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 
Abstract—The key challenge for household load forecasting lies 

in the high volatility and uncertainty of load profiles. Traditional 

methods tend to avoid such uncertainty by load aggregation (to 

offset uncertainties), customer classification (to cluster 

uncertainties) and spectral analysis (to filter out uncertainties). 

This paper, for the first time, aims to directly learn the uncertainty 

by applying a new breed of machine learning algorithms – deep 

learning.  

However simply adding layers in neural networks will cap the 

forecasting performance due to the occurrence of overfitting. A 

novel pooling-based deep recurrent neural network (PDRNN) is 

proposed in this paper which batches a group of customers’ load 
profiles into a pool of inputs. Essentially the model could address 

the over-fitting issue by increasing data diversity and volume.  

This work reports the first attempts to develop a bespoke deep 

learning application for household load forecasting and achieved 

preliminary success. The developed method is implemented on 

Tensorflow deep learning platform and tested on 920 smart 

metered customers from Ireland. Compared with the state-of-art 

techniques in household load forecasting, the proposed method 

outperforms ARIMA by 19.5%, SVR by 13.1% and classical deep 

RNN by 6.5% in terms of RMSE.   

 

Index Terms—big data, deep learning, load forecasting, long 

short-term memory, machine learning, neural network, smart 

meter 

 

I. INTRODUCTION 

EMAND side response (DSR) plays a key component in 

achieving the political goals set in the UK and EU energy 

sector [1, 2]. The popularisation of smart meters will make the 

DSR easier than ever for domestic customers [1]. Various direct 

and indirect control methods have been proposed to realise DSR 

[3-5] given that household load can be accurately forecasted.  

Extensive and comprehensive review papers on point load 

forecasting at aggregated level already exist [14-26, 40-42]. 

However, the literature on individual household load 

forecasting is actually limited [5-14] as it is widely 

acknowledged that short-term load forecasting (STLF) at such 

granular level is extremely challenging due to significant 

uncertainty and volatility [6-8] underlying the smart metering 

data. Experiments have been carried out by [6, 7, 9-13] to 

benchmark state-of-art methods for STLF at individual 

household level. Testing methods include time-series analysis 
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(e.g. ARIMA and exponential smoothing) and machine learning 

approaches (e.g. neural networks and support vector machine). 

Similar findings are reported in both papers [9, 10] as none of 

the classical methods could beat linear regression or even 

simple persistence forecasting (i.e. tomorrow equals today) at 

individual household level.  

A. Uncertainty        

The complexity of household load forecasting lies in the 

significant volatility and uncertainty. In the context of STLF, 

load could be decomposed into three components. As shown in 

Fig. 1, the original household load profile i) is decomposed into: 

ii) regular pattern, which reflects the periodical load inherited 

from historical data; iii) uncertainty, which is the aperiodic part 

influenced by external factors such as weather, events and 

customer behaviour and iv) noise, the residue load which 

cannot be physically explained [14, 15]. 

Fig. 1. Sketch of load composition: i) original load, ii) regular pattern, iii) 

uncertainty and iii) noise 

Most forecasting models focus on the regular pattern as it is 

more predictable and makes up a dominating proportion at the 

aggregated level. However, household demand is composed of 

a substantially larger share of uncertainty. At this level, 

uncertainty is more influenced by customer behaviour, which is 

too stochastic to predict.  Therefore, the nature of the challenge 

is to forecast load with significant uncertainty. 

To tackle this problem, three categories of methods have 

been reported:  
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1) Using clustering/classification techniques to group similar 

customers, days or weather [6, 16-19] in the hope of 

reducing the variance of uncertainty within each cluster. 

However, the performance is heavily dependent on the 

data.  

2) Using aggregated smart metering data to cancel out the 

uncertainties [20-23] so that the aggregated load exhibits 

mostly regular patterns and easier to predict, yet the 

prediction is obviously only at aggregated level.  

3) Using pre-processing techniques, mostly spectral analysis 

such as wavelet analysis [24], Fourier transforms [25] and 

empirical mode decomposition (EMD) [26] aiming to 

separate the regular patterns from the other two 

components. This method can be ruled out in household 

load forecasting due to its significantly lower proportion 

of regular patterns.               

To the best of our knowledge, the existing methods towards 

the problem are indirect, which aim to avoid uncertainty by 

reducing (clustering) or canceling out (aggregation) or 

separating (spectral analysis) the uncertainty. This paper aims 

to explore the possibility of deploying the state-of-art deep 

learning algorithm to directly learn uncertainties in their raw 

forms. Deep learning is a branch of machine learning methods 

relying on ‘deep’ architectures, which are compositions of 

multiple processing layers in the neural network, enabling the 

learning of highly non-linear, complicated relationships and 

correlations that are beyond the reach of traditional shallow 

architectures. Deep learning has achieved many breakthroughs 

in tackling sophisticated problems and becomes the most 

promising technique in data science community, for example, 

Google Goggles, Alpha Go [27] and new drugs design [28]. 

Attempts have been reported in [29, 30]  to adopt deep learning 

for time series forecasting.  

B. Overfitting 

 However, direct implementation of deep learning in 

household load forecasting will not necessarily provide 

significant improvement. A preliminary test has been carried 

out by the authors to benchmark the performance of household 

load forecasting by a neural network with a different number of 

layers. 

 

Fig. 2. Household load forecasting performance by neural networks from 

shallow to deep  

The indicative result shown in Fig. 2 demonstrates the 

occurrence of overfitting when the number of layers reaches 3. 

As the number of layers increases, the forecasting error 

decreases before 3 layers. However, further increase of the 

network depth will see a rebound of error. As acknowledged in 

most literature [31], the primary drivers are model capacity and 

training epochs (training iterations). To prevent excessive 

training iterations, we implemented early stopping technique to 

find optimal number of training iterations. In detail, dataset is 

split into training, validation and test sets. In each of the training 

iteration, the process will stop if the RMSE on validation set no 

longer decreases for a certain number of epochs.  

Model capacity refers to the ability to fit a wide variety of 

functions. Model with large capacity tends to suffer from 

overfitting. To avoid excessive model capacity, one way is to 

increase the data diversity so that sufficient model capacity is 

becoming an advantage rather than a burden. Particularly for 

Deep Learning techniques, whose model capacity is much 

larger than the rest of models. When increasing the deep neural 

network layer number, the inherent parameters with the 

network will grow exponentially and eventually become 

excessive for the available training data. As a result, the model 

will begin to capture the noise and fit the training data too well, 

hence impact the predictive performance in a negative way. 

In order to enable the power of deep learning algorithm in 

our problem, a novel pooling-based deep recurrent neural 

network (PDRNN) is proposed. The pooling technique will 

batch customers and input into the deep recurrent network as a 

whole.  

The key contributions of this paper are as follows: 

1) New technique: this paper for the first time explores the 

feasibility of a cutting edge algorithm, deep learning, in 

the application of load forecasting at individual household 

level.  

2) New problem: although deep learning has received high 

expectation in forecasting community, our experiment 

indicates that deep learning is more prone to over-fitting 

compared with its 1980s’ cousin, neural networks. This is 
possibly due to more parameters and relatively fewer data.  

3) New method: we propose a novel pooling method to 

address the over-fitting issue by introducing a new data 

dimension: historical load data of neighbours. The idea is 

to use the interconnected spatial information to 

compensate insufficient temporal information. The 

proposed load profile pool allows for the correlations and 

interactions between neighbouring households. New 

features can be automatically generated through deep 

layers hierarchically and thus increases the inputs volume 

and diversity.  

The rest of the paper is organised as follows: Section II 

briefly introduces the rationale for applying Deep Learning in 

household STLF tasks and the specific LSTM technique 

applied in the paper. Section III proposes pooling strategy and 

pooling-based DRNN method. Section IV explains the 

implementation process on GPU-based high-performance 

computing platform, as well as the details of experiment setup. 

In Section V, results are demonstrated through comparison with 

previous state-of-the-art methods (ARIMA, SVR), shallow 

learning (normal RNN), classical deep learning (DRNN) and 

proposed deep learning (PDRNN). Conclusions are drawn in 

part VI. 
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II. DEEP LEARNING 

Deep learning is a branch of machine learning methods lying 

on ‘deep’ network architectures. The concept of ‘deep learning’ 
has been proposed for decades with the name ‘cybernetics’ in 
1943, by McClulloch and Pitts [32]. However, it has been 

regarded as being more of a fancy concept than an applicable 

technology, due to three major technical constraints. The three 

technical constraints are: 1) lack of sufficient data, 2) lack of 

computing resources for large network size, and 3) lack of 

efficient training algorithm. 

Recently, the constraints are tackled by the digitalization of 

modern society and the development of high-performance 

computing. Furthermore, Geoffrey Hinton [33] made a 

breakthrough in efficient deep neural network training via a 

strategy called greedy layer-wise pre-training, which enables 

practical implementations of deep learning. 

Deep learning has recently seen phenomenal success in 

various areas including: 1) Computer Vision (CV) such as 

Google Goggles, which uses deep learning for object 

recognition; 2) expert systems such as Alpha Go designed by 

DeepMind [27] and 3) medical sciences, which employs deep 

learning to assist pharmaceutical companies in new drugs 

design [28]. 

A. Rationale of using deep learning 

Deep learning is regarded as one the most promising 

techniques to this study due to two superior attributes compared 

with "shallow" architecture: 

1) To learn highly non-linear relationships 

In the problem of STLF at the household level, the inherent 

uncertainties are caused by differing known or unknown 

external factors simultaneously. These factors, ranging from 

weather conditions, temperatures to property size, photovoltaic 

generations are correlated to each other, which leave a highly 

non-linear impact to the household load. For example, 

temperature and sunshine duration are two of the external 

factors which are highly correlated to each other, i.e., the 

increase in sunshine duration can result in higher temperature 

in the region. 

    The essence of neural networks and other load forecasting 

methods is to learn the non-linear relationships between feed-in 

inputs and outputs by constructing linear or non-linear 

functions that approximate the real relationships between inputs 

and outputs. The universe approximation theorem [34] 

indicates the neural networks can make accurate 

approximations towards any non-linear functions with 

sufficient network size. The approximation capability of a 

shallow network is much lower than that of a deep network even 

with extra neurons at each layer.  The reason is that, in ‘shallow’ 
neural networks, hidden neurons are learning the non-linear 

combinations of inputs as the features. However, ‘deep’ neural 
network can learn the non-linear combinations of features in 

deeper layers of the network, hence naturally learns the highly 

non-linear correlations. 

2) To learn shared uncertainties  

The uncertainties are normally coming from external sources 

which make consistent impacts on differing households. 

Therefore, these uncertainties can be commonly shared within 

a group of customers at similar locations and time. However, 

these uncertainties are not always evenly shared among 

households. For example, the temperature increase can impact 

most of the households within a region, while the increase in 

sunshine duration mainly affects households with PV installed.  

In ‘deep’ architecture, one of the most exciting properties is 

that it can learn load features hierarchically. Features with 

different sharing levels will be learned at different layers.  Load 

features learned in higher layers are normally the combination 

of lower layer features. With respect to former example, the 

temperature rise features are normally learned at a lower level, 

since it can be concluded directly from inputs. However, the 

impact from sunshine hour is influenced by features like 

temperature, PV installation, and household direction, and 

hence should be learned at higher network layers. With this 

property, deep learning is exceptional for learning multiple 

uncertainties with differing sharing levels in household load. 

B. Deep RNN with Long Short-Term Memory unit 

Typical architecture designs of deep learning including, 

Convolutional Deep Neural Networks (CNN), Deep Sparse 

Autoencoder (DSA), Deep Recurrent Neural Networks 

(DRNN), Multi-Layer Perceptions (MLP), Deep Restricted 

Boltzmann Machines (DRBM), etc. [31]. As a state-of-the-art 

deep learning architecture specifically designed for time-series 

forecasting, DRNN is employed to perform STLF for 

households in this paper. 

The architecture of deep-RNN is stacking multiple RNN 

layers together into a ‘deep’ architecture. Most successful 

implementation of Deep-RNN is in the area of Speech 

Recognition [35], which is also one-dimensional time-series 

data with high uncertainty. In terms of the specific 

implementation of RNN layers, a state-of-the-art RNN, named 

Long Short-Term Memory (LSTM) has been employed to 

approach the best performance of RNN. 

In this section, the deep-RNN architecture is introduced 

firstly, and then the implementation of LSTM units are 

followed. 

1) Deep recurrent neural network (Deep-RNNs) 

In deep-RNNs, the sharing states are decomposed into 

multiple layers in order to gain nice properties from ‘deep’ 
architectures. Experimental evidence has been given by [35, 36] 

to suggest the significant benefit of building RNNs with ‘deep’ 
architectures. 

The computational graph and its unfolding topological graph 

is presented in Fig. 3 to demonstrate the working process of a 

deep-RNN with 𝑁 layers.  

 
Fig. 3. The computational graph and unfolded topological graph of an 𝑁 layer 

deep-RNN 
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In the computational graph, the RNN aims to map the input 

sequence of 𝑥 values into corresponding sequential outputs: 𝑦. 

As presented in computational graph, the learning process 

conducted every single time step from 𝑡 = 1 to 𝑡 = 𝜏. For time 

step 𝑡 , the network neuron parameters at 𝑙𝑡ℎ  layer update its 

sharing states with following equations [31]: 

 𝑎1(𝑡) = 𝑏1 + 𝑊1 ∙ ℎ1(𝑡−1) + 𝑈1 ∙ 𝑥(𝑡) (1) 

 
ℎ𝑙(𝑡) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎𝑙(𝑡))                𝑓𝑜𝑟 𝑙 = 1,2, . . , 𝑁  (2) 

 
𝑎𝑙(𝑡) = 𝑏𝑙 + 𝑊𝑙 ∙ ℎ𝑙(𝑡−1) + 𝑈𝑙 ∙ ℎ𝑙−1(𝑡)   𝑓𝑜𝑟 𝑙 = 2,3,… , 𝑁   (3) 

 𝑦(𝑡) = 𝑏𝑁 + 𝑊𝑁 ∙ ℎ𝑁(𝑡−1) + 𝑈𝑁 ∙ ℎ𝑁(𝑡)
 (4) 

 𝐿 = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦(𝑡), 𝑦𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) (5) 

Where 𝑥(𝑡) is the data input at 𝑡𝑡ℎ  time step, 𝑦(𝑡)  is the 

corresponding prediction, and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  is the true values of 

output targets. ℎ𝑙(𝑡) is the sharing states of  𝑙𝑡ℎ network layer at 

time step t. 𝑎𝑙(𝑡) represents the input value of 𝑙𝑡ℎ layer at time 

step  𝑡 , which consists of three components: 1) 𝑡𝑡ℎ  time step 

input 𝑥(𝑡) or sharing state ℎ𝑙−1(𝑡)
 at time 𝑡 from 𝑙 − 1𝑡ℎ  layer, 

2) bias 𝑏, and 3) sharing states ℎ𝑙 (𝑡−1)
 at current network layer 𝑙  from last time step 𝑡 − 1. Due to the sharing properties of 

RNNs, the algorithm is thus capable to learn uncertainties 

repeated in previous time steps. 

2) Boosting with Long short-term memory (LSTM) unit 

Long short-term memory unit refers to a specific architecture 

of RNNs, which aims to tackle long-term dependencies 

challenge unsolved in earlier RNN architectures. When 

learning time-series data, RNNs aim to learn representations of 

patterns repeatedly occurred in the past, by sharing parameters 

across all time steps. However, the memory of past learned 

patterns can fade as time goes on. In the figure, the 

dependencies of earliest two inputs 𝑥(0)  and 𝑥(1)  becomes 

weak in output 𝑦(𝑡) when it is reasonably large. 

LSTM is hence designed to tackle this challenge by creating 

paths where the gradient can flow for long durations. In order 

to demonstrate how LSTM can memorize long-term patterns, 

the computational graph of LSTM is illustrated in following Fig. 

4: 

 
Fig. 4. The computational graph and unfolded topological graph 

Fig. 4 presents a typical LSTM cell. Apart from traditional 

RNN units, LSTM cells have a special sharing parameter vector 

called memory parameter vector 𝑠(𝑡) and are deployed to keep 

the memorized information. In each of the time steps, the 

memory parameter has three operations: 1) discard useless 

information from memory vector 𝑠(𝑡); 2) add new information 𝑖(𝑡) selected from input the 𝑥(𝑡) and previous sharing parameter 

vector ℎ(𝑡−1) into memory vector 𝑠(𝑡) ; 3) decide new sharing 

parameter vector ℎ(𝑡) from memory vector 𝑠(𝑡).  
As shown in the LSTM cell, the sharing memory parameters ℎ(𝑡)  are passing through differing time steps only with two 

operations to memorize new information and forget out-of-time 

memories. Therefore, the sharing memory can keep useful 

information for a fairly long time and result in RNN 

performance enhancement. 

III. PROPOSED METHODOLOGY 

In this section, the proposed PDRNN is presented for STLF 

at the household level. Details of this methodology are 

illustrated in Fig. 5: 

In general, the proposed method consists of two stages: 1) 

load profiles pooling, and 2) household STLF with deep-RNN. 

The detailed rationale and design of each stage are further 

discussed in the following sub-sections: 

A. Stage 1: load profiles pooling 

In the 1𝑠𝑡 stage, households’ load profiles are batched into a 

load profile pool. The pool is fed into the 2𝑛𝑑 stage as input so 

that forecasting is not only based on targeted household's own 

data, but also load profiles of his neighbours in the pool.  

 

1) Rationale of pooling strategy 

The pooling strategy is designed to tackle the two major 

challenges of STLF at the household level, i.e., the overfitting 

issue and the inherent high uncertainties in household load 

profiles: 

The overfitting issue is one of the technical constraints when 

applying deep learning in load forecasting. Because of the 

inherent large amount of neural layers in deep learning 

networks, the available historical load profile data in 

households are normally insufficient, which even can cause 

grave overfitting with a fairly small amount of network layers. 

The pooling stage can increase the data volume for load 

forecasting, which hence delays the presence of overfitting. 

Because of the contingency of the load data, the inherent load 

uncertainties are extremely hard to be learned or modeled. 

However, some of the uncertainties are caused by common 

external factors, such as weather conditions, the day of the 

week, etc. Their effects are normally sharing across many 

customers. According to the information theory, the data 

diversity represents the amount of information contained. 

Therefore, sufficient diversity in customer load is the 

prerequisite for learning these common sharing uncertainties. 

In this stage, pooling customers’ load profiles together is 

basically to increase the diversity in load dataset, hence 

increases the information related to common sharing 

uncertainties. Consequently, it enables the deep recurrent 

network to perform more accurate load forecasting by 

understanding these common sharing uncertainties. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

 
Fig. 5. Flowchart of proposed two-stage STLF methodology 

2) Design of pooling strategy 

In this paper, the household load profiles are captured from 

smart meters half-hourly. Therefore, the daily load profiles are 

of the form of 48-data-point values. Due to time connectivity of 

household load between continuous dates, the load samplings 

on 𝑑𝑡ℎ date are continuous with (𝑑 − 1)𝑡ℎ and (𝑑 + 1)𝑡ℎ dates. 

In order to keep this property in data, the load profile pool uses 

a long vector sequence, consisting of concatenated load profiles 

of multiple continuous dates starting from the first date of 

historical data. The denotation is: 

 𝑋(𝑐)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑋(𝑐)1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑋(𝑐,2)2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , … , 𝑋(𝑐,𝐿)𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  (6) 

where 𝐿 represents the total length of the demand sequence data 

for 𝑐𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. The load profile pool is then generated 

through 3 steps: 1) add customer id label in the form of dummy 

variables, 2) split data into training and test sets, 3) merge all 

training data to construct training pool, then construct test pool 

with the same process. In order to clarify the process of pool 

construction, a simplified illustration of 2 customers pool is 

presented in Fig. 6: 

 
Fig. 6. Example of load pool construction with 2 customers group 

As illustrated above, 1𝑠𝑡 and 2𝑛𝑑 customers’ demand are noted 
as two data sequences with size 𝐿 × 1 and 𝐿 × 1. In the first 

step, the demand data will be labelled with dummy variables to 

identify its customer id. In the example, the demand data are 

expanded with size 𝐿 × 3 and𝐿 × 3. The number of expanded 

columns is equivalent to customer group size. In the second 

step, demand data of each customer will be split into training 

sets and test sets. The training sets of each customer are finally 

batched together as the training pool. Same procedure is taken 

to form the test pool. 

B. Stage 2: pooling-based load forecasting using deep 

recurrent neural network 

This stage of the proposed method consists of training and 

testing of pooling-based load forecasting: 1) In the training part, 

the deep recurrent neural network is trained by load profile 

batches randomly fetched from the load profile pool, so that 

deep-RNN are not only learning individual load patterns but 

also common sharing load features and uncertainties. 2) In the 

testing part, test load profiles are fed forward into the well-

trained deep-RNN network. 

Assuming the cleaned load profile database is Ψ1, and the 𝑁 testing households are listed in set 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁}. The 

deep RNN configuration parameters are specified with 𝐿 and 𝐻, 

which represent the network depth (number of layers) and 

amount of hidden units. With these parameters, the training and 

testing process can be conducted in following steps: 

1) Initiation of deep recurrent neural network 

At the beginning, the deep recurrent neural network is built 

with network configuration parameters, i.e., the network 

depth 𝐿, amount of hidden units 𝐻, batch size 𝐵, input sequence 

size 𝐼, and output sequence size 𝑂. 

2) Network training iterations 

After network initiation, the program is then running training 

iteration epochs until the network is well-trained with 

converged network prediction loss in the form of reduced mean 

squared error (RMSE).  
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𝐿𝑜𝑠𝑠(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)
=  √1𝐵 ∙ 1𝑂 ∙ ∑∑(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)2𝑂

𝑗=1
𝐵

𝑖=1  2
 

(7) 

In each of its training epochs, the training batch is firstly 

fetched from the load profile pool, then fed into the deep 

recurrent neural network. Each training batch is two matrices 

with fixed size, i.e., input matrix with size 𝐵 × 𝐼  and output 

matrix with size 𝐵 × 𝑂 

The time-cost and iteration epochs of training process highly 

depend on feed-in data sequence size 𝐼, the choice of optimizer, 

network size (𝐿, 𝐻) and training batch size 𝐵. In order to strike 

a well balance between training efficiency and efficacy, the 

training batch size 𝐵  is variant during training: 1) at early 

epochs, 𝐵  is set as a small number in order to approach the 

optimum point rapidly. 2) Then 𝐵  is gradually increasing 

towards better training performance but sacrifices time cost. 

3) Testing iteration and performance benchmarking 

The well-trained deep recurrent neural network is then tested 

on individual households by performing as a feed-forward 

prediction neural network. In the testing process, load 

forecasting is conducted on testing households one by one, to 

identify whether the proposed methods can achieve a 

performance improvement of load forecasting individually. In 

each of the iterations, a performance comparison is made with 

other load forecasting methods, including ARIMA, SVR, RNN 

and deep-RNN, which only trained with load profile data from 

the testing household. 

IV. IMPLEMENTATION 

This section introduces the implementation of the proposed 

methodology, including hardware, software platforms, and the 

program design. 

A. Data Description 

The data used in this paper are from the Smart Metering 

Electricity Customer Behaviour Trials (CBTs) initiated by 

Commission for Energy Regulation (CER) in Ireland. The trials 

took place during 1st July 2009 and 31st December 2010 with 

over 5000 Irish residential consumers and small and medium 

enterprises (SMEs) participating. The full anonymized data sets 

are publicly available online and comprise three parts: 1) half-

hourly sampled electricity consumption (kWh) from each 

participant; 2) questionnaires and corresponding answers from 

surveys; 3) customer type, tariff and stimulus description, 

which specifies customer types, allocation of  tariff scheme and 

Demand Side Management (DSM) stimuli [37]. 

In this trial, there were 929 1-E-E type consumers, meaning 

that they are all residential (1) customers with the controlled 

stimulus (E) and controlled tariff (E). To put it into perspective, 

these consumers were billed on existing flat rate without any 

DSM stimuli, which are most representative since the majorities 

of consumers outside the trial are of the type. In this paper, 920 

1-E-E consumers were randomly selected as the testing 

customers. With group size 10, 920 consumers were split into 

92 groups randomly. 

Data with missing intervals are encountered and hence are 

not continuous. Different households may have different 

missing intervals and need to be pre-processed individually. 

Hardware and Software platforms. 

B. Hardware and Software platforms 

C. The program is implemented on a high-performance 

Dell workstation equipped with Ubuntu 14.04 

operating system and a computable GPU unit. The 

deep learning code is programmed based on an open-

sourced deep learning framework named as Tensorflow 

[38], which is developed by one of the leading industry 

in the deep learning community, Google. Superior 

features of it include: 1) it is designed for the most 

popular programming language in data science, i.e., 

Python; 2) it supports GPU-based high-performance 

parallel computing towards big data tasks; 3) it 

employs symbolic programming mechanism and 

enables computing graph optimization feature, which is 

the most cutting-edge technique in deep learning 

community. Program Implementation 

The deep learning program is designed with multiple stages: 

1) data pre-processing and cleaning; 2) data pooling; 3) data 

sampling and 4) network training and 5) benchmark evaluation. 

The program design is demonstrated with pseudo code in 

Program 1: 

Program 1: Deep learning program for STLF 

1: Load dataset Ψ0 of household demand from smart meters. 

2: Clean and pre-process demand data in dataset Ψ1. 
3: Generate tuple set < 𝐿,𝐻, 𝐶 > of testing parameters: deep-RNN layer 

number  𝑙 ⊆ 𝐿 , deep-RNN hidden unit number  ℎ ⊆ 𝐻 , and testing 
households set 𝐶. 

4: For parameters < 𝑙, ℎ, 𝑐 > in tuple set < 𝐿,𝐻, 𝐶 >: 

5:     According to household set 𝐶, get generate load profile pool Ψ ⊆Ψ1.  

6:     Divide Ψ into training set Ψ𝑡𝑟 and test set Ψ𝑡𝑠.  

7:     Build deep-RNN ℵ with network size (𝑙, ℎ) on Tensorflow. 

8: Repeat 

9:         At 𝑘𝑡ℎ epochs Do: 

10:             Train deep-RNN ℵ with randomly fetched data batch Φ ⊆ Ψ𝑡𝑟 

11:             Evaluate performance by mean squared error Λ𝑘  on cross-
validation samples.  

12:             Update a performance queue: Ω = [Λ𝑘−𝜈 , Λ𝑘−𝜈+1, … , Λ𝑘−1] 
            By pop out Λ𝑘−𝜈 from Ω, then push in  Λ𝑘 

13: End 

14: Until𝑣𝑎𝑟(Ω) ≤ 𝜀, where 𝜀 is a convergence threshold. 

15: End 

16: For household 𝑐 in set 𝐶: 

17:     Fetch test samples 𝜑𝑐 of household 𝑐 from dataset Ψ𝑡𝑠 

18:     Evaluate performance of ℵ  on test samples 𝜑𝑐 , with multiple 
performance benchmarks Θ 

19: Compare load forecasting performance with other methods on 
household 𝑐. 

Deleted: ¶
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20: End 

21: Terminate 

D. Experiment Setup 

This part presents the details for setting up the experiments, 

including data pre-process, algorithm configuration. 

Regarding the data pre-process, raw data from Irish dataset 

is manipulated into input data sets through three steps: 1) split 

all customers into sub-groups; 2) construct load profile pool for 

each customer group; 3) split each pool into training, validation 

and test sets. The test set consist of data points during the last 

30 days of available dataset (720 hours, 1440 data points), 

validation set is randomly selected from the rest of the data.  

In order to reach optimal performance of each algorithm 

(SVR, ARIMA, RNN, DRNN, Pooling-based DRNN), we 

prepared multiple algorithm settings for each algorithm. 

However, not all results are reported in the result section, the 

comparison is made with the optimal settings of each algorithm. 

In summary, all the experiment settings and parameters are 

presented as follows: 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒 ∈ {10} 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 𝑎𝑚𝑜𝑢𝑛𝑡 ∈ {92} 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 ∈ {1440} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎  𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 ∈ {2880} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎  𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {1} 𝐷𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {2,3,4,5} 𝑃𝐷𝑅𝑁𝑁 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {2,3,4,5}  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∈ {96, 240, 480 } 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎  𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∈ {240, 480, 960} 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ∈ {5,10,20,30,50,100} 𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ∈ {48, 96,336} 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ {𝐴𝑑𝑎𝑚𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟} 𝑛𝑒𝑢𝑟𝑜𝑛 𝑐𝑒𝑙𝑙 𝑢𝑛𝑖𝑡 ∈ {𝐿𝑆𝑇𝑀} 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∈ {0.001, 0.002, 0.005, 0.01} 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑜𝑝 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ∈ {𝑒𝑎𝑟𝑙𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔} 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∈ {𝑅𝑀𝑆𝐸}  
 

V. RESULT AND DISCUSSION 

In this section, the proposed method is validated on realistic 

smart metering load data from Irish load profile database [37]. 

The data selection and pre-processing are exploited in the data 

description section. To assess the performance of proposed 

method in conducting STLF for residential households, three 

widely used metrics are employed, including root mean squared 

error (RMSE), normalised root mean squared error, and mean 

absolute error [8]. 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑡̂−𝑦𝑡)𝑁𝑡=1 2𝑁                     (8) 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛   (9) 𝑀𝐴𝐸 =  ∑ |𝑦𝑡̂−𝑦𝑡|𝑁𝑡=1 𝑁                   (10) 

Where 𝑦𝑡̂  is the forecasted value, 𝑦𝑡  is the actual value, 𝑦𝑚𝑎𝑥 

and 𝑦𝑚𝑖𝑛 is the maximum and minimum value among the test 

set. N refers to the test set size. 

This assessment consists of three parts: 1) the performance 

of proposed method are compared to 3 methods and typical 

deep-RNN method to validate the efficacy; 2) the effect of 

network depth increase are illustrated to reveal the performance 

impact from ‘shallow’ to ‘deep’ architectures, to indicate the 

potential of deep learning for load forecasting and reveal the 

challenge of overfitting; and 3) the effect of pooling strategy are 

revealed by comparing proposed PDRNN typical with deep-

RNN algorithm without pooling strategy, specifically to 

indicate the effect of pooling strategy to defer the overfitting 

issue. 

A. Benchmarking of STLF methods in households 

To validate the efficiency of the proposed PDRNN, three 

load forecasting methods, including autoregressive integrated 

moving average (ARIMA), support vector machine (SVR), and 

a 3-layer deep-RNN method are taken as a comparison and 

assessed under preceding mentioned benchmarks (RMSE, 

NRMSE, and MAE). The performance comparison across all 

testing residential households (920 households) is presented in 

Fig. 7 to Fig. 9 in form of heat map. 

It is notable that the other 4 methods (RNN, SVR, DRNN, 

PDRNN) receive better average performance compared to 

ARIMA in the experiments. Therefore, we presents the 

performance improvement of 4 methods with respect to 

ARIMA method in the heat map. In the heat map, 𝑦 axis refers 

to 4 methods (method 1: RNN, method 2: SVR, method 3: 

DRNN, method 4: PDRNN). 𝑥  axis refers to 920 testing 

households. Lighter colour in the figure refers to better 

performance. 

The results in Fig. 7 to Fig. 9 indicate that: 

i) In terms of Average performance of three benchmarks, 

RNN and SVR achieve even performance, however, SVR 

performs slightly better than RNN in terms of RMSE and 

NRMSE. DRNN can receive a considerable improvement from 

RNN and SVR in all three benchmarks. The proposed PDRNN 

outperforms the other three methods, and can observe a clear 

reduction on all benchmarks. 

ii) Regarding the results of different customers, the 

improvements of three benchmarks are not with same pattern. 

The improvements of RMSE among differing customer are 

largely diverse. While some customers receive 0.2 RMSE 

reductions, the other customers may receive only half of it. 

Unlike result of RMSE, the reduction of NRMSE and MAE are 

more consistent. 

 
Fig. 7. RMSE reduction of 4 methods compared to ARIMA: 1) RNN, 2) SVR, 
3) DRNN, 4) PDRNN 
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Fig. 8. MAE reduction of 4 methods compared to ARIMA: 1) RNN, 2) SVR, 
3) DRNN, 4) PDRNN 

 
Fig. 9. NRMSE reduction of 4 methods compared to ARIMA: 1) RNN, 2) 

SVR, 3) DRNN, 4) PDRNN 

 

Fig. 10. The computational graph and unfolded topological graph 

Furthermore, Fig. 10 demonstrates the real load and 

forecasted load by different methods on a random day 20 Jan. 

2010, household 1059. The proposed method can deliver 

substantially improved performance at spikes and troughs. As 

shown in the figure, the morning peak during 8:00 a.m. and 

10:00 a.m. is accurately captured by the proposed method. In 

addition, ARIMA, SVR, and 3-layer deep-RNN followed the 

inertia and predict a peak between 10:00 a.m. and noon while 

the proposed method successfully avoids overestimating. 

B. Effect from ‘shallow’ to ‘deep’ 
A sensitivity analysis is conducted to investigate the effect 

of network depth on load forecasting performance, in terms of 

neural network based load forecasting methods. To make a fair 

assessment, recurrent neural networks with differing depth are 

all: 1) enhanced with LSTM units, 2) subjected to same input 

size, output size, network configuration parameters, and 3) 

implemented on Tensorflow with Python. The results are 

presented in Fig. 11. 

In Fig. 11, deep RNN witnesses the best performance with 

2 to 3 layers, with around 0.485 in 𝑅𝑀𝑆𝐸, 0.27 in 𝑅, and 0.1 in 𝑁𝑅𝑀𝑆𝐸. Further increase in network depth will lead to severe 

overfitting issue. With 5 layers, deep-RNN gives even worse 

result than 1-layer RNN. 

In general, the sensitivity analysis on network depth 

indicates that increasing network depth into ‘deep’ can only 
enhance the accuracy up to a limit number of layers, which 

reflects the occurrence of overfitting, due to the lack of data 

diversity and network parameter redundancy [39]. 

C. Effect of proposed pooling strategy 

The proposed pooling strategy attempts to tackle the 

occurrence of overfitting. The performance is investigated by 

comparing the load forecasting performance between deep-

RNN methods with and without pooling at different depths. The 

corresponding results are demonstrated in Fig. 11: 

 
i)                                         ii) 

 
     iii) 

Fig. 11. Household load forecasting benchmarks from shallow to deep: i) root 

mean squared error (RMSE), ii) mean absolute error (MAE), iii) normalised root 

mean squared error (NRMSE). 

In Fig 11, the proposed PDRNN (red line marked with 

cross) are compared with classical deep RNN method (blue line 

marked with triangle). In terms of RMSE, MAE, NRMSE 

classical deep RNN’s performance stops improve after 3 layers 

due to overfitting while the proposed method keeps improving 

as the number of layers increases till as deep as we tested.  
TABLE I 

PERFORMANCE COMPARISON  

 

Network Architecture RMSE (kWh) NRMSE (kWh) MAE (kWh)

ARIMA 0.5593 0.1132 0.2998

RNN 0.5280 0.1076 0.2913

SVR 0.5180 0.1048 0.2855

DRNN 0.4815 0.0974 0.2698

PDRNN 0.4505 0.0912 0.2510

Improvement from DRNN to 

PDRNN
6.96%

Improvement from ARIMA to 

PDRNN
16.28%19.46%

6.45%
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Table I compares the performance of the proposed PDRNN 

in terms of RMSE, NRMSE, and MAE with four other 

techniques, i.e., classical DRNN, SVR, shallow RNN and 

ARIMA. All the presented metrics in the table take the averaged 

values across all the tested households. As illustrated, DRNN 

outperforms SVR, shallow RNN and ARIMA in all metrics 

used. With the introduction of the proposed pooling strategy, 

the new PDRNN with the same network settings (5 layers, with 

30 hidden units in each layer), could further improve the 

performance. Specifically, compared with classical DRNN, the 

proposed PDRNN brings 6.45 % reduction in RMSE and 

NRMSE, 6.96 % reduction of MAE. Compared with ARIMA, 

the reduction in RMSE and MAE brought by PDRNN is even 

more significant, reaching 19.46% and 16.28% respectively. 

VI. CONCLUSION 

This paper for the first time explores the potential of 

employing the state-of-art deep learning technique for 

household STLF under high uncertainty and volatility. A novel 

PDRNN is proposed to successfully address the overfitting 

challenges brought by the naive deep network. This paper 

proposes method enables learning of spatial information shared 

between interconnected customers and hence allowing more 

learning layers before the occurrence of overfitting.  

The result indicates the proposed method can deliver 

significant improvement for household load forecasting. 

Compared with state-of-the-art, the proposed method 

outperforms ARIMA by 19.5%, SVR by 13.1% and classical 

deep RNN by 6.5% in terms of RMSE and similar performance 

under other metrics. 

Although quantitative comparison has been conducted, we 

would like to emphasize that we do not draw an arbitrary 

conclusion of the superiority of deep learning model.  The key 

findings are the overfitting problem identified in direct applying 

deep learning models and the novel pooling methodology 

developed to overcome the limitation. The paper aims to report 

the preliminary attempt and provide learnings for wider 

researchers who aim to tap into this state-of-the-art technique. 

Future work includes:  

i) To exploit the overfitting point by further extending the 

network size. 

ii) To exploit optimal pooling strategy by pooling customers 

with differing features, such as similar geographic locations, 

similar social status. 

iii) To further exploit the potential of proposed method by 

considering more external factors, for instance, weather 

information. 
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