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ABSTRACT Free space optical (FSO) communication technology has become increasingly advanced with

capabilities of high speed, high capacity, and low power consumption. However, despite the great potential

of FSO, its performance is limited in a turbulent atmosphere. Atmospheric turbulence causes scintillation in

the FSO propagated signals, leading to an increase in the bit error rate (BER) performance of the recovered

signals at the receiver. In this paper, we demonstrate that the use of deep learning (DL) detection methods

could overcome these limitations. We present a new detection method of on-off keying (OOK) modulated

signals by using different models of DL over different strength FSO turbulent channels, without the need for

prior knowledge of the parameters of the channel. The demonstrated DL decoders improve the performance

of the FSO turbulent channel and decrease the power consumption. Moreover, the demonstrated DL models

also work faster than maximum likelihood (ML) methods with perfect channel estimation decoders, with

even slightly better performance because of the turbulence, thus enabling realization of FSO over turbulent

atmospheric channels.

INDEX TERMS Free space optical communication, deep learning, on-off keying modulation, amplitude

shift keyingmodulation, maximum likelihood, channel state information, fully convolutional neural network,

fully connected neural network, additive white gaussian noise, intensity modulation, direct detection,

photodetector, bit error rate.

I. INTRODUCTION

Free space optical (FSO) communication has gained sig-

nificant attention in recent years due to its high bandwidth

and data rate capabilities. FSO can provide promising wire-

less communication, which can support the rapid growth

of different cloud applications such as internet and cell

phones [1]–[4]. FSO could provide transmission with as high

data rates as in optical fibers. However, in FSO, the data is

transmitted via light over a FSO channel without cables (as

in optical fibers). Consequently, FSO can create more flexible

networks than optical fibers leading to a significant decrease

in power consumption. Moreover, it is easier and cheaper

to install new FSO networks than optical fiber networks.

In comparison to radio frequency (RF), FSO is better in many

ways and faster than RF systems. In FSO there is no need for a

spectrum license as in RF systems, and the data is transferred

over line of sight (LOS) so there is no need to use complicated

security systems as in RF. Consequently, FSO is more secure

than RF and is resistant to RF interference [5], [6]. However,
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in FSO, the data is often transmitted through a turbulent FSO

channel. In the turbulent channel there are random changes in

the refractive index resulting in random refractions [3], [4].

FSO transmitted signals are very sensitive to these fluctu-

ations that lead to changes in the amplitude and the phase

of the received signal. This can affect the performance of

FSO systems and lead to significant increases in the values of

the bit error rate (BER), which can limit the implementation

of FSO communication systems in real environments such

as in data centers. This is because recovering the transmit-

ted data at the receiver depends on prior knowledge of the

encoder and decoder, and accurate knowledge of the channel

state information (CSI). Using deep learning (DL) algorithms

for recovering the transmitted data in FSO communication

could be an efficient solution to employing FSO in turbulent

channels, and thus permit the use of FSO without the need

for any prior knowledge of the turbulent channel. The deep

neural network (DNN) is one of the most commonly used

algorithms in DL. DNN can optimize the performance of the

entire system and learn the relationship between the input

and the output of a system through training and learning

processes.
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Recently, researchers have widely demonstrated DL in

many areas, such as in computer vision and speech recog-

nition [7], [8]. They have also succeeded in applying DL

in different areas of wireless communication systems, for

encoding, decoding, modulation recognition, and channel

estimation [9]–[11]. In [12], researchers proposed the use

of a DL autoencoder to replace both the transmitter and the

receiver of the communication system. Also, in [13], the use

of DL to reduce the peak to average power ratio problem

in orthogonal frequency division multiplexing (OFDM) was

proposed. In [14], the authors succeed in implementing DL

signal detection and channel estimation for OFDM systems.

The use of DL in wireless communication systems could

increase their performance as DL has algorithms and tools

that enable learning different complicated models. These try

to optimize the performance of the entire communication sys-

tem by training and learning processes without the need to use

any prior knowledge of mathematical models or parameters

of the channel [15]. In addition, DL has been implemented for

different applications in optical communication systems [16],

such as reducing the computational complexity in different

optical communication tasks [17], atmospheric turbulence

detection and adaptive techniques for orbital angular momen-

tum based FSO communication [18], mitigating fiber induced

nonlinearity [19], modulation format identification in digital

coherent receivers [20], and optical performance monitor-

ing [21]. In [22], DL was used as a detection technique

in FSO communication. In [18], DL was demonstrated for

the detection and adaptive demodulation of orbital angular

momentum based FSO communication. In [23], sensor less

FSO communication was corrected using DL. In [24], the

researchers used DL as a solution for an imperfect channel

state information problem in correlated FSO communication

channels. In the case of weak atmospheric turbulence with

perfect channel state information, DL has been applied to

achieve the same performance as the maximum likelihood

detector. In channels without correlation, DL enabled bet-

ter performance compared to that of a maximum likelihood

detector. In [25], channel estimation in FSO communication

was carried out usingDL.However, only a fewworks recently

suggested using DL in FSO communication.

In this paper, we suggest a new detection method for on-

off-keying (OOK) modulated signals in FSO communication

systems using DL models which can effectively replace the

maximum likelihood (ML) decoders. We propose doing so

over different FSO turbulent channels. We built two differ-

ent decoders using DL. In the first decoder, we used fully

connected (FC) layers. In the second decoder, we used fully

convolutional neural networks (FCNN) with concatenation of

memory from previous layers. In order to check our mod-

ules, we generated random data bits and OOK modulation.

We then transmitted the modulated data bits via light through

atmospheric turbulent channels.We used channels with weak,

moderate, and strong turbulence and we compare between

the performance of our models and the performance of the

ML detector with perfect CSI and with the performance of

the traditional OOK decoder with a fixed threshold. The

results indicate that our DL decoders performed approx-

imately like the ML decoder with perfect CSI when the

channel is described by weak atmospheric turbulence. In the

case of moderate and strong turbulence our decoders offer

even slightly better performance, but the advantage of our

decoder in this case is that it can predict the data faster than

the ML decoder with perfect CSI, and with less computa-

tional complexity. When the channels are characterized by

strong or moderate turbulence, we obtained improvements

in the performance of the detection of OOK modulated sig-

nals compared to the OOK decoders with a fixed threshold.

Moreover, our decoders led to a significant decrease in the

power consumption of the detection method of OOK, and our

models can effectively replace the ML decoders with perfect

CSI. In addition, we succeeded in recovering the transmitted

data irrespective of the strength of the turbulence. Even in

the case of strong turbulence we were able to improve the

performance and decrease the BER. We obtained low BER

with lower signal to noise ratio vales compared to the OOK

decoders with a fixed threshold. This leads to a decrease in the

power consumption of the system, because we can decrease

the signal to noise ratio of the transmitted signal and transmit

with less energy, while obtaining better BER. Consequently,

in ourmodels a large amount of data was not generated, which

is a critical problem in different DL systems consuming time

and high computational power. It was sufficient to generate

a small number of training data with a size of 5000 vectors

of input/output data. The training time in the decoders was

therefore less than in the existing DL models. After the

training process, the weights of our DL system are saved, as a

result of which the online transmitted data can be predicted

according to the saved weights, which can recover faster

than the prediction time of a regular decoder. Accordingly,

the performance of detected OOKmodulated signals through

different turbulence channels is improved.

The novelty of our work lies in the DL models enabling

the use of FSO wireless communication in data center envi-

ronments with turbulent channels where the turbulence is

unknown. Turbulence may arise in data centers themselves

because of heating, in addition to natural turbulence in the

atmosphere. We show that DL makes it possible to communi-

cate reliably through turbulence, including heavy turbulence,

using normal transmitter power without the need for previ-

ous knowledge about the communication channel. Also, our

decoders are efficient and thus can also be useful in channels

without turbulence, because our models succeed to exhibit

good performance and decreased power consumption. Our

DL decoders could replace the OOK decoders that use a fixed

threshold, which consume a lot of energy when the channels

are with moderate or strong turbulence. In addition, our DL

decoders can replace the state of the art ML with perfect CSI

decoders, because ML requires accurate CSI and for perfect

channel estimation the probability density function (PDF)

needs to be stationary over the window periods. However, this

requirement does not hold in non-stationary channels such
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as turbulent media. Thus, ML becomes essentially non-ideal

and non-optimal. On the other hand DL does not make any

prior assumption, and is data-driven so it is fully adaptive.

DL may adapt faster and thus may exceed ML in some cases

such as in strong turbulence. Consequently, our DL decoders

could replace the state of the art ML decoders and solve the

above problems, while at the same time succeeding to obtain

performance at least as good as ML decoders, especially

through turbulence.

The rest of the paper is organized as follows. In section II,

the FSO turbulent channel and the potential of using DL in

FSO atmospheric turbulent channels are described. In section

III, the DL detection models for OOK in FSO turbulent

channels are presented. Simulation results are provided in

section IV. In section V, we conclude and summarize the

study.

II. FSO TURBULENCE CHANNEL

FSO communication is an optical communication technol-

ogy that transmits data via light through free space using

intensity modulation (IM). The transmitted data propagates

through a turbulent channel with additive white Gaussian

noise (AWGN) [3], [4]. At the receiver, the data is received

via a photodetector (PD) and is detected using direct detection

(DD), as in Fig. 1:

FIGURE 1. Block diagram of IM/DD FSO communication system.

We assume that the channel is memoryless and stationary,

and exhibits slow fading. The received signal can be described

by the basic channel model [26], [27]:

yk = ηhxk + noise (1)

where η is the responsivity of the PD (measured in V/W), h

is the channel state, which includes attenuation due to atmo-

spheric turbulence, and is equal to the channel intensity at

that time. It is affected by distortions due to atmospheric tur-

bulence generated by random changes in the temperature and

pressure of the atmosphere. Generally, turbulence is modelled

by a lognormal distribution or by Gamma-Gamma random

variables in the cases of weak or strong turbulence, respec-

tively. The intensity of the transmitted bit that is modulated

using OOK modulation is xk ∈ {0, 1}, and noise is signal

independent AWGN with zero mean and variance N0/2.

In free space where the data propagates, there are random

fluctuations of refractive index, and scattering by fog, clouds,

etc. Equation 1 characterizes the received data affected by

distortions caused by turbulence. The fluctuations in the tur-

bulent channel can be described by the parameter C2
n . C

2
n is

the refractive index structure coefficient that describes the

fluctuations and changes in air temperature through the chan-

nel, k = 2π/λ is the wave number, λ is the wavelength, and L

is the distance between the transmitter and the receiver. When

the transmitted FSO data propagates through the air, the

fluctuations can lead to signal fading and degradation in the

performance of the received signal. It is customary to divide

effects of turbulence on the received FSO signal [28] into two

types of fluctuations, weak and strong. Rytov variance, σ 2
R ,

is the parameter that determines the type of turbulence and it

can be calculated according to:

σ 2
R = 1.23C2

nk
7
6L

11
6 (2)

When σ 2
R ≪ 1, the turbulence is weak. Otherwise the turbu-

lence is strong. In the case of weak turbulence, the distribution

of the intensity of the received signal passing through the

weak-turbulence channel is lognormally distributed with a

PDF:

fI (I) =
1

2I

1
√

2π
σ 2
R
4

exp

[

−
(ln (I) − ln (I0))

2

2σ 2
R

]

(3)

where I is the received signal intensity, σ 2
R is the variance of

the log amplitude of the received signal, and ln (I0) is the

average log intensity of the received signal. For longer dis-

tances, or when the fluctuations are higher and the turbulence

is strong, the distribution of the received signal is Gamma-

Gamma with a PDF [29]:

fI (I) =
2(αβ)

(α+β)
2

Ŵ (α) Ŵ (β)
.I

(α+β)
2 −1.kα−β (2

√

αβI) (4)

whereŴ (.) is the gamma function, ki is the order of the Bessel

function of the second kind, and α and β can be calculated

according to:

α =
1

exp

[

0.49σ 2
R

(

1+1.11σ
12/5
R

)7/6

]

− 1

(5)

β =
1

exp

[

0.51−σ 2
R

(

1+0.69σ
12/5
R

)5/6

]

− 1

(6)

OOK is a modulation technique that is widely used for

IM/DD in FSO communication systems due to its simplicity.

A schematic of a simple OOK transmitter/receiver system

using amplitude shift keying (ASK) modulation is displayed

in Fig. 2:

In this modulation technique, a bit ‘‘one’’ is modulated

by the carrier frequency and represented by an optical pulse.

When the bit is zero the transmitter is in mode ‘‘off’’ and,
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FIGURE 2. An IM/DD OOK transmitter/receiver system.

in this time interval, the transmitter is not active and does

not transmit any optical power. The transmitted signal is then

passed through atmospheric turbulent channel with AWGN

and detected at the receiver. At the receiver, a PD detects

the received power of the signal, and the signal from the PD

enters a demodulator. The demodulator multiplies it by the

same carrier frequency that was used in the transmitter and

filters it. At the exit from the receiver, a comparator converts

the analog signal to a digital signal according to a threshold

that decides if the detected bit is zero or one, depending

upon whether the value is less than the threshold or not. This

modulation is very susceptible to noise interference because

the noise affects the amplitude of the transmitted signal.

The BER calculation of IM/DD OOK modulation in FSO

communication that propagates through a turbulent channel

with AWGN is given by [20]:

Perror = P (on) .P (error | on, I) + P (off) .P (error | off, I)

(7)

where I is the intensity of the transmitted signal,

P (on) /P (off) are the probabilities of transmitting bits one or

zero, and P (error | on, I) /P(error|off, I) are the conditional

error probabilities when the transmitting bit is one or zero.

We can assume that P (on) = P (off) = 0.5 and the noise

distribution is independent of the bit that is transmitted.

The conditional bit error probability of I can be calculated

according to:

P (error | on, I) = P (error | off, I) = Q (SNR.I) (8)

where SNR is the signal to noise ratio. The average BER

over the noisy channel can be calculated via the following

equation:

BER =

∫ ∞

0

fI (I) .Q(SNR.I) (9)

where fI (I) is the PDF of the received signal at the receiver.

Wementioned above that weak turbulence is lognormally dis-

tributed and strong turbulence is Gamma-Gamma distributed.

In both cases, fI (I) depends on the scintillation index parame-

ter and inversely affects the BER.When the scintillation index

parameter is increased according to equations 3 and 4, the

BER increases. In order to achieve lower bounds of BER and

good performance in the case of higher values of the scintil-

lation index parameter, the SNR is increased and more power

is transmitted. Alternatively, other mitigation techniques can

be applied. In some cases, it is difficult to realize FSO com-

munication and to achieve these lower bounds of BER, or the

system may consume too much energy. In OOK modulation,

in order to achieve good performance one may employ ML

with perfect CSI. These decoders are complicated and the

receiver needs to have accurate knowledge of the instanta-

neous CSI. The receivers use thresholds in the detection of

the recovered data in order to achieve optimal performance.

The receiver also needs to know the accurate CSI to adjust

the threshold, while in practical systems this parameter is

unavailable. Hence, there is a significant demand to find

an efficient solution to these problems in order to benefit

from the advantages of FSO, and to enable the use of such

communication in turbulent channels. In the next section,

DL is proposed and demonstrated to be able to overcome the

above problems.

III. PROPOSED DL DETECTION MODELS FOR FSO

A. AN INTRODUCTION TO DL

DL is a neuron model type learning system like a black

box with an input and output. DL is used to improve the

performance of a system from the experience gained via

a training process, until minimum loss between the output

of the system and the original data is obtained. The input

to this system is corrupted data and the output data is the

original data before the corruption. At the entrance to the

system, the input data is mapped to a number of nodes called

the input layer. Values of these nodes propagate through a

graph which contains a number of layers, each of which

contains nodes. Values of the nodes in each layer are deter-

mined by a specific mapping function called an activation

function. At the beginning of the training process, DL sets

random values to the weights and the biases, and then tries

to change these values according to derivations in a number

of iterations until minimal loss between the output of the

system and the original data is obtained. In other words,

we try to recover the corrupted input data with minimum

loss. DL succeeds in maximizing the performance of a system

without prior programming. Because of these advantages,

in recent years researchers have widely used DL in many

fields, including computer vision, speech recognition, and

more. In these fields, DL succeeded in improving system

performance. There exists some similarity between wireless

communication and fields like speech recognition: in the two

systems data bits are generated, transmitted through a channel

and arrive at the receiver, which attempts to detect the original

data with minimum loss. Hence, researchers started to apply

DL in different fields of wireless communication systems,

as mentioned above. The authors of [12]–[14] suggested

using DL for signal detection in order to replace the receiver

in OFDM wireless communication systems. We believe that
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if researchers succeeded in using DL in signal detection and

successfully replaced the receiver in wireless communication

systems, then it is also possible to use DL for signal detection

in FSO communication systems.

B. PROPOSED DL DETECTION MODELS

In this section, we present a new DL detection method for

OOK with IM/DD modulation to enable the use of FSO

communication in different turbulent channels without the

need of prior channel. The aim of our DL detection models

is to replace the optimal ML with perfect CSI detection OOK

model and to replace the OOK decoders that use the fixed

threshold, in order to receive modulated OOK data, and to

recover the original data with minimum loss. The proposed

DL models work in two phases. The first phase is called the

training process. In this process, a data set enters the DL

system, and it trains and learns in a number of iterations

to recover the original data. When the system finishes this

process and manages to obtain minimum loss, it saves the

weights of the system. After the training process the system

starts an online process, where the DL system can receive

online OOK transmitted data with noise after passing through

the turbulent channel. The DL model makes predictions of

this data according to the weights saved at the end of the

training process. The online process is expected to run faster

because the weights have already been determined and saved.

In our work, we suggest two different DL detectionmodels.

In the first model, we use FC networks. In the second model

we use FCNNs with concatenation of memory from previous

layers. Schemes of the different DL models that we built are

presented in Figs. 3 and 4.

FIGURE 3. OOK decoder 1 using FC network.

In our DL models, we used a Relu activation function:

fRelu(xi) = max(0, xi) after each internal layer and the last

layer is a convolutional layer with two filters of size 1 × 1.

This layer is followed by a softmax activation layer:

fsoftmax(xi) =
exi

∑k
j=1 e

xj
(10)

that converts the values of the output data from this layer to

probabilities from values 0 to 1. At the end, we used the cross-

entropy loss function given by equation 11 to measure the

FIGURE 4. OOK decoder 2 using FCNN + concatenation of memory.

difference between two probabilities: the probability of the

original data bits p and the estimated output probability q of

our DL system. The distance between the output of the DL

system after the softmax at the last layer, and the original data

bits needs to be minimum by cross-entropy loss.

H (p, q) = −
∑

xi
p (xi)log(q(xi)) (11)

In the first model, we used one FC layer, which means that

all the input data are connected to all the nodes in this layer

(see Fig. 3). After the FC layer, a convolutional layer was

used with 2 filters, each one with a size 1 × 1. At the output

of this layer we used a softmax activation function, followed

by a binary cross-entropy loss function. In the second model,

FCNN with concatenation of memory from previous layers

was used. The concept of this model is taken from [31]–[33].

In [31], the authors suggested using FCNN for image seg-

mentation, which means the detection, for each pixel in the

image, if it is background or foreground. In [33], the authors

extended this work and improved system performance by

suggesting adding memory from previous layers to detect

more sophisticated features.

FCNN includes two processes, namely down sampling and

up sampling. The down sampling process comprises a num-

ber of convolution and pooling layers, and the up sampling

process performs the inverse processes, comprising a number

of up sampling and deconvolutional layers. The down sam-

pling process is used to detect high resolution information and

features in the image, in other words to extract the data. This

recovers the lost information due to the convolutional and

pooling layers and obtains the precise information and local-

ization of the extracted data by an up sampling process. In the

proposed model, we apply the same concept as in [31]–[33],

but we modify for our problem. The purpose of our mod-

els is to insert corrupted OOK modulated data and perform

semantic segmentation for each output bit to determine if it

is 0 or 1. The scheme of our FCNN model is presented in

Fig. 4. The input data to our DL system passes two processes

of down sampling and up sampling. In the down sampling

process, we used a convolutional layer with 8 filters, each

one with a size 3 × 1. Then we used another 2 convolutional

layers which duplicated the number of the filters to 16 and 32.
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After each convolution layer, we used pooling layers. In the

up sampling process, we used the inverse process that we used

before in the down sampling process. After the up-sampling

process, we used convolutional layers of two classes followed

by a softmax activation function. Then, the cross-entropy

loss function is used according to equation (11) to calculate

the minimum loss between the input and the detected data

bits. The two proposed models received the same modulated

OOK data after passing through turbulence channels with

AWGN, and the output of these models is a vector of data bits

recovered through the cross-entropy loss function. In the next

section, we present the simulation results that we perform by

our different DL models.

IV. SIMULATION RESULTS

In order to check the performance of our suggested DL mod-

els in this article, we need to generate sets of input and output

data, train and test our models, and then compare between

the performance of our models and the performance of the

ML with perfect CSI detection model and the OOK with

fixed threshold detection method. For this, using MATLAB

software we generate two datasets of 5,000 and 10,000 vec-

tors of random data bits, each one with a size of 512 bits.

We modulated each vector of data by OOK modulation

and transmitted it across different strength FSO turbulence

channels with AWGN. The receiver received the transmitted

data with the noise and recovered the original data bits by

two detection methods, OOK with fixed threshold and the

state of the art ML with the perfect channel estimation OOK

detection method. The input of our DL models is the received

modulated data with noise that arrived at the receiver, and the

output is the original data bits that we generated. We built

our DL decoders using Tensorflow software and we ran our

simulations on a computer with CPU: Intel core i7-7500 2,7

GHz. The proposed system of our DL models is shown in

Fig. 5.

FIGURE 5. Proposed system model.

We performed simulations for different strengths of tur-

bulent channels; weak, moderate, and strong. The strength

values of the turbulent channels that we used are presented

in Table 1, and the hyperparameters of the DL models that

we used are presented in Table 2. These were chosen based

on our previous experience with DL.

FIGURE 6. BER performance against normalized SNR for OOK with fixed
threshold detection model and with ML with perfect channel estimation
detection method across all turbulence channels.

TABLE 1. Strength parameters for the different turbulent channels.

TABLE 2. Hyperparameters of the DL.

The BER performance of the data that we generated by

MATLAB are calculated by equation (12) and are presented

in Fig. 6.

BER =
Number of error bits

Number of total transmitted bits
(12)

The detection of the received data bits in the first detection

method is calculated according to the threshold. If the value

is higher than the threshold then the detected bit is 1, and

otherwise it is 0. To adjust the optimum threshold, previous

knowledge of the CSI is required. However, recovering the

received data bits in the ML with perfect channel estimation

requires pilot transmission of data, which reduces the data

rate of the FSO transmission system.

In Fig. 6 we present performance against normalized SNR

for OOK with a fixed threshold (red curves), and with ML

with perfect CSI detection which (blue curves). However,

the blue curve for ML represents 3 situations which yield

essentially the same results; therefore, only one curve is

shown. We can see in Fig.6 that as the turbulence strength

increases, the BER for the detection method with a fixed

threshold of OOK also increases. Thus, for channels with

strong turbulence it is necessary to transmit the modulated

signal with more power than for a weak turbulence channel

or to use other mitigation techniques. For example, to achieve

a BER lower than 10−5 for channel 1 with weak turbulence,

it is necessary to transmit with a SNR = 13 dB. In order
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to achieve the same BER in channel 3 with strong turbu-

lence, it is necessary to transmit with SNR = 39 dB, which

is 26 dB greater than that required for the weak turbulence

channel. In addition, however, the performance of ML with

a perfect CSI decoder, is better than the performance of the

first decoder with the fixed threshold, but to achieve this

performance, the receiver needs to have previous knowledge

of the CSI obtained from the transmission of pilot data, which

decreases the efficiency of the bandwidth and leads to a

decreased data rate of the system. However, in some cases,

when the channel is non-stationary or is strongly turbulent,

it is difficult to know the accurate CSI in order to implement

FSO, which limits the implementation potential of this tech-

nique.

The above problems can be substantially minimized by

replacing theMLwith perfect CSI detection and the decoders

with a fixed threshold using the proposedDLmodels. In order

to check the BER performance of the proposed DL models,

two datasets of the input/output data are trained. The train-

ing of the data was carried out using Tensorflow software.

During the training process, the DL system tries to learn the

weights and recovers the detected data bits with minimum

loss. Fifty iterations were sufficient for obtaining minimum

loss. Then, after the training process, the system can receive

online transmitted data and detect it. Comparison between the

BER performance of our FC DL model, the ML with perfect

CSI detection method, and the detection method with the

fixed threshold across the different turbulent channels with

the first data set are presented in Figs. 7a-c.

In Figs. 7(a)-(c), we compare between the results of the

conventional detector with a fixed threshold, ML with per-

fect CSI detector, DL FC model 1, and FCNN with mem-

ory model 2 for the three different turbulent channels. The

blue curve presents BER performance of FC model 1, the

green curve presents the results of the conventional detector

with a fixed threshold, the red curve shows the performance

of the ML with perfect CSI detector, and the black curve

shows the results for the DL FCNN with memory model 2.

Across all the different turbulent channels, the proposed DL

models present better performance and energy consumption

than those of the conventional detection method with a fixed

threshold. The performance results are close to those of the

ML detector with perfect CSI. For example, when the channel

is turbulent the results of the ML detector and our models

are very close, but when the channel is with moderate or

strong turbulence, our models display an improvement over

ML performance by a few dB. The results for FC (model

1) and FCNN with memory (model 2) are very similar and

consume less energy than the regular detection method with

the fixed threshold and are also very close to the results of the

ML detector model. For example, when the channel is with

strong turbulence, to obtain BER = 10−5 in the conventional

detector with a fixed threshold, it is necessary to transmit

with SNR = 39 dB. However, in the FC model 1 and FCNN

with memory model 2 cases, it is sufficient to transmit with

SNR = 8 dB and SNR = 9 dB, respectively. These levels are

FIGURE 7. BER performance against the normalized SNR for
conventional detector with fixed threshold, ML with perfect CSI detector,
DNN FC model 1, and DNN-FCNN with memory model 2.

approximately 30-31 dB less than the required values for

the regular detector with a fixed threshold, and 1-3 dB less

than the required SNR in the ML with perfect CSI detection

case. In our case we get performance very close to the ML

performance, and even slightly improved (by 1-3 dB) since

DL is more robust to variations in the AWGN channel models

than ML. In our case, ML knows the channel coefficient of

the turbulent channel, while DL considers the whole system

as a black box channel coefficient of the turbulent channel

with the AWGN. SinceDL tries tominimize total system loss,

we get slightly better performance. Another important thing

in DL is how to set the values of the hyperparameters of the

network. In order to get better performance it is very impor-

tant correctly set the hyperparameters.When the hyperparam-

eters are tuned properly, the network can learn more complex

relationships. Any small changes in these parameters affects

the outcome and leads to worse performance. Further, in DL

we could go deeper and implement many layers, so that DL

can yield more complicated features.

In Figs. 8(a)-(c), the results of the proposed FC model are

presented with two data sets of sizes 5,000 and 10,000. The

performance of the first data set with size 5,000 is shown in

black, and results of the second data set are presented in red.
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FIGURE 8. BER performance against normalized SNR for FC model
datasets equal to 5,000 and 10,000.

In Figs.8a-c we see that the results of the two data sets

with different sizes are very close and the small data set of

size 5,000 is sufficient to obtain good results and decrease

by half the training time compared with the long dataset. The

two data sets yield good performance, better than that of the

regular detector with the fixed threshold and slightly better

than the performance of theML decoder with perfect CSI and

are very similar. For example, in the results of the two data

sets we can obtain a BER of less than 10−5 with a SNR of

approximately 4 dB, 13 dB, and 30 dB less than in the three

different turbulent channels, respectively, compared with the

fixed threshold detection method, and approximately 1-3 dB

less than with the ML with perfect CSI detection method.

We calculate the complexity of the proposed mod-

els in terms of amount of floating point multiplication

adds (FLOPs) and detection time consumption (see Figs. 9

and 10).

In Figs. 8a-c, it is shown that the performance results of

the FC (model 1) and FCNN (model 2) cases are very close,

but according to Fig. 9, the number of FLOPs in FCNN with

memory model 2 is seen to be less than for the FC model.

This is because in FCNN the nodes in each layer are not

connected to all the nodes in the next layer, which leads to

FIGURE 9. Number of FLOPs for the different models.

FIGURE 10. Normalized detection time consumption for the different
models.

reduced calculations. Moreover, the detection time after the

training process in the models for one input data set was less

than 0.01 times the detection time in the ML with perfect CSI

detection method. Therefore, the proposed models succeed

to recover the detected data with improved performance and

speed in the OOK detection model than ML with perfect

channel estimation detectors. Our models are simple and very

easy to use and, at the same time, succeed in achieving similar

performance to the ML with perfect CSI detection methods.

V. SUMMARY AND CONCLUSION

The novelties of the methods presented here are the effec-

tiveness of using DL for signal detection of OOK modu-

lated data over different FSO turbulent channels in terms of:

improving the performance, decreasing the prediction time,

and reducing the energy consumption. In such situations,

ML is non-ideal and non-optimal because the channel is not

stationary. We built two different models of DL; in the first

model we used FC neural networks and in the second model

we used FCNNwith concatenation of memory from previous

layers. We tested our models in two phases. In the first phase

we trained our models offline using OOK modulated data

that was received after passing through different turbulence

strength channels with noise. During this process, the models

learn the weights of the system. In the second phase, the
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system received online transmittedmodulated OOK data with

noise and recovered the original data bits.

We compared between the performance of our suggested

DL models and the ML with perfect channel estimation

OOK detection method and with the fixed threshold detec-

tion method. In the simulation results, we show that the use

of DL for signal detection of OOK has many advantages

when the FSO channel has strong turbulence. DL successfully

recovered the original data bits with a significant improve-

ment in BER performance compared with the fixed threshold

detection method and performed slightly better than the state

of the art ML with perfect CSI decoder method. DL was

able to detect the data and learn the channel despite the

turbulence, no matter if the turbulence was strong or weak.

For example, over a strong turbulence channel with σ 2
R =

3.5, in order to obtain a BER of less than 10−5, the DL

models succeeded in decreasing the required SNR by 30 dB

compared with the fixed threshold detection method, and by

1-2 dB compared with ML with perfect CSI. The DL models

were able to detect the data with similar BER performance

for the different turbulence levels, with lower BER than in the

fixed threshold detection method. We succeeded in obtaining

the same BER performance with approximately the same

SNR = 8 to 10 dB, which is less than the required SNR in the

fixed threshold detection method, which was 14 dB, 25 dB,

and 39 dB for the three different turbulent channels that

we used with σ 2
R = 0.1, 1.6 and 3.5. In addition, our DL

decoders performed slightly better than the state of the artML

with perfect CSI decoder. If we use DL for signal detection of

OOK in FSO, it is possible to exploit the many advantages of

this technology, such as communicating during turbulence.

Also, in cases of unknown channel parameters, such as in

a fast changing channel, we can use FSO and transmit with

less energy, while obtaining BER levels characteristic of an

environment with weak turbulence or a deterministic channel.

Moreover, after the training process, our models work faster

than theML detection method. Hence, the advantage of using

FCNN is that we can insert any non-specific size of input data,

although the input data should be equal to or amultiple of 512.
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