source locations whilst keeping the velocity model fixed. The source positions are regularly spaced across the surface of the velocity model

(white circles). Example simulations for two different velocity models in the test set are shown, where each row corresponds to a different

velocity model. The pairs of simulation plots in each row from left to right correspond to the network prediction (left in the pair) and the

ground truth FD simulation (right in the pair), when varying the source location from left to right in the velocity model. A t2.5 gain is applied

for display.

one Nvidia Titan V GPU. This is 8 times longer than training

the WaveNet network, although we made little effort to opti-

mise its training time. We find that when using only 50 000

training examples the validation loss increases and the net-

work overfits to the training dataset.

4 Discussion

Both our deep neural networks accurately model the seis-

mic response in horizontally layered and faulted 2-D acous-

tic media. The WaveNet is able to carry out simulation of

horizontally layered velocity models, and the conditional au-

toencoder is able to generalise to faulted media with arbitrary

layers, fault properties and an arbitrary location of the seis-

mic source on the surface of the media. This is a significantly

harder task than simulating horizontally layered media with

the WaveNet network. Furthermore, both networks are 1–2

orders of magnitude faster than FD modelling.

Whilst these results are encouraging and suggest that deep

learning is valuable for simulation, there are further chal-

lenges when extending our methods to more complex, elas-

tic and 3-D Earth models required for practical simulation

tasks. We believe that further research will help to understand

whether deep learning can aid in these more general settings

and discuss these aspects in more detail below.

4.1 Extension to elastic simulation

An important ability for practical geophysical applications

is to be able to simulate seismic waves in (visco)elastic me-

dia, rather than acoustic media. The architectures of our net-

works are readily extendable in this regard; S-wave velocity

and density models could be added as additional input chan-

nels to our networks and the number of output channels in the

networks could be increased so that multi-component parti-

cle velocity vectors are output. The same training scheme

could be used, with training data generated using elastic FD

simulation instead of acoustic simulation and a loss function

which compares vector fields instead of scalar fields. Thus,

with some simple changes to our design, this challenge is at

least conceptually simple to address, though further research

is required to understand if it is feasible. The cost of tradi-

tional elastic simulation exceeds the cost of acoustic simu-

lation by orders of magnitude and has prevented the seismic

industry from fully embracing this crucial step. We postulate

that the difference in simulation times between future elastic

and acoustic simulation networks might be smaller compared

to fully discretised methods such as FD, as a consequence of

the networks not needing to compute the entire discretised

wavefield. While this is speculative at this point, it is intrigu-

ing to investigate.

4.2 Extension to 3-D simulation

Another important extension is to move from 2-D to 3-D sim-

ulation. In terms of network design, our autoencoder could be

extended to 3-D simulation by increasing the dimensionality

of its input, hidden and output tensors. In this case, we would

expect a similar order of magnitude acceleration of simula-

tion time to 2-D, because the network would still directly

estimate the seismic response without needing to iteratively

model the seismic wavefield through time. However, mul-

https://doi.org/10.5194/se-11-1527-2020 Solid Earth, 11, 1527–1549, 2020



1540 B. Moseley et al.: Deep learning for fast simulation of seismic waves in complex media

Figure 11. Generalisation ability of the conditional autoencoder. The conditional autoencoder simulations for five velocity models taken

from different regions of the Marmousi P-wave velocity model are shown (d–h). For each example, the left plot shows the input velocity

model and source location, the middle simulation plots show the network prediction (left) and the ground truth FD simulation (right), and

the right plot shows the nearest neighbour in the training set to the input velocity model. Simulations from three of the test velocity models

in Fig. 9 are also shown with their nearest neighbours (a–c). A t2.5 gain is applied for display.

tiple challenges arise in this setting. Firstly, increasing the

dimensionality would increase the size of the network and

therefore likely increase its training time. Finding an alter-

native representation, such as meshes or oct-trees (Ahmed

et al., 2018) to reduce the dimensionality of the problem,

or a way to exploit symmetry in the wave equation to re-

duce complexity, may be critical in this aspect. Secondly, a

major challenge is likely to be the increased computational

cost of generating training data with conventional methods,

which, for instance, is significantly higher in 3-D when using

FD modelling. Whilst we only used the subset of the wave-

field at each receiver location to train our networks, finding a

way to use the entire wavefield from FD simulation to train

the network may help reduce the number of training simula-

tions required. We note that generating training data are an

amortised cost because the network only needs to be trained

once, and although large, in the case of seismic inversion

where millions of production runs are required the training

cost could become negligible. Another intriguing aspect is

to investigate whether deep neural network simulation costs

scale more favourably with increasing frequency ω compared

to fully discrete methods which scale with ω4; in this study,

we only consider simulation at a fixed frequency range.

4.3 Generalisation to more complex Earth models

Perhaps the largest challenge in designing appropriate net-

works is to improve their generality so they can simulate

more complex Earth models. We have shown that deep neu-

ral networks can move beyond simulating simple horizon-

tally layered velocity models to more complex faulted mod-

els where, to the best of our knowledge, no analytical so-
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Figure 12. Inverse WaveNet predictions for four examples in the test set. Red shows the input pressure response at the zero-offset receiver

location, the ground truth reflectivity series and its corresponding velocity model. Green shows the inverse WaveNet reflectivity series

prediction and the resulting velocity prediction.

lutions exist, which we believe is a positive step. However,

both our networks performed worse on velocity models out-

side of their training distributions. Furthermore, to be able

to generalise to more complex velocity models the condi-

tional autoencoder required more free parameters, more time

to train and more training examples than the WaveNet net-

work. Generalisation outside of the training distribution is a

well-known and common challenge of deep neural networks

in general (Goodfellow et al., 2016).

A naive approach would be to increase the range of the

training data to improve the generality of the network; how-

ever, this would quickly become computationally intractable

when trying to simulate all possible Earth models. We note

that for many practical applications it may be acceptable to

use a training distribution with a limited range; for example,

in many of the seismic applications such tomography, FWI

and seismic hazard assessment, a huge number of forward

simulations of comparatively few Earth models are carried

out.

A promising research direction may be to better regularise

the networks by adding more physics-based constraints into

the workflow. We found that using causality in the WaveNet

generated more accurate simulations than when using a stan-

dard convolutional network; this suggested that adding this

constraint helped the network simulate the seismic response,

although it is an open question how best to represent causal-

ity when simulating more arbitrary Earth models. We also

found that a bottleneck design helped the conditional au-
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toencoder to converge; our hypothesis is that this encour-

aged a depth-to-time conversion by slowly reducing the spa-

tial dimensions of the velocity model before expanding them

into time. More advanced network designs, for example, us-

ing attention-like mechanisms (Vaswani et al., 2017) to help

the network focus on relevant parts of the velocity model,

rather than using convolutional layers with full fields of view,

or using long short-term memory (LSTM) cells to help the

network model multiple reverberations could be tested. An-

other interesting direction would be to use the wave equa-

tion (Eq. 1) to directly regularise the loss function, similar

to the physics-based machine learning approach proposed by

Raissi et al. (2019).

We found that the nearest-neighbour test was a useful

way to understand if an input velocity model was close to

the training distribution and therefore if the network’s out-

put simulation was likely to be accurate. Probabilistic ap-

proaches, such as Bayesian deep learning (Gal, 2016), could

be investigated for their ability to provide quantitative uncer-

tainty estimates on the network’s output simulation.

4.4 Inversion with the WaveNet

As an additional test, we were also able to retrain the

WaveNet network to carry out fast seismic inversion in the

horizontally layered media, which offered a fast alternative to

existing inversion algorithms. We retrained the WaveNet net-

work with its inputs and output reversed; its input was then

a set of 11 recorded receiver responses and its output was a

prediction of the corresponding normal incidence reflectivity

series. We used the same WaveNet architecture described in

Sect. 2.2, except that we inverted its structure to maintain the

causal correlation between the receiver responses and reflec-

tivity series, and we used 128 instead of 256 hidden channels

for each hidden layer. We used exactly the same training data

and training strategy described in Sect. 2.3 and 2.4, except

that we used a loss function given by

L = 1

N
‖R̂ − R‖2

2, (4)

where R is the true reflectivity series and R̂ is the predicted

reflectivity series. To recover a prediction of the velocity

model, we carried out a standard 1-D time-to-depth conver-

sion of the output reflectivity values followed by integration.

Predictions of the reflectivity series and velocity models

for four randomly selected examples from a test set of un-

seen examples are shown in Fig. 12. The inverse WaveNet

network was able to predict the underlying velocity model

for each example, although in some cases small velocity er-

rors propagated with depth, which was likely a result of the

integration of the reflectivity series. The network was able to

produce velocity predictions in the same order of magnitude

time as the forward network (shown in Table 1), which is

likely to be a fraction of the time needed for existing seismic

inversion algorithms which rely on forward simulation.

We note that seismic inversion is typically an ill-defined

problem, and it is likely that the predictions of this network

are biased towards the velocity models it was trained on. We

expect the accuracy of the network to reduce when tested on

inputs outside of its training distribution and with real, noisy

seismic data. Further research could try to quantify this un-

certainty, for example, by using Bayesian deep learning. We

have not yet compared our inverse WaveNet network to exist-

ing seismic inversion techniques, such as posterior sampling

or FWI.

An alternative method for inversion is to use our for-

ward networks in existing seismic inversion algorithms based

on optimisation, such as FWI. Both the WaveNet and con-

ditional autoencoder networks are fully differentiable and

could therefore be used to generate fast approximate gradient

estimates in these methods. However, similar limitations on

their generality are likely to exist and one would need to be

careful to keep the inversion routine within the training dis-

tribution of the networks. Furthermore, whilst fast, these ap-

proaches would still suffer from the curse of dimensionality

when moving to higher dimensions and require exponentially

more samples to fully explore the parameter space.

4.5 Summary

Given the potentially large training costs and the challenge

of generality, it may be that current deep learning techniques

are most advantageous to practical simulation tasks where

many similar simulations are required, such as inversion or

statistical seismic hazard analysis, and least useful for prob-

lems with a very small number of simulations per model fam-

ily. In seismology, however, we suspect that most current

and future challenges fall into the former category, which

renders these initial results promising. Deep learning ap-

proaches have different computational costs and benefits, and

accuracies that are less clearly understood compared to tra-

ditional approaches and these should be considered for each

application. Further research is required to understand how

best to design the training set for a particular simulation ap-

plication, as well as how to help deep neural networks gener-

alise to unseen velocity models outside of their training dis-

tribution. Finally, we note that we only tested two types of

deep neural networks (the WaveNet and conditional autoen-

coders) and many other types exist which could prove more

effective.

5 Conclusions

We have investigated the potential of deep learning for aid-

ing seismic simulation in geophysics. We presented two deep

neural networks which are able to carry out fast and largely

accurate simulation of seismic waves. Both networks are

20–500 times faster than FD modelling and simulate seis-

mic waves in horizontally layered and faulted 2-D acoustic

Solid Earth, 11, 1527–1549, 2020 https://doi.org/10.5194/se-11-1527-2020



B. Moseley et al.: Deep learning for fast simulation of seismic waves in complex media 1543

media. The first network uses a WaveNet architecture and

simulates seismic waves in horizontally layered media. We

showed that this network can also be used to carry out fast

seismic inversion of the same media. The second network is

significantly more general than the first; it simulates seismic

waves in faulted media with arbitrary layers, fault properties

and an arbitrary location of the seismic source on the sur-

face of the media. Our main contribution is to show that deep

neural networks can move beyond simulating simple hori-

zontally layered velocity models to more complex faulted

models where, to the best of our knowledge, no analytical so-

lutions exist, which we believe is a positive step towards un-

derstanding their practical potential. We discussed the chal-

lenges of extending our approaches to practical geophysical

applications and future research directions which could ad-

dress them, noting where it may be favourable for using these

network architectures.
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Appendix A

Figure A1. Comparison of different network architectures on simulation accuracy. (a) The WaveNet simulated pressure response for a

randomly selected example in the test set (green) compared to ground truth FD simulation (red). (b, c) The simulated response when using

two convolutional network designs with and without exponential dilations. (d) The histogram of the average absolute amplitude difference

between the ground truth FD simulation and the simulations from the WaveNet, the dilated convolutional network and 2-D ray tracing over

the test set of 1000 examples. A t2.5 gain is applied to the receiver responses for display.
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Figure A2. Comparison of different conditional autoencoder network designs and training hyperparameters on simulation accuracy. (a) A

randomly selected velocity model and source location from the test set and its corresponding ground truth FD simulation. (b) The histogram

of the average absolute amplitude difference between the ground truth FD simulation and the simulation from the different cases over the test

set. The histogram of the baseline network over the Marmousi test dataset is also shown. (c) A comparison of simulations and their difference

to the ground truth when using our proposed conditional autoencoder (baseline), when halving the number of hidden channels for all layers

(thin), when using an L2 loss function during training (L2 loss), when using gain exponents of g = 0 and g = 5 in the loss function and when

removing two layers from the encoder and eight layers from the decoder (shallow). A t2.5 gain is applied for display.

Figure A3. Comparison of WaveNet and conditional autoencoder simulation accuracy. Panel (a) shows a velocity model, reflectivity series

and ground truth FD simulation for a randomly selected example in the horizontally layered velocity model test set in red. Green shows the

WaveNet simulation. Panel (b) shows the conditional autoencoder simulation for the same velocity model. Panel (c) shows the histogram of

the average absolute amplitude difference between the ground truth FD simulation and WaveNet and conditional autoencoder simulations

over this test set. A t2.5 gain is applied for display.
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Table A1. Conditional autoencoder layer parameters. Each entry shows the parameterisation of each convolutional layer. The padding column

shows the padding on each side of the input tensor for each spatial dimension.

Layer Type In, out channels Kernel size Stride Padding

1 Conv2d (1,8) (3,3) (1,1) (1,1) 14 Conv2d (512,512) (3,3) (1,1) (1,1)

2 Conv2d (8,16) (2,2) (2,2) 0 15 Conv2d (512,512) (3,3) (1,1) (1,1)

3 Conv2d (16,16) (3,3) (1,1) (1,1) 16 ConvT2d (512,256) (2,4) (2,4) 0

4 Conv2d (16,32) (2,2) (2,2) 0 17 Conv2d (256,256) (3,3) (1,1) (1,1)

5 Conv2d (32,32) (3,3) (1,1) (1,1) 18 Conv2d (256,256) (3,3) (1,1) (1,1)

6 Conv2d (32,64) (2,2) (2,2) 0 19 ConvT2d (256,64) (2,4) (2,4) 0

7 Conv2d (64,128) (2,2) (2,2) 0 20 Conv2d (64,64) (3,3) (1,1) (1,1)

8 Conv2d (128,256) (2,2) (2,2) 0 21 Conv2d (64,64) (3,3) (1,1) (1,1)

9 Conv2d (256,512) (2,2) (2,2) 0 22 ConvT2d (64,8) (2,4) (2,4) 0

10 Conv2d (512,1024) (2,2) (2,2) 0 23 Conv2d (8,8) (3,3) (1,1) (1,1)

11 Concat (1024,1025) 24 Conv2d (8,8) (3,3) (1,1) (1,1)

12 ConvT2d (1025,1025) (2,2) (2,2) 0 25 Conv2d (8,1) (1,1) (1,1) 0

13 ConvT2d (1025,512) (2,4) (2,4) 0
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Code and data availability. All our training data were generated

synthetically using the SEISMIC_CPML FD modelling library.
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