
11th Conference on Industrial Computed Tomography, Wels, Austria (iCT 2022), www.ict-conference.com/2022

Deep Learning for improving the efficiency of dimensional measurement workflows
with high-resolution X-ray computed tomography

Aniket Tekawade1, Herminso Villarraga-Gómez2, Matthew Andrew3, Chi Young Moon4, Christopher Powell4

1Data Science and Learning Division, Argonne National Laboratory, Lemont IL, USA, e-mail: atekawade@anl.gov

2Carl Zeiss Industrial Metrology, LLC, Wixom MI, USA, herminso.gomez@zeiss.com

3Carl Zeiss X-ray Microscopy, Inc., Dublin CA, USA, matthew.andrew@zeiss.com

4Energy Systems Division, Argonne National Laboratory, Lemont IL, USA, cmoon@anl.gov, cpowell@anl.gov

Abstract

High-resolution X-ray computed tomography (CT) instruments, also known as three-dimensional (3D) X-ray microscopes, can
be adapted for dimensional metrology applications such as geometric dimensioning and tolerancing of metallic components.
However, CT scanning times can be prohibitively high for industrial measurement inspection tasks owing to the poor contrast
from X-ray attenuation in Ferrous metals, especially if the measurement of spatial resolutions under 5 µm are required. This
paper describes a software-defined approach to dramatically reducing total exposure time (or scanning time) while maintaining
resolution loss within 2 micrometers as compared to the baseline scans acquired over 6 hours. Here, we combine two deep
learning (DL) codes in our surface extraction workflow to compensate for lower signal-to-noise ratio in short exposure data
(acquired with lower number of projections): (1) a surface determination (post-reconstruction) , and (2) a denoising algorithm
(pre-reconstruction). Training data was acquired from a scan of an 8-hole automotive fuel injector (sample 1) with a 165 µm
nominal diameter per hole. For testing the accuracy of the workflow, a separate scan of a 6-hole side-mount injector (sample 2)
was acquired. For both samples, the acquired X-ray projections (or radiographs) were binned down to 10X such as to simulate
faster scans. For training and testing workflows, the full exposure scans (baseline) were used as target and the shorter exposure
scans as inputs to the deep learning models. To determine loss of surface accuracy from the baseline case, a metric is formulated
(in micrometers) and the trends are reported for when the total measurement time was reduced by up to 10X (up to 0.6 hours,
using only 360 projections). We report that scan times can be reduced by over 10X while retaining the limiting the resolution
loss to under 1 micrometer.
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1 Introduction

Prior work in using dimensional metrology with X-ray CT has shown its efficacy in geometric dimensioning and tolerancing
of metallic components [1–4]. The workflow elements involved in the analysis include tomographic reconstruction, surface de-
termination (segmentation or thresholding) and some dimensional measurements. When spatial resolutions in the order of a few
micrometers are demanded, the high attenuation coefficient in steel components dramatically increases the total exposure time
required to achieve an adequate signal-to-noise (SNR) ratio. The applicability of high-resolution CT, or 3D X-ray microscopy,
for in-line (or online) metrology can be challenging for millimeter-sized metallic components (e.g., automotive fuel injectors)
demanding high (< 5 µm) surface resolution. The authors from Argonne National Lab (ANL) previously reported a surface
determination workflow using a DL algorithm for automotive fuel injectors with surface resolution under 5 µm on synchrotron
CT [1]. The nominal diameter of the holes in such injectors is 165 µm. These holes are not accessible to traditional meas-
uring methods such as tactile or optical coordinate measuring machines. Furthermore, the attenuation through steel walls of
approximately 5 mm thickness create poor contrast and beam hardening effects. While scan times to achieve reasonable contrast
for such a fuel injector in synchrotron CT can be under 15 minutes, a scan using a CT X-ray microscope would take up to 6
hours to achieve similar resolution. In this article, we combine two DL-based algorithms into a fully automated (parameter-free)
workflow for the challenging use case of reducing scanning time for the internal orifices of these steel fuel injectors. The surface
determination algorithm is part of an open-source code "TomoEncoders" developed by the first author (A. Tekawade) at ANL
for direct segmentation of noisy CT scan volumes using 3D convolutional neural networks. The denoising code is a commercial
software called DeepRecon, developed by ZEISS, as a reconstruction engine for denoising volumes obtained from low-dose
scans[10, 11]. The main purpose of this paper is to analyze potential reductions in scanning time when this workflow is used to
augment image-quality of CT data obtained with a low number of acquired X-ray projections. For reference comparison, the fuel
injectors were scanned using a ZEISS Xradia Versa 620 instrument by acquiring a total of 3600 X-ray projections with 6 seconds
exposure per projection (total 6 hours). Then, this data was reconstructed using equally spaced subsets of those projections
(e.g., 2X means 1800 projections needing 3 hours scan time) to mimic reduced scan time. Each subset was reconstructed using
DeepRecon as well as a traditional Feldkamp–Davis–Kress (FDK) reconstruction algorithm. Both datasets were then directly
segmented (or binarized) using the surface determination algorithm from TomoEncoders, which utilizes 3D fully convolutional
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neural networks (fCNN) to perform surface segmentation [5], resulting in a binarized volume which implicitly determines the
surface. For segmentation, the labeled mask for the training and testing data (two separate specimens) was generated from the
full exposure data. These labels were manually inspected to be accurately representing the surface and any apparent bias was
corrected by applying morphological filters. This "ground-truth" mask was used as reference for calculating any loss in surface
accuracy after reduction of total exposure. The paper does not make any claims as to the absolute accuracy of the measurement
but the relative loss in accuracy from the baseline case at full exposure when exposure is progressively reduced.

2 Results and Discussion

The surface computed from the CT data is defined as the boundary separating the voxels belonging to the metal and air (orifice
passages) respectively. This surface defines the walls of the flow passages and are known to bear precursor sites for erosion during
long-term injector operation[6, 7]. Hence, not only is it important to measure the orifice critical dimensions but also the surface
roughness introduced by micrometer-scale metal fragments leftover from the manufacturing process. Due to the fundamental
limitations to resolution in micro-CT introduced by the focal spot size and detector, the surface appears blurred (also called partial
volume effect). When the total exposure time is reduced, the photon statistics become poorer and lead to reduced signal-to-noise
ratio (SNR) and further blurring. Smaller features fade away with increasing noise and are missed by the surface determination
step leading to surface accuracy loss. Since the test injector (see Figure 1 for a vertical slice from the reconstructed CT volumes
at 1X and 10X using the standard FDK algorithm and the DL-based DeepRecon software) is off-the-shelf and unused, some
fragments leftover from the manufacturing process are attached to the surface. These are appropriate features to observe the
minimum detectable feature size of the segmentation step.

2.1 Denoising and CT Reconstruction

A total of 12 datasets were reconstructed to compare the performance of the FDK and DR algorithms with decreasing number
of projections to simulate reduced scan time (1, 2, 4, 6, 8, and 10X). For instance 10X would imply reducing the number of
projections during scanning by a factor of 10. The image quality is defined in terms of the SNR is defined as in equation 1 where
µ and σ are the mean and standard deviation of voxel intensity in each label (1 is metal and 0 is air) as defined by the reference
ground-truth mask. From 1, it is observed that when the standard FDK algorithm is used, the SNR drops by a factor of two when
scan time is reduced by 10X. However, when DeepRecon is used, due the image is restored to the original SNR of 10 even at 10X
time reduction. Since the source of noise is in the radiographs (or projection images) due to the Poisson distribution of photons
incident on the detector, the denoising projections incorporated within DeepRecon is crucial to recovering the morphological
information in the image such as the surface irregularities in the fuel injector’s orifices.

SNR = (µ1 −µ0)/
√

σ2
1 +σ2

1 (1)

Figure 1: (left) Vertical slices drawn from three CT volumes in the test dataset: FDK with full exposure, FDK with 10X lower
exposure and DR with 10X.

2.2 Surface Determination

For both the DeepRecon and FDK reconstructions, a DL-based segmentation (or binarization) step was applied to compute the
surface for measurement workflow. Given the 3D nature of internal surface morphology of metal components, the segmentation
algorithm was developed with a 3D convolutional neural network that is inspired by a 3D U-net [8]. The input volume and
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the corresponding ground-truth data was obtained from a scan of the 8-hole injector, which was different from the test injector
detailed above so as to test the ability of the neural network to generalize on new data. Six different architectures with varying
number of convolutional layers were evaluated and the best model was chosen based on the accuracy of surface determination.
In previous work, the authors from ANL showed that if U-net is too deep, it overfits on the shapes observed in the training data,
leading to models that do not generalize accurately [1]. Further details about the training and data sampling algorithm were
detailed previously [9].

Figure 2: (left) Surfaces computed from the CT data. Top left to right: reference ground-truth surfaces used for the DL model
testing and training respectively. Bottom left to right: Surfaces computed from the output of two workflows. First (FDK -
10X) involved traditional reconstruction and DL-based segmentation. The second (DeepRecon) involved DeepRecon software
for reconstruction followed by the DL-based segmentation. Due to inherent noise in the projection data, the surface from FDK
shows inconsistent non-repeatable features which are removed by DeepRecon.

2.3 Loss of Surface Accuracy with Reduced Scanning Time

The combination of DL-based segmentation and either of DeepRecon or FDK as reconstruction steps creates a workflow to
limit the loss of accuracy in determining the surface of the internal flow passages in the injector when scan times are reduced.
A metric for studying the loss of surface accuracy from the baseline full exposure scan was formulated as follows. First the
accuracy of voxel prediction (0 and 1) in the binary volume was determined by a popular metric for voxel-space segmentation
- intersection over union (IoU) or Jaccard accuracy [1]. Then, the reduction in IoU from the baseline case (FDK at 1X) was
correlated with displacement of the measured surface from the ground-truth by artificially displacing the surface using dilate-
erode filters and measuring the IoU of the displaced surface against the ground-truth (see left in Figure 3). With this trendline, the
voxel displacement was converted to micrometers (voxel size was 1.51 micrometer) and the plot on the right in Figure 3 shows
this loss in surface accuracy for the cases where DeepRecon and FDK were applied as the reconstruction steps. The same surface
determination algorithm was applied to both data. When FDK is used, the surface error is highly variable and increases more
drastically with reduced exposure. However, when DeepRecon is used, the surface error remains consistently low possibly even
beyond 10X reduction in scanning time (36 minute scan). Because no calibration specimen was tested, no claim is made about
the absolute measurement accuracy. Hence, only the trend in surface error should be noted without regard for the zero offset at
1X.

3 Conclusion

Scan times in X-ray CT dimensional metrology may be prohibitively high in small components (e.g., with sizes in the range 1–10
mm) that require micrometer-sized feature resolution due to poorer contrast. FDK reconstruction algorithms reduce the CT data
quality and the accuracy of dimensional information in such data. Here, a software-defined solution is proposed where the meas-
urement workflow is preceded by two DL-based elements for reconstruction (DeepRecon) and segmentation (TomoEncoders)
to show that metrological resolution could be preserved even after reduction of scanning time by over 10X. with this workflow,
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Figure 3: (left) Surface error formulated as displacement of surface in micrometers from reference (ground-truth) surface com-
puted from full exposure scan. (right) Surface error estimated for surfaces computed from lower exposure scans (X is the
reduction factor in scanning time.)

one may retrofit a high-resolution 3D X-ray microscope as an in-line (or on-line) metrology solution for metal components with
turnaround time under 30 minutes per sample while providing resolution under 5 micrometers for dimensional measurements.
Thus, well trained DL-based methods are advantageous to increase the throughput of CT acquisition while minimizing accuracy
loss in dimensional data.
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