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Abstract—Deep learning methods are proposed to process and 

fuse raw spatiotemporal ground reaction forces (GRF) to 

accurately categorize gait pattern. These methods are based on 

convolutional neural network and long short-term memory 

networks architectures to learn spatiotemporal features, 

automatically end-to-end from raw GRF sensor signals. In a case 

study on Parkinson's disease (PD) data, spatiotemporal signals of 

gait for PD patient and healthy subjects are processed and 

classified, resulting an effective gait pattern classification with a 

precision performance of 96%. Deep learning considerably 

achieved better classification results, compared to the shallow 

learning methods with the handcrafted features. This implies that 

for the purpose of automatic decision-making, it is beneficial to 

utilize deep learning methods to analyse GRF. This insight is 

portable across a range of industrial tasks that involve complex 

spatiotemporal GRF signals classification. The proposed models 

are computationally efficient and able to achieve high 

classification precision from a large set of GRF signals. 

Keywords—Convolutional Neural Networks (CNN), Deep 

learning, Floor sensing, Ground Reaction Forces (GRF), Gait, Long 

Short-Term Memory Networks (LSTM), Parkinson’s disease 

I. INTRODUCTION 
 
In recent years, intelligent chips, electronics, and sensing 

technologies have fostered substantial interest in activity 
recognition for commercialized applications such as 
smartphone, smartwatches, and health monitoring devices. 
Much of that success has dual-use applications outside 
wearables and body area networks, e.g. in occupancy 
monitoring and identification of object dynamics on a busy 
factory floor, with clear relevance to health and safety. 
Furthermore, in the effort to develop the nascent potential for a 
wide societal roll-out of anthropomorphic robotics, safe and 
adequate human-robot interaction will be aided by floor-based 
ground-reaction force (GRF) data, as an essential part of multi-
modality sensor fusion.  

The development of analytical computing technologies 
presents new opportunities for processing, detecting, and 
classifying different multi-source multi-sensor data.   Deep 
learning allows to automatically produce models that can 
analyse more significant, complex GRF data and deliver faster, 
more accurate results even on very large datasets.  

For such a data-centric approach it is unrealistic to expect 
rapid progress where data is not available in the required size 
and quality; thus, piloting such methodology depends on 
accessing other areas of research where comparable problems 
can be defined and solutions sought on data which are available 

and well understood. In support of such an approach, a variety 
of commercialized healthcare applications have attracted 
attention due to the possibility of using gait spatiotemporal 
parameters at the basis for gait anomaly detection devices. In 
this work, the performance of deep neural networks is studied 
with a view to achieving the required sensitivity for accurate 
classifications from GRF data. Due to lacking data alternatives 
at present, we use human gait GRF data captured by a pressure 
sensor under the foot. Although the models trained with such 
particular data will not be identical in all GRF application cases, 
the spatio-temporal character of the data, as well as the task to 
extract classification features automatically, remain the same. 

Progress in instrumentation for GRF sensing in human gait 
has given rise to the objective evaluation of different human 
locomotion parameters. It has included, but not been limited to, 
commercialized devices for detection and monitoring of 
abnormal gait.  Due to the complex nature of the gait cycle, 
presenting and interpreting a result from gait spatio-temporal 
attributes in real-world scenarios, such as healthcare where 
clinical verification is possible, would be a strong steer as to what 
to expect from deep learning in other GRF-related cases.  

We use the case of Parkinson’s disease (PD) as a 
neurodegenerative disorder that causes muscular stiffness, 
tremor, soft voice, shuffling gait, slowness of the movement, 
poor postural stability, freezing of gait [1]. Typically, an expert 
doctor examines PD patients depending on established criteria 
to rate the severity of the disease, the rating criteria: Unified PD 
Rating Scale, Hoehn and Yahr staging, and the Schwab and 
England rating of activities of daily living [2]. Abnormal gait is 
one of the critical features of PD, and monitoring a patient while 
he walks is probably the most valuable procedure in the 
diagnostic workup of PD. However, in the early stages of PD, 
gait evaluation may lead to inconclusive results because of slow 
walking and short stride are often doubtful and can be related to 
age, depressive mood, or other conditions [3]. 

It is evident that foot placement and the resulting GRF 
sequence of a healthy person is different from PD patients. The 
healthy person would have a pronounced heel strike and 
stepping off with their toes, then landing on their heel again, 
while PD patients tend to have a flat foot in the strike profile 
[4]. Heel strike is one of the gait cues and it can be picked up to 
recognize PD, as well as rate the severity of the deviation from 
normal. Essentially sensors under the foot are suitable to 
capture spatiotemporal information of the heel strike patterns 
while walking. However, to commercialize sensors for 
abnormal gait recognition in healthcare, as well as for 
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monitoring the dynamics in the floor occupancy by a number of 
different players, it is necessary to integrate in their design the 
appropriate sub-systems to process the complex GRF 
spatiotemporal information. Integrated sensor-actuator 
systems, such as smart prosthetics or biped robots with adaptive 
locomotion, would require deep learning for solving the 
complex problems of capturing the GRF data and test the 
validity of the training, before implementing it on a hardware to 
be used as standalone system to assist a real-time factory floor 
management or as a tool in aid for PD severity rating. 

Various machine learning methods have been proposed to 
categorize the complex spatiotemporal GRF character. To 
classify gait as normal or PD, [5] proposed Shifted 1D- Local 
Binary Patterns (LBP) to extract features and apply Multi-Layer 
Perceptron (MLP) for the diagnosing of PD. In [6] a statistical 
learning, principal component analysis (PCA) is proposed to 
classify the data and identify the presence of PD. Thus, the 
salient features of spatiotemporal GRF may be lost in the 
process of feature extraction, producing lower accuracy. This 
can be mitigated by utilizing deep learning methods for its 
capability of automatic feature extraction, delivering high 
statistical confidence by fusing sensors data and learn rich 
features of gait patterns in the neural network deep layers. 

We propose a convolutional neural network (CNN) and a 
long short-term memory neural network (LSTM) to learn 
sensors spatiotemporal information from raw GRF signals, to 
recognize the features associated with gait disorders in PD. The 
GRF recognition algorithms are based on deep learning 
methods to fuse sensors signals and extract gait feature 
automatically from GRF signature in minimal time and with 
extremely light and fast computing ability. Furthermore, the 
models are extremely versatile to personalize their owner’s 
experience on gait feature. 

II. BACKGROUND 
 
Gait is a behavioural recurrent contact with the surface to 

move from one position to the other in humans, and it is 
achieved through the synchronised movement of the lower 
limbs [7]. Gait analysis is an active research area for a variety 
of applications including sport [8]-[9], identification of 
individuals for security [10]-[11], and healthcare [12]-[13]. 

Gait is obtained to study the potentials of footsteps in the 
analysis of gait variability to study the cognitive decline. 

Freezing of gait (FOG) is a disorder in late stage Parkinson’s 
disease which causes fall, and loss of independents have been 
investigated using electroencephalography (EEG) data while 
participants are stepping on a force plate. The participants EEG 
have been studied to rate the FOG severity by analysing the 
signals during gait cycle [14]. Lorenzi et al. [15] used a single 
IMU unit positioned on the head, to collect gait patterns during 
the gait cycle, aiming to distinguish normal gait from the 
freezing of gait and irregular steps in Parkinson’s disease (PD), 
using dynamic time warping to select the input features to the 
ANN. Abdulhay [4] presented a study on detecting Parkinson’s 
disease (PD) based on ground reaction force of individuals 
during gait cycle. The study shows that stance time, swing time, 
stride time and foot strike profile can be used to distinguish PD 
patients from a normal person. 

III. PATTERN RECOGNITION METHODS 
 
Supervised learning is by far the most widely used machine 

learning method in gait analysis. The main objective of the 
proposed algorithms is to find the hypothesis to our desired PD 
ground truth labels provided with the input. Since the difference 
between the gait cycle of PD patient and normal person is 
unknown, deep learning algorithms is utilized to correctly map 
the sensed gait spatiotemporal information to a ground truth 
label, which is normal or PD with Hoehn and Yahr staging. In 
this process the algorithms can easily learn by itself the events 
occur during gait cycle. Further, the methods are tested with 
unseen data to measure the models accuracy. The validity of 
this innovative approach to the problem of gait GRF signal 
processing and sensor fusion in the neural network deep layers 
is demonstrated by performing calculations outboard with a PC 
using Python Keras open source library [16].  

A. CNNs Network  

State of the art deep convolutional neural network is the 
most favorable method for data that has a known grid-like 
topology [17]. The CNNs learns a high level of abstraction and 
pattern from large datasets by applying to the input convolution 
operations. Commonly, the network consists of convolution 
layers, pooling layers and normalization layers, with a set of 
filters and weights shared among these layers. Convolution 
operation given an input I(t) and a kernel K(a) is given as:  

                𝑆(𝑡) = ∑ 𝐼(𝑎) ∗ 𝐾(𝑡 − 𝑎)𝑎 --------          -(1) 

 

 
Fig. 1.  Illustration of the proposed deep 1D-CNNs architecture. (A): Input-layer; (B): Hidden-layer; (C): Hidden-layer; (D): Hidden-layer 

 (E): Fully contacted-layer; (F): Fully contacted-output layer. 
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Tow CNNs neural networks are propose based on the input 

as follow:  

a) 1D-CNN  

     A deep 1D-CNNs model (See architecture in figure 1) is 
built to automatically extract gait feature directly from the raw 
spatiotemporal sensor signals. The network consists of four 
convolutional layers each followed by Max pooling and two 
fully connected layers, a total of nine stacked layers. The first 
convolutional layer takes as input raw spatio-temporal GRF 
signals matrix. A stride of 1 and same-padding used in the 
convolutional layers to output the same length of the original 
input shape, followed by Max-pooling layer to subsample the 
feature map and make the convolutional layer output more 
robust.  

b) 2D-CNN  

     The network input is fused spatio-temporal 3D matrix of the 
raw sensor signals [18]. The network consists of three 
convolutional layers each followed by an average pooling and 
two fully connected layers (See architecture in figure 2) a total 
of seven stacked layers. The first convolutional layer takes as 
input fused spatio-temporal signals volume of 50 with 15 
(height) by 12 (width) spatial dimensions. The four 
convolutional layers have n channels each that assign one frame 
of the input to a single convolutional layer channel. The 
convolutional layers use a stride of 1, same-padding, and a filter 
of 2 × 2 dimensions for the average-pooling layers.  

B. LSTM Network 

     The LSTM neural network is favourable for processing time 
series data, where the order is of importance. Since gait cycle is 
time related cue, the LSTM approach is found to be quite useful 
in gait data analysis. We propose LSTM network with five 
stacked layers, where the first and second layer have memory 

blocks. Instead of neurons, the blocks are connected together in 
each layer. Each block contains Forget Gate to control which 
data remains in the block, Input Gate to control which data flow 
to the block, and Output Gait to control the output based on the 
computed activation in the block. The last three layers are fully 
connected layer, batch normalization layer, and a fully 
connected output layer. An illustration of the LSTM 
architecture is shown in figure 3.   

C. Shallow Learning Methods  

     The shallow learning is the classical way to perform 
classification based on gait handcrafted features to learn in 
predefined relationship to classify the inputs to the output 
ground truth. Four shallow learning methods are utilized to 
compare the performance with the proposed deep learning 
methods. The used shallow learning methods are: decision tree 
classifier, logistic regression, support vector machine (SVM), 
and multilayer perceptron neural network with input layer and 
output fully connected layer. 

D. Dataset 

 Open access benchmark created by research group supported 
by National Institutes of Health, the National Parkinson 
Foundation, and the Parkinson's Disease Foundation, is obtained 
to train and test the algorithm. The dataset is acquired from 
PhysioNet and cleaned for processing. It consists of 93 PD 
patients (mean age: 66.3 years; 63% men) (See table I) and with 
different level of the disease (See table II) and 73 healthy control 
(mean age: 66.3 years; 55% men).  The dataset consists of a 
vertical ground reaction force of subjects collected as they 
walked for approximately two minutes. Each subject had eight 

 
Fig. 2.   Illustration of the proposed deep 2D-CNNs architecture 

 

Table. II 
Number of subjects with the severity rating 

severity 
(0) 

Healthy 

 severity 
(2) 

severity 
(2.5) 

 severity 
(3) 

Group 

18  15 8  6 Ga[19] 
26  12 13  4 Ju [20] 
29  29 6  0 Si [21] 

 Fig. 3.  Illustration of the proposed LSTM network architecture 

Table. I 
Subject’s dataset discerption 

Subjects # subjects Male Female Group 
PD patients 29 20 9 Ga [19] 

Healthy Subjects 18 10 8 Ga [19] 
PD patients 29 16 13 Ju [20] 

Healthy Subjects 26 12 14 Ju [20] 
PD patients 35 22 13 Si [21] 

Healthy Subjects 29 18 18 Si [21] 
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sensors underneath each foot to capture the forces placed on the 
ground as a function of time. The output of the 16 sensors total 
of two feet is recorded as 100 frames per second. Also, the sum 
of the eight sensors of each foot is added to each subject sample. 
The data set is collected by three gropes namely Ga group [19], 
Ju group [20] and Si group [21]. Where group Ga included 
additional sample for each subject, which is   performing serial-
7 subtraction while walking. Group Ju and Si recorder usual 
normal walk with self-selected speed.  

IV. EXPERIMENT 

A. Data Preprocessing 

 The dataset samples are downloaded from PhysioNet Gait in 
Parkinson's Disease,  as a text file per sample. Each text file is 
converted to a python file. Each sample is 19 columns, some of 
which have 12119 frames and the other have 1000 frames per-
sample. In order to make the dataset the same length, the datasets 
were divided to equal size of 500 frames and the timestamp 
columns were deleted. The final sample size is 18 columns and 
500 rows or frames. This method is adapted since the gait cycle 
is one second and the sample will include both feet heel strike 
and toe off for five gait cycles. The final dataset is a tensor with 
the following dimensional K×500×18 where K = 2698 for Ga 
group, 2198 for Ju and 1509 Si group (See figure 4). Data 
standardization is performed as a pre-processing step. 
Standardization is an essential step to reduce the redundancy and 
dependency among the data to make it  suitable for machine 
learning to perform classification. The standardization involves 
rescaling the distribution of values by removing the mean and 
rescaling the standard deviation to unity. Next, the dataset was 
split into training 80% and testing 20% with a random state of 
42.  

B. Shallow Learning 

 Supervised shallow learning algorithms are implemented to 
perform classification using the ground truth provide with the 
input. Features are extracted from GRF raw signals, special 

average and standard deviation [22] is adapted to extract the 
features.   

a) Spatial average 

The spatial average feature takes the average of all the 
sensor signals R at each timestamp t. The spatial average is 
calculated as follows: 

                  𝑆𝐴[𝑡] = 118 ∑ (𝑅𝑖  [𝑡]18𝑖=1 )                        (2) 

            b) Standard deviation     
     The standard deviation feature calculates the spread of the 
distribution of the intensity values coming from all the sensor 
signals at each time step. The standard deviation feature is 
expressed as follows:  

 𝜙[𝑡] = √ 118 [((𝑅1 −  𝑆𝐴[𝑡]))2 + [((𝑅2 −  𝑆𝐴[𝑡]))2 + ⋯ + [((𝑅18 −  𝑆𝐴[𝑡]))2              (3) 

 

C. Deep Feature Learning and Classifications   

 a) CNNs training and testing 

The models are trained and validated using a patch size of 
180 samples for each iteration, 100 echoes are optimal to train 
the models. The training size is 80% of the training data and 
20% for validation. An Adam (A Method for Stochastic 
Optimization) [23] is used to train the model. The optimizer 
parameters are adjusted as follow:  𝛼 =0.002, 𝛽1 =0.9, 𝛽2 
=0.999, 𝜀=1e-08. Where 𝛼 is the learning rate or the proportion 
that weights are updated. 𝛽1 is the exponential decay rate for 
the first moment estimates. 𝛽2 is the exponential decay for the 
second-moment estimates. 𝜀 is a small number to avoid any 
division by zero in the implementation. The loss is computed 
using categorical cross-entropy in every iteration. To improve 
the model’s performance a regularization method is utilized, a 
dropout with a size of 0.5 was added after the last MaxPooling 
layer was flattened and an additional dropout with the size of 
0.2 was added before the output layer in the 1D-CNN model, 
and a dropout of size 0.5 was added after the last MaxPooling 
layer was flattened in the 2D-CNN model. The model’s hyper-
parameters are selected based on extensive experimentation are 
shown in table III.   
 

            b) Deep-LSTM training and testing 

The model is trained and validated using a patch size of 200 
samples for each iteration, 100 echoes are optimal to train the 
model. The same optimization in (IV.C.a) is used to train and 
validate the model. The LSTM hyper-parameters are as follow: 
first LSTM layer has 100 units and the second LSTM layer has 
40 units with a dropout of 0.2 and recurrent dropout of 0.2, 
followed by Fully- connected layer with 20 units, the top output 
Fully-connected layer has a softmax activation function to 
produce four classes of PD severity levels. To improve the 
model performance, we add a Batch Normalization followed by 
a dropout with a size of 0.5 after the LSTM hidden layer.  

V. RESULTS 

    This section presented the performance of the shallow and 
deep learning algorithms to classify PD severity levels.  The 
confusion matrix methods is adapted [24] to evaluate the 

 

  Fig. 4. Data samples from each group 1-10, CO is a normal 
subject sample and 2, 2.5, 3 are the PD severity levels; 11) 

spatiotemporal fusion matrix 15x12 
 

 

 

 
1) Ga CO 

 
2) Ga 2 

 
3) Ga 2.5 

 
4) Ga 3 

 
5) Ju CO 

 
6) Ju 2 

 
7) Ju 2.5 

 
8) Ju 3 

 
9)  Si CO 

 
                 10)   Si 2 

 
11)    Si 2.5 

 
11) fusion of spatial and 

temporal 
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proposed methods for its ability to deliver accurate 
classification results. Figure 5 shows the proposed algorithms 
performances.  
     Figure 6 illustrates four shallow learning algorithms 
performance with two hand crafted features. The SVM 
achieved lower accuracy compared to the other algorithms. The 
highest accuracy is 90% achieved by the decision tree classifier 
using the standard deviation input.  
     Figures: 7, 8, 9, shows the classification result on four 
classes of healthy and PD with severity levels. In figure 7, 1D-
CNNs confusion matrix shows the model performance on 
classifying PD severity with 95% accuracy, recall, precision, 
and F1 score. The model loss is less than 4% in training and 
validation process which is a good fit model. Further, training 
and validation are completed in 11.47 minutes. This is due to 

the dataset large size, the total GRF signals for training and 
validation is 46116000 signals. 
     The 2D-CNN model confusion matrix is shown in figure 8.  
According to the results, the model classified the PD severity 
with 96% accuracy, recall, precision, and F1 score.   Severity 
level 2 has the lowest accuracy, scoring 93%. The model loss is 
less than 3% in training and validation process. The training and 
validation time is 9.47 minutes. 
     LSTM model confusion matrix resulted in a classification of 
PD severity with 96% accuracy, recall, precision, and F1 score, 
and the lowest classification score was on severity level 3 as 
shown in figure 9. However, the training and validation time is 
90 minutes. This is basically due to the large dataset’s size and 
the memory blocks capabilities in processing time series data.  
      Further, the proposed deep learning methods outperformed 
machine learning methods proposed in [4],[5], [6],[25] on the 
three datasets as shown in table IV to classify subjects GRF as 
control or PD.  

VI. DISCUSSION AND CONCLUSIO 

The character of gait GRF data poses the problem of 
identifying features suitable for gait classifications, desirable in 
a number of industrial application areas. Due to the complex set 
of spatio-temporal attributes in real-world gait scenarios, we use 
a case study as a steer to strategies in other GRF-related areas, 
such as the interaction of machines/robots and humans in 
industrial settings.  

Deep learning methods are proposed to extract gait feature 
from GRF signals to classify abnormal gait associated with 
Parkinson’s disease. The clinically defined severity levels 
based on ground truth diagnostic is rated by 96%. We used 

 

 
Fig. 5. A comparison among the proposed algorithms  

 
Fig. 6. A comparison among the shallow learning accuracy 

 

Fig. 7. 1D-CNNs confusion matrix classification 
results 

 

Fig. 8. 2D-CNNs confusion matrix classification 
results 

 

Fig. 9. LSTM confusion matrix classification 
results 

 

Table. III CNN hyper-parameters 

A    B    

Model Layers 1D-CNN 1D-Filter Activation  Layer Output 
1D-CNN 

Model Layers 2D-CNN 2D-Filter Activation  Layer Output 2D-
CNN 

Conv1 12 ReLU 500x12 2D-Conv1 12 ReLU 50x15x12 
Max-pooling 2 - 250x12 2DAverage-Pooling 2 - 25x8x12 
Conv2 24 ReLU 250x24 2D-Conv2 24 ReLU 25x8x24 
Max-pooling 2 - 125x24 2D-Average-Pooling 2 - 13x4x24 
Conv3 48 ReLU 125x48 2D-Conv3 48 ReLU 13x4x48 
Max-pooling 2 - 63x48 2D-Average-Pooling 2 - 7248 
Conv4 96 ReLU 63x96 Fully-connected 100  ReLU 100 
Max-pooling 2 - 32x96 Fully-connected output 4 softmax 4 
Fully-connected 50  ReLU 50     
Fully-connected output 4  softmax 4     

A) 1D-CNN; B) 2D-CNN 
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public datasets” PhysioNet”, which consist of Parkinson’s 
disease patients and healthy control subjects GRF signals to test 
the validity of the algorithms. To demonstrate the robustness of 
the proposed algorithms, the three datasets are combined to rate 
PD severity. Deep CNN and LSTM methods achieved high 
accuracy in processing and fusing GRF signals. These 
innovative approaches reflect in extremely light and fast 
computation on large datasets. 2D-CNN model achieved high 
precision with less computational time on a complex 3D tensor 
of GRF signals. Based on the high precision, the proposed deep 
learning methods outperformed the proposed approaches 
reported in the literature, additionally our methods are capable 
of classifying multi-category gait GRF to rate PD severity 
levels.  

At this point of research, the methodologies were 
implemented and tested with a PC. In the final stage, the 
developed models will be loaded into a microcontroller unit to 
perform real-time signal processing directly on board for fast 
computing. In future work, a fusion in the score level of CNN 
and LSTM will be implemented to take advantage of the CNN 
in recognizing the pattern and the LSTM internal memory for 
processing time series data to achieve higher accuracy in 
processing GRF signals.  
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