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Abstract—With a massive influx of multimodality data,
the role of data analytics in health informatics has grown
rapidly in the last decade. This has also prompted increas-
ing interests in the generation of analytical, data driven
models based on machine learning in health informatics.
Deep learning, a technique with its foundation in artificial
neural networks, is emerging in recent years as a powerful
tool for machine learning, promising to reshape the future of
artificial intelligence. Rapid improvements in computational
power, fast data storage, and parallelization have also con-
tributed to the rapid uptake of the technology in addition to
its predictive power and ability to generate automatically op-
timized high-level features and semantic interpretation from
the input data. This article presents a comprehensive up-to-
date review of research employing deep learning in health
informatics, providing a critical analysis of the relative merit,
and potential pitfalls of the technique as well as its future
outlook. The paper mainly focuses on key applications of
deep learning in the fields of translational bioinformatics,
medical imaging, pervasive sensing, medical informatics,
and public health.

Index Terms—Bioinformatics, deep learning, health
informatics, machine learning, medical imaging, public
health, wearable devices.

I. INTRODUCTION

D
EEP learning has in recent years set an exciting new

trend in machine learning. The theoretical foundations

of deep learning are well rooted in the classical neural network

(NN) literature. But different to more traditional use of NNs,

deep learning accounts for the use of many hidden neurons and

layers—typically more than two—as an architectural advan-

tage combined with new training paradigms. While resorting to

many neurons allows an extensive coverage of the raw data at

hand, the layer-by-layer pipeline of nonlinear combination of

their outputs generates a lower dimensional projection of the

input space. Every lower-dimensional projection corresponds

to a higher perceptual level. Provided that the network is opti-

mally weighted, it results in an effective high-level abstraction

of the raw data or images. This high level of abstraction renders
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Fig. 1. Distribution of published papers that use deep learning in subar-
eas of health informatics. Publication statistics are obtained from Google
Scholar; the search phrase is defined as the subfield name with the exact
phrase deep learning and at least one of medical or health appearing,
e.g., “public health” “deep learning” medical OR health.

an automatic feature set, which otherwise would have required

hand-crafted or bespoke features.

In domains such as health informatics, the generation of this

automatic feature set without human intervention has many ad-

vantages. For instance, in medical imaging, it can generate fea-

tures that are more sophisticated and difficult to elaborate in de-

scriptive means. Implicit features could determine fibroids and

polyps [1], and characterize irregularities in tissue morphology

such as tumors [2]. In translational bioinformatics, such fea-

tures may also determine nucleotide sequences that could bind

a DNA or RNA strand to a protein [3]. Fig. 1 outlines a rapid

surge of interest in deep learning in recent years in terms of the

number of papers published in sub-fields in health informatics

including bioinformatics, medical imaging, pervasive sensing,

medical informatics, and public health.

Among various methodological variants of deep learning,

several architectures stand out in popularity. Fig. 2 depicts the

number of publications by deep learning method since 2010.

In particular, Convolutional Neural Networks (CNNs) have had

the greatest impact within the field of health informatics. Its

architecture can be defined as an interleaved set of feed-forward

layers implementing convolutional filters followed by reduction,

rectification or pooling layers. Each layer in the network orig-

inates a high-level abstract feature. This biologically-inspired

architecture resembles the procedure in which the visual cortex

assimilates visual information in the form of receptive fields.

Other plausible architectures for deep learning include those

grounded in compositions of restricted Boltzmann machines

(RBMs) such as deep belief networks (DBNs), stacked Autoen-

coders functioning as deep Autoencoders, extending artificial

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 2. Percentage of most used deep learning methods in health in-
formatics. Learning method statistics are also obtained from Google
Scholar by using the method name with at least one of medical or health
as the search phrase.

NNs with many layers as deep neural networks (DNNs), or with

directed cycles as recurrent neural networks (RNNs). Latest ad-

vances in Graphics Processing Units (GPUs) have also had a

significant impact on the practical uptake and acceleration of

deep learning. In fact, many of the theoretical ideas behind deep

learning were proposed during the pre-GPU era, although they

have started to gain prominence in the last few years. Deep

learning architectures such as CNNs can be highly parallelized

by transferring most common algebraic operations with dense

matrices such as matrix products and convolutions to the GPU.

Thus far, a plethora of experimental works have implemented

deep learning models for heath informatics, reaching similar

performance or in many cases exceeding that of alternative

techniques. Nevertheless, the application of deep learning to

health informatics raises a number of challenges that need to

be resolved. For example, training a deep architecture requires

an extensive amount of labeled data, which in the healthcare

domain can be difficult to achieve. In addition, deep learning re-

quires extensive computational resources, without which train-

ing could become excessively time-consuming. Attaining an

optimal definition of the network’s free parameters can become

a particularly laborious task to solve. Eventually, deep learning

models can be affected by convergence issues as well as over-

fitting, hence supplementary learning strategies are required to

address these problems [4].

In the following sections of this review, we examine recent

health informatics studies that employ deep learning to discuss

its relative strength and potential pitfalls. Furthermore, their

schemas and operational frameworks are described in detail to

elucidate their practical implementations, as well as expected

performance.

II. FROM PERCEPTRON TO DEEP LEARNING

Perceptron is a bio-inspired algorithm for binary classification

and it is one of the earliest NNs proposed [19]. It mathemat-

ically formalizes how a biological neuron works. It has been

realized that the brain processes information through billions

of these interconnected neurons. Each neuron is stimulated by

the injection of currents from the interconnected neurons and an

action potential is generated when the voltage exceeds a limit.

These action potentials allow neurons to excite or inhibit other

neurons, and through these networked neural activities, the bio-

logical network can encode, process, and transmit information.

Biological NNs have the capacity to modify themselves, create

new neural connections, and learn according to the stimulation

characteristics. Perceptrons, which consist of an input layer di-

rectly connected to an output node, emulate this biochemical

process through an activation function (also referred to as a

transfer function) and a few weights. Specifically, it can learn to

classify linearly separable patterns by adjusting these weights

accordingly.

To solve more complex problems, NNs with one or more hid-

den layers of Perceptrons have been introduced [20]. To train

these NNs, many stages or epochs are usually performed where

each time the network is presented with a new input sample

and the weights of each neuron are adjusted based on a learning

process called delta rule. The delta rule is used by the most com-

mon class of supervised NNs during the training and is usually

implemented by exploiting the back-propagation routine [21].

Specifically, without any prior knowledge, random values are

assigned to the network weights. Through an iterative training

process, the network weights are adjusted to minimize the dif-

ference between the network outputs and the desired outputs.

The most common iterative training method uses the gradient

descent method where the network is optimized to find the mini-

mum along the error surface. The method requires the activation

functions to be always differentiable.

Adding more hidden layers to the network allows a deep ar-

chitecture to be built that can express more complex hypotheses

as the hidden layers capture the nonlinear relationships. These

NNs are known as DNNs. Training of DNNs is not trivial be-

cause once the errors are back-propagated to the first few layers,

they become negligible (vanishing of the gradient), thus failing

the learning process. Although more advanced variants of back-

propagation [22] can solve this problem, they still result in a

very slow learning process.

Deep learning has provided new sophisticated approaches to

train DNN architectures. In general, DNNs can be trained with

unsupervised and supervised learning methodologies. In super-

vised learning, labeled data are used to train the DNNs and learn

the weights that minimize the error to predict a target value

for classification or regression, whereas in unsupervised learn-

ing, the training is performed without requiring labeled data.

Unsupervised learning is usually used for clustering, feature

extraction or dimensionality reduction. For some applications it

is common to combine an initial training procedure of the DNN

with an unsupervised learning step to extract the most relevant

features and then use those features for classification by exploit-

ing a supervised learning step. For more general background in-

formation related to the theory of machine learning, the reader

can refer to the works in [23]–[25] where common training

problems, such as overfitting, model interpretation and gener-

alization, are explained in detail. These considerations must be

taken into account when deep learning frameworks are used.

For many years, hardware limitations have made DNNs im-

practical due to high computational demands for both train-

ing and processing, especially for applications that require

real-time processing. Recently, advances in hardware and thanks

to the possibility of parallelization through GPU acceleration,
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cloud computing and multicore processing, these limitations

have been partially overcome and have enabled DNNs to be rec-

ognized as a significant breakthrough in artificial intelligence.

Thus far, several DNNs architectures have been introduced in

literature and Table I briefly describes the pros and cons of

the commonly used deep learning approaches in the field of

health informatics. In Table II are instead described the main

features of popular software packages that provide deep learn-

ing implementation. Finally, Table III summarizes the different

applications in the five areas of health informatics considered in

this paper.

A. Autoencoders and Deep Autoencoders

Recent studies have shown that there are no universally hand-

engineered features that always work on different datasets. Fea-

tures extracted using data driven learning can generally be more

accurate. An Autoencoder is a NN designed exactly for this

purpose. Specifically, an Autoencoder has the same number of

input and output nodes, as shown in Fig. 3(a), and it is trained

to recreate the input vector rather than to assign a class label to

it. The method is therefore unsupervised. Usually, the number

of hidden units is smaller than the input/output layers, which

achieve encoding of the data in a lower dimensional space and

extract the most discriminative features. If the input data is of

high dimensionality, a single hidden layer of an Autoencoder

may not be sufficient to represent all the data. Alternatively,

many Autoencoders can be stacked on top of each other to

create a deep Autoencoder architecture [5]. Deep Autoencoder

structures also face the problem of vanishing gradients dur-

ing training. In this case, the network learns to reconstruct the

average of all the training data. A common solution to this

problem is to initialize the weights so that the network starts

with a good approximation of the final configuration. Finding

these initial weights is referred to as pretraining and is usually

achieved by training each layer separately in a greedy fashion.

After pretraining, the standard back-propagation can be used to

fine-tune the parameters. Many variations of Autoencoder have

been proposed to make the learned representations more robust

or stable against small variations of the input pattern. For ex-

ample, the sparse autoencoder [6] that forces the representation

to be sparse is usually used to make the classes more separable.

Another variation, called denoising autoencoder, was proposed

by Vincent et al. [7], where in order to increase the robustness

of the model, the method recreates the input introducing some

noise to the patterns, thus, forcing the model to capture just

the structure of the input. A similar idea was implemented in

contractive autoencoder, proposed by Rifai et al. [8], but instead

of injecting noise to corrupt the training set, it adds an analytic

contractive penalty to the error function. Finally, the convolu-

tional autoencoder [9] shares weights between nodes to preserve

spatial locality and process two-dimensional (2-D) patterns (i.e.,

images) efficiently.

B. Recurrent Neural Network

RNN [13] is a NN that contains hidden units capable

of analyzing streams of data. This is important in several

Fig. 3. Schematic illustration of simple NNs without deep structures.
(a) Autoencoder. (b) Restricted Boltzmann machine.

applications where the output depends on the previous computa-

tions, such as the analysis of text, speech, and DNA sequences.

The RNN is usually fed with training samples that have strong

inter-dependencies and a meaningful representation to maintain

information about what happened in all the previous time steps.

The outcome obtained by the network at time t − 1 affects the

choice at time t. In this way, RNNs exploit two sources of input,

the present and the recent past, to provide the output of the new

data. For this reason, it is often said that RNNs have memory. Al-

though the RNN is a simple and powerful model, it also suffers

from the vanishing gradient and exploding gradient problems

as described in Bengio et al. [26]. A variation of RNN called

long short-term memory units (LSTMs), was proposed in [27]

to solve the problem of the vanishing gradient generated by long

input sequences. Specifically, LSTM is particularly suitable for

applications where there are very long time lags of unknown

sizes between important events. To do so, LSTMs exploit new

sources of information so that data can be stored in, written to,

or read from a node at each step. During the training, the net-

work learns what to store and when to allow reading/writing in

order to minimize the classification errors.

Unlike other types of DNNs, which uses different weights at

each layer, a RNN or a LSTM shares the same weights across all

steps. This greatly reduces the total number of parameters that

the network needs to learn. RNNs have shown great successes

in many natural language processing tasks such as language

modeling, bioinformatics, speech recognition, and generating

image description.

C. RBM-Based Technique

A RBM was first proposed in [37] and is a variant of the

Boltzmann machine, which is a type of stochastic NN. These

networks are modeled by using stochastic units with a spe-

cific distribution (for example Gaussian). Learning procedure

involves several steps called Gibbs sampling, which gradually

adjust the weights to minimize the reconstruction error. Such

NNs are useful if it is required to model probabilistic relation-

ships between variables.

Bayesian networks [38], [39] are a particular case of network

with stochastic unit referred as probabilistic graphical model that

characterizes the conditional independence between variables

in the form of a directed acyclic graph. In an RBM, the visible
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TABLE I
DIFFERENT DEEP LEARNING ARCHITECTURES
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TABLE II
POPULAR SOFTWARE PACKAGES THAT PROVIDE DNNS IMPLEMENTATION

Name Creator License Platform Interface OpenMP Supported techniques Cloud
support

RNN CNN DBN
computing

Caffe [28] Berkeley Center FreeBSD Linux, Win, OSX, Andr. C++, Python, MATLAB ✗
√ √

✗ ✗

CNTK [29] Microsoft MIT Linux, Win Command line
√ √ √

✗ ✗

Deeplearning4jK [30] Skymind Apache 2.0 Linux, Win, OSX, Andr. Java, Scala, Clojure
√ √ √ √

✗

Wolfram Math. [31] Wolfram Research Proprietary Linux, Win, OSX, Cloud Java, C++ ✗ ✗
√ √ √

TensorFlow [32] Google Apache 2.0 Linux, OSX Python ✗
√ √ √

✗

Theano [33] Université de Montréal BSD Cross-platform Python
√ √ √ √

✗

Torch [34] Ronan Collobert et al. BSD Linux, Win, OSX, Andr., iOS Lua, LuaJIT, C
√ √ √ √

✗

Keras [35] Franois Chollet MIT license Linux, Win, OSX Python ✗
√ √ √

✗

Neon [36] Nervana Systems Apache 2.0 OSX, Linux Python
√ √ √ √ √

TABLE III
SUMMARY OF THE DIFFERENT DEEP LEARNING METHODS BY AREAS AND APPLICATIONS IN HEALTH INFORMATICS

and hidden units are restricted to form a bipartite graph that

allows implementation of more efficient training algorithms.

Another important characteristics is that RBMs have undirected

nodes, which implies that values can be propagated in both the

directions as shown in Fig. 3(b).

Contrastive divergence [40] (CD) algorithm is a common

method used to train an RBM. CD is an unsupervised learning

algorithm, which consists of two phases that can be referred to

as positive and negative phases. During the positive phase the

network configuration is modified to replicate the training set,
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whereas during the negative phase it attempts to recreate the

data based on the current network configuration.

A beneficial property of RBM is that the conditional distri-

bution over the hidden units factorizes given the visible units.

This makes inferences tractable since the RBM feature repre-

sentation is taken to be a set of posterior marginal obtained by

directly maximizing the likelihood. Utilizing RBM as learning

modules, two main deep learning frameworks have been pro-

posed in literature: the DBN and the deep Boltzmann machine

(DBM).

1) Deep Belief Network: Proposed in [10], a DBN can be

viewed as a composition of RBMs where each subnetwork’s

hidden layer is connected to the visible layer of the next RBM.

DBNs have undirected connections only at the top two layers

and directed connections to the lower layers. The initialization

of a DBN is obtained through an efficient layer-by-layer greedy

learning strategy using unsupervised learning and is then fine-

tuned based on the target outputs.

2) Deep Boltzmann Machines: Proposed in [11], a DBM

is another DNN variant based on the Boltzmann family. The

main difference with DBN is that the former possesses undi-

rected connections (conditionally independent) between all

layers of the network. In this case, calculating the posterior

distribution over the hidden units given the visible units can-

not be achieved by directly maximizing the likelihood due to

interactions between the hidden units. For this reason, to train

a DBM, a stochastic maximum likelihood [12] based algorithm

is usually used to maximize the lower bound of the likelihood.

Same as for DBNs, a greedy layer-wise training strategy is also

performed when pretraining the DBM network. The main dis-

advantage of a DBM is the time complexity required for the

inference that is considerably higher with respect to the DBN,

and that makes the optimization of the parameters not practical

for big training set [41].

D. Convolutional Neural Networks

In general, all the DNNs presented so far cannot scale well

with multidimensional input that has locally correlated data,

such as an image. The main problem is that the number of

nodes and the number of parameters that they have to train could

be huge, and therefore, they are not practical. CNNs have been

proposed in [14] to analyze imagery data. The name of these net-

works comes from the convolution operator that is an easy way

to perform complex operations using convolution filter. CNN

does not use predefined kernels, but instead learns locally con-

nected neurons that represent data-specific kernels. Since these

filters are applied repeatedly to the entire image, the resulting

connectivity looks like a series of overlapping receptive fields.

The main advantage of a CNN is that during back-propagation,

the network has to adjust a number of parameters equal to a

single instance of the filter which drastically reduces the con-

nections from the typical NN architecture. The concept of CNN

is largely inspired by the neurobiological model of the visual

cortex [15]. The visual cortex is known to consist of maps of

local receptive fields that decrease in granularity as the cortex

moves anteriorly. This process can be briefly summarized as

follows:

Fig. 4. Basic architecture of CNN which consists in several layers of
convolution and subsampling to efficiently process images.

Fig. 5. Overview of the different inputs and applications in biomedical
and health informatics.

1) The input image is convolved using several small filters.

2) The output at Step 1 is subsampled.

3) The output at Step 2 is considered the new input and the

convolution and subsampling processes are repeated until

high level features can be extracted.

According to the aforementioned schema, a typical CNN con-

figuration consists of a sequence of convolution and subsample

layers as illustrated in Fig. 4. After the last subsampling layer, a

CNN usually adopts several fully-connected layers with the aim

of converting the 2-D feature maps into a 1-D vector to allow fi-

nal classification. Fully-connected layers can be considered like

traditional NNs and they contain about 90% of the parameters

of the entire CNN, which increases the effort required for train-

ing considerably. A common solution for solving this problem

is to decrease the connections in these layers with a sparsely

connected architecture. To this end, many configurations and

variants have been proposed in literature and some of the most

popular CNNs at the moment are: AlexNet [16], Clarifai [17],

VGG [42], and GoogLeNet [18].
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A more recent deep learning approach is known as convo-

lutional deep belief networks (CDBN) [43]. CDBN maintains

structures that are very similar to a CNN, but is trained similarly

to a DBN. Therefore, it exploits the advantages of CNN whilst

making use of pretraining to initialize efficiently the network as

a DBN does.

E. Software/Hardware Implementations

Table II lists the most popular software packages that al-

low implementation of customized deep learning methodolo-

gies based on the approaches described so far. All the software

listed in the table can exploit CUDA/Nvidia support to improve

performance using GPU acceleration. Adding to the growing

trend of proprietary deep learning frameworks being turned

into open source projects, some companies, such as Wolfram

Mathematica [31] and Nervana Systems [36], have decided to

provide a cloud based services that allow researchers to speed-

up the training process. New GPU acceleration hardware in-

cludes purpose-built microprocessors for deep learning, such

as the Nvidia DGX-1 [44]. Other possible future solutions are

neuromorphic electronic systems that are usually used in com-

putational neuroscience simulations. These later hardware ar-

chitectures intend to implement artificial neurons and synapses

in a chip. Some current hardware designs are IBM TrueNorth,

SpiNNaker [45], NuPIC, and Intel Curie.

III. APPLICATIONS

A. Translational Bioinformatics

Bioinformatics aims to investigate and understand biological

processes at a molecular level. The human genome project has

made available a vast amount of unexplored data and allowed

the development of new hypotheses of how genes and environ-

mental factors interact together to create proteins [118], [119].

Further advances in biotechnology have helped reduce the cost

of genome sequencing and steered the focus on prognostic,

diagnostic and treatment of diseases by analyzing genes and

proteins. This can be illustrated by the fact that sequencing the

first human genome cost billions of dollars, whereas today it is

affordable [45]. Further motivated by P4 (predictive, personal-

ized, preventive, participatory) medicine [120], bioinformatics

aims to predict and prevent diseases by involving patients in the

development of more efficient and personalized treatments.

The application of machine learning in bioinformatics (Fig. 5)

can be divided into three areas: prediction of biological pro-

cesses, prevention of diseases and personalized treatment. These

areas are found in genomics, pharmacogenomics and epige-

nomics. Genomics explores the function and information struc-

tures encoded in the DNA sequences of a living cell [121]: it

analyzes genes or alleles responsible for the creation of protein

sequences and the expression of phenotypes. A goal of genomics

is to identify gene alleles and environmental factors that con-

tribute to diseases such as cancer. Identification of these genes

can enable the design of targeted therapies [121]. Pharmacoge-

nomics evaluates variations in an individual’s drug response

to treatment brought about by differences in genes. It aims to

design more efficient drugs for personalized treatment whilst

reducing side effects. Finally, epigenomics aims to investigate

protein interactions and understand higher level processes, such

as transcriptome (mRNA count), proteome, and metabolome,

which lead to modification in the gene’s expression. Under-

standing how environmental factors affect protein formation

and their interactions is a goal of epigenomics.

1) Genetic Variants: splicing and alternative splicing

code. Genetic variant aims to predict human splicing code in

different tissues and understand how gene expression changes

according to genetic variations. Alternative splicing code is the

process from which different transcripts are generated from one

gene. Prediction of splicing patterns is crucial to better under-

stand genes variations, phenotypes consequences and possible

drug effect variations. Genetic variances play a significant role

in the expression of several diseases and disorders, such as

autism, spinal muscular atrophy, and hereditary colorectal can-

cer. Therefore, understanding genetic variants can be a key to

provide early diagnosis.

2) Protein–Protein and Compound-Protein Interac-

tions (CPI): Quantitative structure activity relationship

(QSAR) aims to predict the protein–protein interaction

normally based on structural molecular information. CPI

aims to predict the interaction between a given compound

and protein. Protein–protein and protein-compound interac-

tions are important in virtual screening for drug discovery:

they help identifying new compounds, toxic substances, and

provide significant interpretation on how a drug will affect any

type of cell, targeted or not. Specifically to epigenomics, QSAR

and CPI help modeling the RNA protein binding.

3) DNA Methylation: DNA methylation states are part of

a process that changes the DNA expression without changing

the DNA sequence itself. This can be brought about by a wide

range of reasons, such as chromosome instability, transcription

or translation errors, cell differentiation or cancer progression.

The datasets are usually high dimensional, heterogeneous,

and sometimes unbalanced. The conventional workflow in-

cludes data preprocessing/cleaning, feature extraction, model

fitting, and evaluation [122]. These methods do not operate

on the sequence data directly but they require domain knowl-

edge. For example, the ChEMBL database, used in pharmacoge-

nomics, has millions of compounds and compound descriptors

associated with a large database of drug targets [45]. Such

databases encode molecular “fingerprints” and are major

sources of information in drug discovery applications. Tra-

ditional machine learning approaches have been successful,

mostly because the complexity of molecular interactions was

reduced by only investigating one or two dimension of the

molecule structure in the feature descriptors. Reducing design

complexity inevitably leads to ignore some relevant but uncap-

tured aspects of the molecular structures [123], [124]. However,

Zhang et al. [50] used deep learning to model structural features

for RNA binding protein prediction and showed that using the

RNA tertiary structural profile can improve outcomes.

Extracting biomarkers or alleles of genes responsible for a

specific disorder is very challenging as it requires a great amount

of data from a large diversified cohort. The markers should be

present—if possible at different concentration levels throughout

the disorder’s evolution and patient’s treatment—with a direct
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explanation on the phenotype changes due to the disease [125].

One approach accounting for sequence variation which limits

the number of required subjects is to split the sequence into win-

dows centered on the investigated trait. Although this results in

thousands of training examples of molecular traits even from

just one genome, a large scale of DNA sequences and interac-

tions mediated by various distant regulatory factors should be

used [122].

The ability of deep learning to abstract large, complex, and

unstructured data offers a powerful way of analyzing hetero-

geneous data such as gene alleles, proteins occurrences, and

environmental factors [126]. Their contribution to bioinfor-

matics has been reviewed in several related areas [45], [121],

[122], [124], [126]–[129]. In deep learning approaches, feature

extraction and model fitting takes place in a unified step. Multi-

layer feature representation can capture nonlinear dependencies

at multiple scales of transcriptional and epigenetic interactions

and can model molecular structure and properties in a data-

driven way. These nonlinear features are invariant to small input

changes which results in eliminating noise and increasing the

robustness of the technique.

Several works have demonstrated that deep learning fea-

tures outperformed methods relying on visual descriptors in

the recognition and classification of cancer cells. For example,

Fakoor et al. [2] proposed an autoencoder architecture based

on gene expression data from different types of cancer and the

same microarray dataset to detect and classify cancer. Ibrahim

et al. [46] proposed a DBN with an active learning approach to

find features in genes and microRNA that resulted in the best

classification performance of various cancer diseases such as

hepatocellular carcinoma, lung cancer and breast cancer. For

breast cancer genetic detection, Khademi et al. [47] overcame

missing attributes and noise by combining a DBN and Bayesian

network to extract features from microarray data. Deep learning

approaches have also outperformed SVM in predicting splicing

code and understanding how gene expression changes by ge-

netic variants [48], [130]. Angermueller et al. [52] used DNN

to predict DNA methylation states from DNA sequences and

incomplete methylation profiles. After applying to 32 embry-

onic mice stem cells, the baseline model was compared with the

results. This method can be used for genome-wide downstream

analyses.

Deep learning not only outperforms conventional approaches

but also opens the door to more efficient methods to be devel-

oped. Kearnes et al. [123] described how deep learning based

on graph convolutions can encode molecular structural features,

physical properties, and activities in other assays. This allows a

rich representation of possible interactions beyond the molecu-

lar structural information encoded in standard databases. Simi-

larly, multitask DNNs provides an intuitive model of correlation

between molecule compounds and targets because information

can be shared among different nodes. This increases robustness,

reduces chances to miss information, and usually outperforms

other methods that process large datasets [49].

Deep learning has rapidly been adopted in the field of bioin-

formatics due to several open source packages. However, there

are no standard methods of choosing model architectures and

their use require expertise in computer science and biology.

Therefore, the question of integrating the software development

and the data has been raised [127]. Also, deep learning ap-

proaches do not include a standard way of establishing statistical

significance, which is a limitation for future result comparisons.

Therefore, conventional methods offer some advantages, espe-

cially in the case of small datasets. Although DNNs scale better

to large datasets, the computational cost is high, resulting in

the specific necessity of chips for massive parallel processing in

order to deal with the increased complexity [45].

B. Deep Learning for Medical Imaging

Automatic medical imaging analysis is crucial to modern

medicine. Diagnosis based on the interpretation of images can be

highly subjective. Computer-aided diagnosis (CAD) can provide

an objective assessment of the underlying disease processes.

Modeling of disease progression, common in several neuro-

logical conditions, such as Alzheimer’s, multiple sclerosis, and

stroke, requires analysis of brain scans based on multimodal

data and detailed maps of brain regions.

In recent years, CNNs have been adapted rapidly by the med-

ical imaging research community because of their outstanding

performance demonstrated in computer vision and their ability

to be parallelized with GPUs. The fact that CNNs in medical

imaging have yielded promising results have also been high-

lighted in a recent survey of CNN approaches in brain pathology

segmentation [58] and in an editorial of deep learning tech-

niques in computer aided detection, segmentation, and shape

analysis [76].

Among the biggest challenges in CAD are the differences in

shape and intensity of tumors/lesions and the variations in imag-

ing protocol even within the same imaging modality. In several

cases, the intensity range of pathological tissue may overlap

with that of healthy samples. Furthermore, Rician noise, non-

isotropic resolution, and bias field effects in magnetic resonance

images (MRI) cannot be handled automatically using simpler

machine learning approaches. To deal with this data complexity,

hand-designed features are extracted and conventional machine

learning approaches are trained to classify them in a completely

separate step.

Deep learning provides the possibility to automate and merge

the extraction of relevant features with the classification pro-

cedure [55], [65]. CNNs inherently learn a hierarchy of in-

creasingly more complex features and, thus, they can operate

directly on a patch of images centered on the abnormal tissue.

Example applications of CNNs in medical imaging include the

classification of interstitial lung diseases based on computed

tomography (CT) images [70], the classification of tuberculo-

sis manifestation based on X-ray images [71], the classifica-

tion of neural progenitor cells from somatic cell source [57],

the detection of haemorrhages in color fundus images [69]

and the organ or body-part-specific anatomical classification

of CT images [68]. A body-part recognition system is also pre-

sented in Yan et al. [75]. A multistage deep learning framework

based on CNNs extracts both the patches with the most as well

as least discriminative local patches in the pretraining stage.

Subsequently, a boosting stage exploits this local information
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to improve performance. The authors point out that training

based on discriminative local appearances are more accurate

compared to the usage of global image context. CNNs have also

been proposed for the segmentation of isointense stage brain

tissues [131] and brain extraction from multimodality MR im-

ages [56].

Hybrid approaches that combine CNNs with other architec-

tures are also proposed. In [66], a deep learning algorithm is

employed to encode the parameters of a deformable model and

thus facilitate the segmentation of the left ventricle (LV) from

short-axis cardiac MRI. CNNs are employed to automatically

detect the LV, whereas deep Autoencoders are utilized to infer

its shape. Yu et al. [67] designed a wireless capsule endoscopy

classification system based on a hybrid CNN with extreme learn-

ing machine (ELM). The CNN constitutes a data-driven feature

extractor, whereas the cascaded ELM acts as a strong classifier.

A comparison between different CNNs architectures con-

cluded that deep CNNs of up to 22 layers can be useful even

with limited training datasets [73]. More detailed description of

various CNNs architectures proposed in medical imaging anal-

ysis is presented in previous survey [58]. The key challenges

and limitations are:

1) CNNs are designed for 2-D images whereas segmen-

tation problems in MRI and CT are inherently 3-D.

This problem is further complicated by the anisotropic

voxel size. Although the creation of isotropic images

by interpolating the data is a possibility, it can result in

severely blurred images. Another solution is to train the

CNNs on orthogonal patches extracted from axial, sagit-

tal and coronal views [62], [132]. This approach also

drastically reduces the time complexity required to pro-

cess 3-D information and thus alleviates the problem of

overfitting.

2) CNNs do not model spatial dependencies. Therefore,

several approaches have incorporated voxel neighboring

information either implicitly or by adding a pairwise term

in the cost function, which is referred as conditional ran-

dom field [85].

3) Preprocessing to bring all subjects and imaging modali-

ties to similar distribution is still a crucial step that affects

the classification performance. Similarly to conventional

machine learning approaches, balancing the datasets with

bootstrapping and selecting samples with high entropy is

advantageous.

Perhaps, all of these limitations result from or are exacerbated

by small and incomplete training datasets. Furthermore, there is

limited availability of ground-truth/annotated data, since the cost

and time to collect and manually annotate medical images is pro-

hibitively large. Manual annotations are subjective and highly

variable across medical experts. Although, it is thought that the

manual annotation would require highly specialized knowledge

in medicine and medical imaging physics, recent studies sug-

gest that nonprofessional users could perform similarly [76].

Therefore, crowdsourcing is suggested as a viable alternative

to create low-cost, big ground-truth medical imaging datasets.

Moreover, the normal class is often over represented since the

healthy tissue usually dominates and forms highly repetitive pat-

terns. These issues result in slow convergence and overfitting.

To alleviate the lack of training samples, transfer learning via

fine tuning have been suggested in medical imaging applica-

tions [58], [72], [74], [76]. In transfer learning via fine-tuning, a

CNN is pretrained using a database of labeled natural images.

The use of natural images to train CNNs in medical imaging is

controversial because of the profound difference between nat-

ural and medical images. Nevertheless, Tajbakhsh et al. [74]

showed that fine-tuned CNNs based on natural images are less

prone to overfitting due to the limited size training medical

imaging sets and perform similarly or better than CNNs trained

from scratch. Shin et al. [73] has applied transfer learning from

natural images in thoraco-abdominal lymph node detection and

interstitial lung disease classification. They also reported better

results than training the CNNs from scratch with more consis-

tent performances of validation loss and accuracy traces. Chen

et al. [72] applied successfully a transfer learning strategy to

identify the fetal abdominal standard plane. The lower layers of

a CNN are pretrained based on natural images. The approach

shows improved capability of the algorithm to encode the com-

plicated appearance of the abdominal plane. Multitask training

has also been suggested to handle the class imbalance common

in CAD applications. Multitasking refers to the idea of solving

different classification problems simultaneously and it results in

a drastic reduction of free parameters [133].

Although CNNs have dominated medical image analysis ap-

plications, other deep learning approaches/architectures have

also been applied successfully. In a recent paper, a stacked de-

noising autoencoder was proposed for the diagnosis of benign

malignant breast lesions in ultrasound images and pulmonary

nodules in CT scans [77]. The method outperforms classical

CAD approaches, largely due to the automatic feature extraction

and noise tolerance. Furthermore, it eliminates the image seg-

mentation process to obtain a lesion boundary. Shan et al. [53]

presented a stacked sparse autoencoder for microaneurysms de-

tection in fundus images as an instance of a diabetic retinopathy

strategy. The proposed method learns high-level distinguishing

features based only on pixel intensities.

Various autoencoder-based learning approaches have also

been applied to the automatic extraction of biomarkers from

brain images and the diagnosis of neurological diseases.

These methods often use available public domain brain image

databases such as the Alzheimer’s disease neuroimaging initia-

tive database. For example, a deep Autoencoder combined with

a softmax output layer for regression is proposed for the diag-

nosis of Alzheimer’s disease. Hu et al. [134] also used autoen-

coders for Alzheimer’s disease prediction based on Functional

Magnetic Resonance Images (fMRI). The results show that the

proposed method achieves much better classification than the

traditional means. On the other hand, Li et al. [61] proposed

an RBM approach that identifies biomarkers from MRI and

positron emission tomography (PET) scans. They obtained an

improvement of about 6% in classification accuracy compared

to the standard approaches. Kuang et al. [60] proposed an RBM

approach for fMRI data to discriminate attention deficit hyperac-

tivity disorder. The system is capable of predicting the subjects

as control, combined, inattentive or hyperactive through their
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frequency features. Suk et al. [59] proposed a DBM to extract

a latent hierarchical feature representation from 3-D patches of

brain images.

Low level image processing, such as image segmentation and

registration can also benefit from deep learning models. Brosch

et al. [64] described a manifold learning approach of 3-D brain

images based on DBN. It is different than other methods because

it does not require a locally linear manifold space. Mansoor

et al. [54] developed a fully automated shape model segmenta-

tion mechanism for the analysis of cranial nerve systems. The

deep learning approach outperforms conventional methods par-

ticularly in regions with low contrast, such as optic tracts and

areas with pathology. In [135], a pipeline is proposed for object

detection and segmentation in the context of automatically pro-

cessing volumetric images. A novel framework called marginal

space deep learning implements an object parameterization in

hierarchical marginal spaces combined with automatic feature

detection based on deep learning. In [84], a DNN architecture

called input–output deep architecture is described to solve the

image labelling problem. A single NN forward step is used

to assign a label to each pixel. This method avoids the hand-

crafted subjective design of a model with a deep learning mech-

anism, which automatically extracts the dependencies between

labels. Deep learning is also used for processing hyperspec-

tral images [83]. Spectral and spatial learned features are com-

bined together in a hierarchical model to characterize tissues or

materials.

In [78], a hybrid multilayered group method of data handling,

which is a special NN with polynomial activation functions, has

been used together with a principal component-regression anal-

ysis to recognize the liver and spleen. A similar approach is

used for the identification of the myocardium [79] as well as

the right and left kidney regions [80]. The authors extend the

method to analyze brain or lung CT images to detect cancer [81].

Zhen et al. [63] presents a framework for direct biventricular

volume estimation, which avoids the need of user inputs and

over simplification assumptions. The learning process involves

unsupervised cardiac image representation with multiscale deep

networks and direct biventricular volume estimation with RF.

Rose et al. [82] propose a methodology for hierarchical cluster-

ing in application to mammographic image data. Classification

is performed based on a deep learning architecture along with a

standard NN.

In general, deep learning in medical imaging provides auto-

matic discovery of object features and automatic exploration of

feature hierarch and interaction. In this way, a relatively sim-

ple training process and a systematic performance tuning can

be used, making deep learning approaches improve over the

state-of-the art. However, in medical imaging analysis, their po-

tentials have not been unfolded fully. To be successful in disease

detection and classification approaches, deep learning requires

the availability of large labeled datasets. Annotating imaging

datasets is an extremely time-consuming and costly process that

is normally undertaken by medical doctors. Currently, there is

a lot of debate on whether to increase the number of annotated

datasets with the help of non-experts (crowd-sourcing) and how

to standardize the available images to allow objective assess-

ment of the deep learning approaches.

Fig. 6. Data for health monitoring applications can be captured using
a wide array of pervasive sensors that are worn on the body, implanted,
or captured through ambient sensors, e.g., inertial motion sensors, ECG
patches, smart-watches, EEG, and prosthetics.

C. Pervasive Sensing for Health and Wellbeing

Pervasive sensors, such as wearable, implantable, and am-

bient sensors [136] allow continuous monitoring of health and

wellbeing, Fig. 6. An accurate estimation of food intake and

energy expenditure throughout the day, for example, can help

tackle obesity and improve personal wellbeing. For elderly pa-

tients with chronic diseases, wearable and ambient sensors can

be utilized to improve quality of care by enabling patients to

continue living independently in their own homes. The care

of patients with disabilities and patients undergoing rehabilita-

tion can also be improved through the use of wearable and im-

plantable assistive devices and human activity recognition. For

patients in critical care, continuous monitoring of vital signs,

such as blood pressure, respiration rate, and body tempera-

ture, are important for improving treatment outcomes by closely

analyzing the patient’s condition [137].

1) Energy Expenditure and Activity Recognition: Obe-

sity has been identified as an escalating global epidemic health

problem and is found to be associated with many chronic dis-

eases, including type 2 diabetes and cardiovascular diseases.

Dietitian recommend that only a standard amount of calories

should be consumed to maintain a healthy balance within the

body. Accurately recording the foods consumed and physical

activities performed can help to improve health and manage

diseases; however, selecting features that can generalize across

the wide variety of food and daily activities is a major challenge.

A number of solutions that use smartphones or wearable devices

have been proposed for managing food intake and monitoring

energy expenditure.

In [99], an assistive calorie measurement system is pro-

posed to help patients and doctors to control diet-related health

conditions. The proposed smartphone-based system estimates

the calories contained in pictures of food taken by the user. In
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order to recognize food accurately in the system, a CNN is used.

In [100], deep learning, mobile cloud computing, distance esti-

mation, and size calibration tools are implemented on a mobile

device for food calorie estimation.

To identify different activities, [90] proposes to combine deep

learning techniques with invariant and slowly varying features

for the purpose of learning hierarchical representations from

video. Specifically, it uses a two-layered structure with 3-D con-

volution and max pooling to make the method scalable to large

inputs. In [94], a deep learning based algorithm is developed

for human activity recognition using RGB-D video sequences.

A temporal structure is learnt in order to improve the classifi-

cation of human activities. [91] proposed an elderly and child

care intelligent surveillance system where a three stream CNN

is proposed for recognizing particular human actions such as

fall and baby crawl. If the system detects abnormal activities, it

will raise an alarm and notify family members.

Zeng et al. [92] compared the performance of a CNN based

method on three public human activity recognition datasets and

found that their deep learning approach can obtain better overall

classification accuracy across different human activities as the

method is more generalizable. Ha et al. [93] also used a CNN

for human activity recognition. CNNs can capture local relation-

ships from data as well as provide invariance against distortion,

which makes it popular for learning features from images and

speech. Choi et al. [95] employed RBMs to learn activities

using data from smart watches and home activity datasets, re-

spectively, with improvements shown over baseline methods.

However, for low-power devices such as smart-watches and

sensor nodes, efficiency is often a concern, especially when a

deep learning method with high computational complexity is

needed for learning. To overcome this, Ravı̀ et al. [96] proposed

data preprocessing techniques to standardize and reduce varia-

tions in the input data caused by differences in sensor properties,

such as placement and orientation.

2) Assistive Devices: Recognizing generic objects from

the 3-D world, understanding shape and volume or classifica-

tion of scene are important features required for assistive de-

vices. These applications are mainly developed to guide users

and provide audio or tactile feedback, for example, in the case

of impaired patients that need a system to avoid obstacles along

the path or receive information concerned with the surrounding

environment. For example, Poggi et al. [97] proposed a robust

obstacle detection system for people suffering from visual im-

pairments. Here a wearable device based on CNN is designed.

Assistive devices that can recognize hand gestures have also

been proposed for patients with disabilities—for applications

such as sign language interpretation—and sterile environments

in the surgical setting—to allow for touch less human-computer-

interaction (HRI). However, gesture recognition is a very chal-

lenging task due to the complexity and large variations in hand

postures. Huang et al. [98] proposes a method for sign lan-

guage recognition which involves the use of a DNN fed with

real-sense data. The DNN takes the 3-D coordinates of finger

joints as inputs directly with no handcrafted features used.

3) Detection of Abnormalities in Vital Signs: For criti-

cally ill patients, identifying abnormalities in their vital signs

is important. These episodes, however, are rare, vary between

patients, and susceptible to noise and artifacts. Machine learn-

ing approaches have been proposed for detecting abnormali-

ties under a varying set of condition and thus their application

in a clinical setting is limited. Furthermore, with continuous

sensing, large volumes of data can be generated, such as elec-

troencephalography (EEG) record signal from a large number

of input channels with a high temporal resolution (several kHz).

Managing this amount of time-series data requires the develop-

ment of online algorithms that could process the varying types

of data.

Wulsin et al. [89] proposed a DBN approach to detect anoma-

lies in EEG waveforms. EEG is used to record electrical activity

of the brain. Interpreting the waveforms from brain activity is

challenging due to the high dimensionality of the input signal

and the limited understanding of the intrinsic brain operations.

Using a large set of training data, DBNs outperform SVM and

have a faster query time of around 10s for 50 000 samples. Jia

et al. [86] used a deep learning method based on RBMs to recog-

nize affective state of EEG. Although the sample sets are small

and noisy, the proposed method achieves greater accuracy. A

DBN was also used for detecting arrhythmias from electrocar-

diography (ECG) signals. A DBN was also used in monitoring

heart rhythm based on ECG data [87]. The main purpose of the

system is identifying arrhythmias which are a complex pattern

recognition problem. Yan et al. attained classification accuracies

of 98% using a two-lead ECG dataset. For low-power wearable

and implantable EEG sensors, where energy consumption and

efficiency are major concerns, Wang et al. [88] designed a DBN

to compress the signal. This results in more than 50% of energy

savings while retaining accuracy for neural decoding.

The introduction of deep learning has increased the utility

of pervasive sensing across a range of health applications by

improving the accuracy of sensors that measure food calorie

intake, energy expenditure, activity recognition, sign language

interpretation, and detection of anomalous events in vital signs.

Many applications use deep learning to achieve greater effi-

ciency and performance for real-time processing on low-power

devices; however, a greater focus should be placed upon imple-

mentations on neuromorphic hardware platforms designed for

low-power parallel processing. The most significant improve-

ments in performance have been achieved where the data has

high dimensionality—as seen in the EEG datasets—or high

variability—due to changes in sensor placement, activity, and

subject. Most current research has focused on the recognition of

activities of daily living and brain activity. Many opportunities

for other applications and diseases remain, and many currently

studies still rely upon relatively small datasets that may not fully

capture the variability of the real world.

D. Medical Informatics

Medical Informatics focuses on the analysis of large, ag-

gregated data in health-care settings with the aim to enhance

and develop clinical decision support systems or assess medical

data both for quality assurance and accessibility of health care

services. Electronic health records (EHR) are an extremely rich



RAVı̀ et al.: DEEP LEARNING FOR HEALTH INFORMATICS 15

source of patient information, which include medical history

details such as diagnoses, diagnostic exams, medications and

treatment plans, immunization records, allergies, radiology im-

ages, sensors multivariate times series (such as EEG from inten-

sive care units), laboratory, and test results. Efficient mining of

this big data would provide valuable insight into disease man-

agement [138], [139]. Nevertheless, this is not trivial because

of several reasons:

1) Data complexity owing to varying length, irregular sam-

pling, lack of structured reporting and missing data. The

quality of reporting varies considerably among institu-

tions and persons.

2) Multimodal datasets of several petabytes that includes

medical images, sensors data, lab results, and unstruc-

tured text reports.

3) Long-term time dependencies between clinical events

and disease diagnosis and treatment that complicates

learning. For example, long and varying delays often

separate the onset of disease from the appearance of

symptoms.

4) Inability of traditional machine learning approaches to

scale up to large and unstructured datasets.

5) Lack of interpretability of results hinders adaptation of

the methods in the clinical setting.

Deep learning approaches have been designed to scale up

well with big and distributed datasets. The success of DNNs

is largely due to their ability to learn novel features/patterns

and understand data representation in both an unsupervised and

supervised hierarchical manners. DNNs have also proven to

be efficient in handling multimodal information since they can

combine several DNN architectural components. Therefore, it

is unsurprising that deep learning has quickly been adopted in

medical informatics research. For example, Shin et al. [105]

presented a combined text-image CNN to identify semantic in-

formation that links radiology images and reports from a typical

picture archiving and communication system hospital system.

Liang et al. [107] used a modified version of CDBN as an ef-

fective training method for large-scale datasets on hypertension,

and Chinese medical diagnosis from a manually converted EHR

database. Putin et al. [108] applied DNNs for identifying mark-

ers that predict human chronological age based on simple blood

tests. Nie et al. [103] proposed a deep learning network for au-

tomatic disease inference, which requires manual gathering the

key symptoms or questions related to the disease.

In another study, Mioto et al. [102] showed that a stack of de-

noising autoencoders can be used to automatically infer features

from a large-scale EHR database and represent patients with-

out requiring additional human effort. These general features

can be used in several scenarios. The authors demonstrated the

ability of their system to predict the probability of a patient de-

veloping specific diseases, such as diabetes, schizophrenia and

cancer. Furthermore, Futoma et al. [109] compared different

models in their ability to predict hospital readmissions based on

a large EHR database. DNNs have significantly higher predic-

tion accuracies than conventional approaches, such as penalized

logistic regression, though training of the DNN models were

not straightforward.

To tackle time dependencies in EHR with multivariate

time series from intensive care monitoring systems, Lipton

et al. [106] employed a LSTM RNN. The reason for using

RNNs is that their ability to memorize sequential events could

improve the modeling of the varying time delays between the

onsets of emergency clinical events, such as respiratory distress

and asthma attack and the appearance of symptoms. In a related

study, Mehrabi et al. [104] proposed the use DBN to discover

common temporal patterns and characterize disease progression.

The authors highlighted that the ability to discern and interpret

the newly discovered patterns requires further investigation.

The motivations behind these studies are to develop gen-

eral purpose systems to accurately predict length of stay, future

illness, readmission, and mortality with the view to improve

clinical decision making and optimize clinical pathways. Early

prediction in health care is directly related to saving patients’

lives. Furthermore, the discovery of novel patterns can result in

new hypotheses and research questions. In computational phe-

notyping research, the goal is to discover meaningful data-driven

features and disease characteristics.

For example, Che et al. [101] highlighted that although DNNs

outperform conventional machine learning approaches in their

ability to predict and classify clinical events, they suffer from

the issue of model interpretability, which is important for clin-

ical adaptation. They pointed out that interpreting individual

units can be misleading and the behavior of DNNs are more

complex than originally thought. They suggested that once a

DNN is trained with big data, a simpler model can be used to

distil knowledge and mimic the prediction performance of the

DNN. To interpret features from deep learning models such as

stacked denoising autoencoder and LSTM RNNs, they use gra-

dient boosting decision trees (GBDT). GBDT are an ensemble

of weak prediction models and in this work they represent a

linear combination of functions.

Deep learning has paved the way for personalized health

care by offering an unprecedented power and efficiency in min-

ing large multimodal unstructured information stored in hos-

pitals, cloud providers and research organization. Although, it

has the potential to outperform traditional machine learning ap-

proaches, appropriate initialization and tuning is important to

avoid overfitting. Noisy and sparse datasets result in consider-

able fall of performance indicating that there are several chal-

lenges to be addressed. Furthermore, adopting these systems

into clinical practice requires the ability to track and interpret

the extracted features and patterns.

E. Public Health

Public health aims to prevent disease, prolong life, and pro-

mote healthcare by analyzing the spread of disease and social

behaviors in relation to environmental factors. Public health

studies consider small localized populations to large popula-

tions that encompass several continents such as in the case

of epidemics and pandemics. Applications involve epidemic

surveillance, modeling lifestyle diseases, such as obesity, with

relation to geographical areas, monitoring and predicting air

quality, drug safety surveillance, etc. The conventional predic-
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tive models scale exponentially with the size of the data and use

complex models derived from physics, chemistry, and biology.

Therefore, tuning these systems depend on parameterizations

and ad hoc twists that only experts can provide. Nevertheless,

existing computational methods are able to accurately model

several phenomena, including the progression of diseases or the

spread of air pollution. However, they have limited abilities in

incorporating real time information, which could be crucial in

controlling an epidemic or the adverse effects of a newly ap-

proved medicine. In contrast, deep learning approaches have a

powerful generalization ability. They are data-driven methods

that automatically build a hierarchical model and encode the in-

formation within their structure. Most deep learning algorithm

designs are based on online machine learning and, thus, opti-

mization of the cost function takes place sequentially as new

training datasets become available. One of the simplest online

optimization algorithms applied in DNNs is stochastic gradient

descent. For these reasons, deep learning, along with recom-

mendation systems and network analysis, are suggested as the

key analysis methods for public health studies [140].

For example, monitoring and forecasting the concentration of

air pollutants represents an area where deep learning has been

successful. Ong et al. [110] reports that poor air quality is re-

sponsible for around 60 000 annual deaths and it is the leading

cause for a number of chronic obstructive pulmonary diseases.

They describe a system to predict the concentration of major air

pollutant substances in Japan based on sensor data captured from

over 52 cities. The proposed DNN consists of stacked Autoen-

coders and is trained in an online fashion. This deep architecture

differs from the standard deep Autoencoders in that the output

components are added gradually during training. To allow track-

ing of the large number of sensors and interpret the results, the

authors exploited the sparsity in the data and they fine-tuned

the DNN based on regularization approaches. Nevertheless, the

authors pointed out that deep learning approaches as data-driven

methods are affected by the inaccuracies and incompleteness of

real-world data.

Another interesting application is tracking outbreaks with so-

cial media for epidemiology and lifestyle diseases. Social media

can provide rich information about the progression of diseases,

such as Influenza and Ebola, in real time. Zhao et al. [116]

used the microblogging social media service, Twitter, to contin-

uously track health states from the public. DNN is used to mine

epidemic features that are then combined into a simulated envi-

ronment to model the progression of disease. Text from Twitter

messages can also be used to gain insight into antibiotics and

infectious intestinal diseases. In [112], DBN is used to cate-

gorize antibiotic-related Twitter posts into nine classes (side

effects, wanting/needing, advertisement, advice/information,

animals, general use, resistance, misuse, and other). To obtain

the classifier, Twitter messages were randomly selected for man-

ual labeling and categorization. They used a training set of

412 manually labeled and 150 000 unlabeled examples. A deep

learning approach based on RBMs was pretrained in a layer-

by-layer procedure. Fine-tuning was based on standard back

propagation and the labeled data. In [114], deep learning is used

to create a topical vocabulary of keywords related to three types

of infectious intestinal disease—campylobacter, norovirus, and

food poisoning. When compared to officially documented cases,

their results show that social media can be a good predictor of

intestinal diseases.

For tracking certain stigmatized behaviors, social media can

also provide information that is often undocumented; Garimella

et al. [115] used geographically-tagged images from Instagram

to track lifestyle diseases, such as obesity, drinking, and smok-

ing, and compare the self-categorization of images from the user

against annotations obtained using a deep learning algorithm.

The study found that while self-annotation generally provides

useful demographic information, machine generated annota-

tions were more useful for behaviors such as excessive drinking

and substance abuse. In [111], a deep learning approach based

on RBMs is designed to model and predict activity level and

prevent obesity by taking into account self-motivation, social

influences and environment events.

There is a growing interest in using mobile phone metadata

to characterize and track human behavior. Metadata normally

includes the duration and the location of the phone call or text

message and it can provide valuable demographic information.

A CNN was applied in predicting demographic information

from mobile phone metadata, which was represented as tem-

poral 2-D matrices. The CNN is comprised of a series of five

horizontal convolution layers followed by a vertical convolution

filter and two dense layers. The method provides high accuracy

for age and gender prediction, whereas it eliminates the need

for handcrafted features [113].

Mining the online data and metadata about individuals and

large-scale populations via EHRs, mobile networks and social

media is a means to inform public health and policy. Further-

more, mining food and drug records to identify adverse events

could provide vital large scale alert mechanisms. We have pre-

sented a few examples that use deep learning for early identifi-

cation and modeling the spread of epidemics and public health

risks. However, strict regulation that protects data privacy lim-

its the access and aggregation of the relevant information. For

example, Twitter messages or Facebook posts could be used

to identify new mothers at risk from postpartum depression.

Although, this is positive, there is controversy associated of

whether this information should become available, since it stig-

matizes specific individuals. Therefore, it has become evident

that we need to strike a balance between ensuring individuals can

control access to their private medical information and provid-

ing pathways on how to make information available for public

health studies [117]. The complexity and limited interpretability

of deep learning models constitute an obstacle in allowing an

informed decision about the precise operation of a DNN, which

may limit its application in sensitive data.

IV. DEEP LEARNING IN HEALTHCARE: LIMITATIONS AND

CHALLENGES

Although for different artificial intelligence tasks, deep

learning techniques can deliver substantial improvements in

comparison to traditional machine learning approaches, many

researchers and scientists remain sceptical of their use where
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medical applications are involved. These scepticisms arise since

deep learning theories have not yet provided complete solutions

and many questions remain unanswered. The following four as-

pects summarize some of the potential issues associated with

deep learning:

1) Despite some recent work on visualizing high level

features by using the weight filters in a CNN [141], [142],

the entire deep learning model is often not interpretable.

Consequently, most researchers use deep learning

approaches as a black box without the possibility to ex-

plain why it provides good results or without the ability

to apply modifications in the case of misclassification

issues.

2) As we have already highlighted in the previous sections,

to train a reliable and effective model, large sets of train-

ing data are required for the expression of new concepts.

Although recently we have witnessed an explosion of

available healthcare data with many organizations start-

ing to effectively transform medical records from paper to

electronic records, disease specific data is often limited.

Therefore, not all applications—particularly rare diseases

or events—are well suited to deep learning. A common

problem that can arise during the training of a DNN (es-

pecially in the case of small datasets) is overfitting, which

may occur when the number of parameters in the network

is proportional to the total number of samples in the train-

ing set. In this case, the network is able to memorize the

training examples, but cannot generalize to new samples

that it has not already observed. Therefore, although the

error on the training set is driven to a very small value,

the errors for new data will be high. To avoid the overfit-

ting problem and improve generalization, regularization

methods, such as the dropout [143], are usually exploited

during training.

3) Another important aspect to take into account when deep

learning tools are employed, is that for many applica-

tions the raw data cannot be directly used as input for the

DNN. Thus, preprocessing, normalization or change of

input domain is often required before the training. More-

over, the setup of many hyperparameters that control the

architecture of a DNN, such as the size and the number

of filter in a CNN, or its depth, is still a blind exploration

process that usually requires accurate validation. Finding

the correct preprocessing of the data and the optimal set

of hyperparameters can be challenging, since it makes the

training process even longer, requiring significant train-

ing resources and human expertise, without which is not

possible to obtain an effective classification model.

4) The last aspect that we would like to underline is that

many DNNs can be easily fooled. For example, [144]

shows that it is possible to add small changes to the in-

put samples (such as imperceptible noise in an image) to

cause samples to be misclassified. However, it is impor-

tant to note that almost all machine learning algorithms

are susceptible to such issues. Values of particular

features can be deliberately set very high or very low

to induce misclassification in logistic regression. Simi-

larly, for decision tress, a single binary feature can be

used to direct a sample along the wrong partition by sim-

ply switching it at the final layer. Hence in general, any

machine learning models are susceptible to such manip-

ulations. On the other hand, the work in [145] discusses

the opposite problem. The author shows that it is possible

to obtain meaningless synthetic samples that are strongly

classified into classes even though they should not have

been classified. This is also a genuine limitation of the

deep learning paradigm, but it is a drawback for other

machine learning algorithms as well.

To conclude, we believe that healthcare informatics today

is a human-machine collaboration that may ultimately become

a symbiosis in the future. As more data becomes available,

deep learning systems can evolve and deliver where human

interpretation is difficult. This can make diagnoses of diseases

faster and smarter and reduce uncertainty in the decision making

process. Finally, the last boundary of deep learning could be

the feasibility of integrating data across disciplines of health

informatics to support the future of precision medicine.

V. CONCLUSION

Deep learning has gained a central position in recent years

in machine learning and pattern recognition. In this paper, we

have outlined how deep learning has enabled the development of

more data-driven solutions in health informatics by allowing au-

tomatic generation of features that reduce the amount of human

intervention in this process. This is advantageous for many prob-

lems in health informatics and has eventually supported a great

leap forward for unstructured data such as those arising from

medical imaging, medical informatics, and bioinformatics. Un-

til now, most applications of deep learning to health informatics

have involved processing health data as an unstructured source.

Nonetheless, a significant amount of information is equally en-

coded in structured data such as EHRs, which provide a detailed

picture of the patient’s history, pathology, treatment, diagnosis,

outcome, and the like. In the case of medical imaging, the cy-

tological notes of a tumor diagnosis may include compelling

information like its stage and spread. This information is bene-

ficial to acquire a holistic view of a patient condition or disease

and then be able to improve the quality of the obtained inference.

In fact, robust inference through deep learning combined with

artificial intelligence could ameliorate the reliability of clinical

decision support systems. However, several technical challenges

remain to be solved. Patient and clinical data is costly to obtain

and healthy control individuals represent a large fraction of a

standard health dataset. Deep learning algorithms have mostly

been employed in applications where the datasets were bal-

anced, or, as a work-around, in which synthetic data was added

to achieve equity. The later solution entails a further issue as

regards the reliance of the fabricated biological data samples.

Therefore, methodological aspects of NNs need to be revisited in

this regard. Another concern is that deep learning predominantly

depends on large amounts of training data. Such requirements

make more critical the classical entry barriers of machine learn-

ing, i.e., data availability and privacy. Consequently, advances
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in the development of seamless and fast equipment for health

monitoring and diagnoses will play a prominent role in future

research. Reference to the issue of computational power, we

envisage that for the years to come, further ad hoc hardware

platforms for neural networks and deep learning processing will

be announced and made commercially available. It is worth not-

ing that the rise of deep learning has been mightily supported by

major IT companies (e.g., Google, Facebook, and Baidu) which

hold a large extent of patents in the field and core businesses

are substantially supported by data gathering, enormous store-

houses and processing machines. Many researchers have been

encouraged to apply deep learning to any data-mining and pat-

tern recognition problem related to health informatics in light of

the wide availability of free packages to support this research.

Looking at it from the bright side, it has fostered an interesting

trend and boosted the expectations of what machine learning

could achieve on its own. Nevertheless, we should not consider

deep learning as a silver bullet for every single challenge set by

health informatics. In practice, it is still questionable whether

the large amount of training data and computational resources

needed to run deep learning at full performance is worthwhile,

considering other fast learning algorithms that may produce

close performance with fewer resources, less parameterization,

tuning, and higher interpretability. Therefore, we conclude that

deep learning has provided a positive revival of NNs and con-

nectionism from the genuine integration of the latest advances

in parallel processing enabled by coprocessors. Nevertheless,

a sustained concentration of health informatics research exclu-

sively around deep learning could slow down the development

of new machine learning algorithms with a more conscious use

of computational resources and interpretability.
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