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Abstract— Additive manufacturing is considered as a 

revolution in manufacturing. However, the high 

expectations face technical difficulties that prevent further 

penetration into wider industries. The main reason is the 

lack of process reproducibility and the absence of a 

reliable and cost-effective process monitoring. This work is 

a supplement to existing studies in this field and proposes a 

unique combination of highly sensitive acoustic sensor and 

machine learning for process monitoring. The acoustic 

signals from a real powder-bed fusion additive 

manufacturing process were collected using a Fiber Bragg 

grating. The process parameters were intentionally tuned 

to achieve three levels of quality categories, which were 

related to the porosity contents inside the workpiece. The 

quality categories were defined as high, medium and poor 

quality and their corresponding porosity contents were 

0.07, 0.30 and 1.42%, respectively. Wavelet spectrograms 

of the signals and their encoded label representations, 

obtained from spectral clustering, were taken as features. 

A deep convolutional neural network was used to classify 

the features from each category and the classification 

accuracy ranges between 78 and 91%. Hence, the 

proposed method has significant industrial potentials for 

in situ and real-time quality monitoring of additive 

manufacturing processes since it requires minimum 

modifications of commercially available industrial 

machines.  

Index Terms - Additive manufacturing, acoustic emission, 

spectral convolutional neural networks, M-band wavelets, fiber 

optical sensors, fiber Bragg grating, FGB, process monitoring, 

powder-bed fusion additive manufacturing 
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I. INTRODUCTION

dditive manufacturing (AM) is a recent technology for 

producing 3D items from powder material [1][2]. 

Although, today, this technology is mainly used for fast 

prototyping [1], its potential is acknowledged as the next 

industrial revolution [3] due to several advantages. Those are 

in a tremendous reduction of geometrical design constraints 

[4], minimization of the lead-time due to computer-aided 

design (CAD) [2], the possibility to use different powder 

materials, or even to design new ones for specific applications. 

Many industrial sectors are impacted by this new technology. 

They include industrial machinery, consumer products, 

electronics, motors and vehicles, medical applications, 

aerospace, robotics, and others [1][2]. However, the high 

expectations are tempered due to the technology’s immaturity, 

namely limited repeatability of the workpieces mechanical 

properties in mass production [1][2]. This raises the demand 

for in situ and real-time quality monitoring that is not 

available today [5][6]. The challenge in developing such 

systems is due to the complexity of the underlying physics that 

involves a wide range of time scaled events. They embrace not 

only material heating, melting and solidification, but also 

phase transformations and residual stresses during the cooling 

and solidification of the workpiece [1][7]. Those make the 

workpiece quality sensitive to a very large number of process 

parameters. They consist of, but not limited to, laser 

parameters, laser optics, mechanical, thermal and optical 

material properties, particles configuration in the process zone 

[1][7]. A slight change of one parameter may significantly 

impact the quality and/or mechanical properties, characterized 

by the porosity, cracks and accumulated residual stresses 

[5][6]. The physical problem is an intricate dependence 

between the process parameters and the workpiece quality. At 

present, no physical explanation exists that link all aspects 

within a single model [5][6]. Thus, most of the AM processes 

rely more on “trial and error” approach, sorting out and fixing 

the optimal process parameters within a given range [1][5][6]. 

To guarantee the workpieces quality and/or mechanical 

properties, a control is often carried out using post mortem X-

ray computer tomography (CT) [5][6]. This technique has two 

main disadvantages. First, the machining time and raw 

material have been already spent. Second, X-ray CT is time-

consuming and highly costly and therefore inefficient for mass 

Deep Learning for In Situ and Real-Time 

Quality Monitoring in Additive Manufacturing 

Using Acoustic Emission 

S.A. Shevchik, G. Masinelli, C. Kenel, C. Leinenbach, and K. Wasmer, Member, IEEE 

A 

This document is the accepted manuscript version of the following article: 
Shevchik, S. A., Masinelli, G., Kenel, C., Leinenbach, C., & Wasmer, K. (2019). Deep learning for in situ and 
real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Transactions on Industrial 
Informatics, 15(9), 5194-5203. https://doi.org/10.1109/TII.2019.2910524

mailto:kilian.wasmer@empa.ch


TII-18-2874 2 

production. Hence, other approaches are found in the literature 

[5], but rarely and few of those are implemented in real 

industrial machines [5]. The first method includes high-

resolution cameras that image each layer completely and 

image processing algorithms search only surface defects. The 

second approach involves temperature measurements in the 

process zone or the melt pool [5][6]. The main disadvantage of 

this method is that temperature measurements are accessible 

only at the surface, while estimations of its propagation in 

depth are based on multiple assumptions, encoded into a 

model [1][2][8]. The deviations between the real temperatures 

and predicted ones lead to inaccuracies in quality monitoring. 

Thus, an in situ and real-time quality monitoring unit remains 

an open topic and still is of great demand by the AM 

technology [5]. 

The present work proposes a novel solution that can be used 

for in situ and real-time quality monitoring. It is based on 

detecting the acoustic emission (AE) signals emitted during 

the powder-bed fusion additive manufacturing (PBFAM) 

process - a sub-branch of AM technology [5][6]. The AE 

signal analysis is carried out using machine learning 

techniques, in particular, spectral convolutional neural 

network (SCNN). The innovation of applying an active and/or 

passive AE sensor [9] and ML [10] to monitor the AM process 

has been internationally recognized by a patent application 

[11]. Unfortunately, at present, no clear correlation between 

the AE signals and the AM quality has been discovered. 

However, recent successes of combining AE with state-of-the-

art signal processing for a highly complex and dynamic 

process such as friction and wear [12][13], as well as detection 

of induced micro-cracks [14][15] and laser welding [16][17] 

motivated this feasibility study to investigate its applicability 

towards AM. To do so, we combine two extreme technologies: 

deep neural networks and optical fiber sensor. The former is a 

state-of-the-art technique in the design of correlation models 

[18][19] and was applied in a number of practical applications 

with a high efficiency [20]. The latter, in our work, is a fiber 

Bragg grating (FBG), which is one of the most sensitive 

sensor for acoustic and pressure wave’s detection [21].  

This paper consists of five sections. Section II presents the 

experimental setup, the materials used, and the data 

acquisition. Section III describes the signal processing, 

including M-band wavelet spectrogram and SCNN classifier. 

Section IV reports the classification results and discusses them 

in terms of unsupervised training of CNNs. It also explores the 

possibilities of using it in a self-learning process using AE for 

AM quality control. Finally, Section V summarizes the 

findings of our work as well as proposes further perspective of 

this work. 

II. EXPERIMENTAL SETUP, MATERIAL, AND ACOUSTIC 

DATASETS   

In this contribution, only a summary of the experimental 

setup, material, and acoustic datasets are provided, while a 

complete description is given in [22][23]. 

Powder-bed fusion additive manufacturing (PBFAM) of 

CL20ES stainless steel (1.4404 / 316L) powder (particle size: 

10 - 45 μm) was performed on a commercially available 
industrial machine Concept M2 (Concept Laser GmbH, 

Germany). It was equipped with a fiber laser operated in 

continuous mode at a wavelength of 1071 nm with a beam 

quality M2 = 1.02 and a spot size d = 90 μm. During the entire 

process, the parameters of the laser power P, hatch distance h 

and powder layer thickness lt were kept constant at 125 W, 

0.105 mm and 0.03 mm, respectively. The acoustic data 

collection was performed while manufacturing a workpiece 

having a cuboid shape with dimensions 10x10x20 mm3, which 

is shown in Fig. 1, a. The experiment was performed in an N2 

atmosphere with an O2 content controlled to be below 1% 

throughout the process. The changes in quality were 

intentionally provoked by changing the manufacturing process 

by fixing the speed of the scanning laser at 800, 500 and 

300 mm/s. The aforementioned speeds were kept constant 

throughout the entire manufacturing process independently 

from the number of layers using a machine function. The 

corresponding energy densities with respect to the scanning 

speeds were 50,
 79, 132 J/mm3 [24]. It is known that these 

regimes provided a range of different pores concentrations 

inside the workpiece [22][23]. The porosity concentration was 

controlled and confirmed during visual inspection of the 

specimen cross-sections and the corresponding light 

microscopy images are presented in Fig. 1, b-d. The estimated 

porosity concentrations were:  0.07 ± 0.02 % for high quality 

(500 mm/s; 79 J/mm3), 0.3 ± 0.18 % for medium quality 

(300 mm/s; 132 J/mm3), and 1.42 ± 0.85 % for poor quality 

(800 mm/s; 50 J/mm3). The sizes and the shapes of the 

individual pores depend on the energy input, representing 

different sintering process scenarios. More information about 

the mechanisms of pores formations under different laser 

parameters can be found in the work of Bland et al. [24].  

For this feasibility study, the acoustic sensing was carried 

out using a fiber Bragg gratings (FBG) placed directly inside 

the machine chamber, 20 cm away from the process zone. 

Obviously, the position of the FBG and detecting airborne AE 

signals are certainly not ideal. The reasons are in losses in 

interface material-air and also in less dense (as compared to 

the material processed) air environment. Additionally, the 

sensor placement on the chamber wall is noised by vibrations 

of printer moving mechanics. However, the results will bring 

precious information and can be seen as a lower threshold in 

terms of potential for an in situ and real-time quality control 

monitoring. As an example, the AE signal of a full high-

quality layer (79 J/mm3, 500 mm/s) is shown in Fig. 2,a. The 

fiber with the FBG sensor inside was pumped with a narrow 

band laser irradiation at a wavelength of 1547±0.01 nm and 

light power of 4 mW. The FBG sensor provided a 50% 

reflectivity of the pumped laser light. More details about 

FBGs can be found in [21]. The reflected signal was further 

digitized using high-speed photodiode, connected to data 

acquisition unit and the data recording software, where both 

were from Vallen (Vallen Gmbh., Germany). All signals were 

digitized with the sampling rate of 1 MHz. 
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TABLE I: THE M-BAND WAVELETS FILTERS COEFFICIENTS FROM [26] USED 

FOR THE ANALYSIS. 

h0 

-0,019092830; 0,0145382757; 0,0229906779; 0,0140770701; 

0,0719795354; -0,0827496793; -0,1306948909; -0,0952930728;        

-0,1145361261; 0,2190308939; 0,4145647737; 0,4955029828; 
0,5616494215; 0,3491805097; 0,1931394393; 0,08571302 

h1 

-0,1152813433; 0,0877812188; 0,1388163056; 0,0849964877;           

-0,443703932; 0,1691549718; 0,2684936992; 0,0722022649;            
-0,082739818; -0,4264277361; -0,2550401616; 0,6005913823;          

-0,0115563891; -0,1011065044; 0,11832820690000; -0,1045086525 

h2 

-0,0280987676; 0,0213958651; 0,0338351983; 0,0207171125; 
0,220295183; -0,2088643503; -0,3300536827; -0,2245618041; 

0,5562313118; -0,0621881917; 0,0010274; 0,4477496752;                    

-0,2484277272; -0,250343323; -0,2048089157; 0,2560950163 

h3 

-0,0174753464; 0,0133066389; 0,0210429802; 0,0128845052;             
-0,0918374833; 0,0443561794; 0,0702950474; 0,0290655661;             

-0,0233349758; -0,0923899104; -0,0823301969; 0,0446493766;              

-0,1379502447; 0,6880085746; -0,662289313; 0,1839986022 
 

III. DATA PROCESSING  

A. Wavelet spectrograms 

We used spectrograms as a feature input for the SCNN 

classifier providing the search of distinct features in the time-

frequency domain. The spectrograms were formed as the 

relative energies of the narrow frequency bands that were 

extracted using M-band wavelets. M-band wavelets are 

extensions of the traditional wavelet transform [25][26] that, 

similarly, unfold the signal into a time-frequency space. Its 

main advantage is in the application of several wavelets at 

various signal subspaces making them insensitive to shift-

invariance artifacts [26]. The M-bands are equivalent to multi-

channel filtering of the input discrete signal [26] : 𝜑𝜑𝑗𝑗(𝑛𝑛) = ∑ √𝑀𝑀ℎ0(𝑟𝑟)𝑟𝑟 𝜑𝜑(𝑀𝑀𝑀𝑀𝑛𝑛 − 𝑘𝑘), 𝑘𝑘 ⊂ 𝑍𝑍                   (1) 
 𝜓𝜓𝑗𝑗(𝑛𝑛) = ∑ √𝑀𝑀ℎ𝑚𝑚−1(𝑟𝑟)𝑟𝑟 𝜑𝜑(𝑀𝑀𝑀𝑀𝑛𝑛 − 𝑘𝑘), 𝑘𝑘 ⊂ 𝑍𝑍      (2) 

where M is the wavelet channels number with a scaling factor √𝑀𝑀, h0, hm-2, hm-1 are the low, narrow and high pass filters, 

respectively, r is the filters length, j is the scale and n is a 

specific time stamp at a given scale. The output of Eqs (1) and 

(2) are the low, narrow and high frequency contents of the 

signal at a scale j, described by the coefficients 𝜑𝜑𝑗𝑗(𝑛𝑛) and 𝜓𝜓𝑗𝑗(𝑛𝑛). The full signal analysis involves several scales j and 

the filtering follows the scheme in Fig. 2,b. The extraction of 

the data on the next scale is carried out using the filtering of 

the low frequency content, extracted on the previous scale. 

The final product of multiscale filtering is a pyramidal 

structure of the narrow frequency bands that capture the local 

particularities of the signal [25]. More details about wavelet 

decomposition can be found in [25][26]. 

In the present work, M-band wavelets were obtained using 

the work from Lin et al. [26], in which, the design of the 

adaptive wavelets to a given data is carried out using the 

perfect reconstruction criterion. The four wavelet bands were 

used here showing an insignificantly low approximation error 

on the collected AE signals. The corresponding filters 

coefficients are given in Table I [26].  

 
Figure 1 a) Test workpiece produced with three porosity contents; b) – d) Typical light microscope cross-section images of the regions produced with             

b) 300 mm/s, 132 mm3 (medium quality), c) 500 mm/s, 79 mm3 (high quality) and d) 800 mm/s, 50 mm3 (poor quality).  

Reprinted by permission from Elsevier License: Elsevier [23]. 
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The relative energies were computed to track the energy 

redistribution between different frequency bands and were 

computed as: 𝜌𝜌𝑛𝑛𝑛𝑛𝑟𝑟𝑚𝑚 𝑗𝑗,𝑛𝑛 =
𝐸𝐸𝑗𝑗(𝑛𝑛)𝐸𝐸𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡      (3) 

Where 𝐸𝐸𝑗𝑗(𝑛𝑛) = 𝜓𝜓𝑗𝑗(𝑛𝑛)2is the energy of a specific frequency 

band at scale j, n, as in Eqs (1) and (2), is a time stamp, Etotal is 

a summary of the energies of all frequency bands within the 

spectrogram. The collection of the products from Eq. (3) from 

all scales can be unified into a spectrogram by ordering those 

in time domain. A depictive example is shown in Fig. 2,c, 

where the spectrogram is reconstructed from the pattern of the 

signal in Fig. 2,a that is bounded by the red solid marker.  

B.  Analysis of collected AE signals 

The recorded signals were scanned with two running 

windows, schematically represented in Fig. 2,a by the green 

and red solid lines. These windows localize specific patterns 

of the signal in the time-frequency domain. As seen from 

Fig. 2,a, both running windows are characterized by longer 

and shorter time spans and thereafter are referred to as a long 

(LRW) and a short (SRW) running windows. Both localize 

acoustic signatures of the momentary laser-material 

interaction events in the powder-bed. The LRW is a short 

memory of a number of previous and the current SRWs as 

shown in Fig. 2,a. The scanning of the entire signal was 

carried out by a consecutive shift of both running windows 

and this process is shown in Fig. 2,a, where the solid frames 

correspond to the previous position of both windows in the 

time domain, while the dashed ones denote the current 

position.  

As already mentioned, the AM process incorporates 

multiple events with different time scales and the usage of 

both windows aimed to provide a multiscale input data for the 

classifier. Additionally, this approach alleviates the trade 

between stability and resolution improving both parameters at 

the same time [27]. On the one hand, the SRW provides a 

higher resolution of momentary sintering events in the time 

domain. On the other hand, its short time span makes it 

sensitive to noises, while LRW is more stable to those. The 

choice of time spans for both is not obvious and was 

established via an exhaustive search experiment and the 

results are discussed below. 

In the present investigation, the wavelet spectrograms for 

SRW and LRW were constructed separately as is discussed in 

Section III-A. The computational tests in this work include 

two strategies with different input data for the SCNN 

classifier. In Strategy 1, both spectrograms (SRW and LRW) 

were forwarded directly into the SCNN. Each spectrogram 

included a set of  𝜌𝜌𝑛𝑛𝑛𝑛𝑟𝑟𝑚𝑚 𝑗𝑗,𝑛𝑛 from Eq. (3), ordered in time-

frequency domain as is discussed in Section III-A. In 

Strategy 2, all SRW spectrograms from the training dataset 

were initially clustered using a basic implementation of the 

hierarchical agglomerative clustering technique [28]. The 

clustering was made with respect to Euclidian distance 

between the relative energies (see 𝜌𝜌𝑛𝑛𝑛𝑛𝑟𝑟𝑚𝑚 𝑗𝑗,𝑛𝑛 from Eq. (3)) of 

the corresponding frequency bands of SRWs [28]. The idea 

behind Strategy 2 was to group all SRWs with similar AE 

characteristics in the same cluster. This digitizes the PBFAM 

process into a limited number of short-term momentary laser-

matter interactions with unique acoustic signatures. A unique 

label was assigned to each cluster. Further, all LRWs were 

encoded by the sequence of such labels, substituting the SRWs 

inside those. In Strategy 2, the inputs for SCNN were both - 

the SRW and the encoded LRW. The architecture of the 

SCNN was adapted to process the two data flows and is 

discussed in the next section. The test results for both 

experiments are presented in Section IV. 

It is worthy to note that this work focused on a statistical 

approach towards the analysis of those patterns. Hence, 

finding the nature and a physical explanation of the AE 

contents of such momentary events were considered as out of 

the scope of this work.  

C. Spectral convolution neural network  

As already mentioned, SCNN is an extension of the 

traditional convolutional neural networks (CNNs). The key 

element of CNN architecture is the convolution layers, in 

which the input data domain is convolved with a number of 

local filters, realized as neuronal weights [29]. The output of 

the convolution layers is a set of perception maps that 

incorporates the response of each such individual filter to the 

given data. The construction of the individual filters is a task 

of statistical learning using a training dataset. The increasing 

amount of the data, while propagating through the convolution 

layers, may be reduced. This can be carried out by introducing 

the merging of the neighbored values in perception maps that 

are called pooling. The sequence of the convolution and 

pooling layers serve as a self-feature extraction mechanism 

and the construction of the optimal features is carried out by 

tuning the local filters in the convolution layers during the 

training procedure. Further details about the CNN architecture 

can be found in the original work of Krizhevsky et al. [29]. 

The limits of traditional CNNs are in regular convolution 

operations that fail to operate on irregular data grids [30], [31]. 

This problem is solved in the SCNNs, where the spectral 

graph theory is involved as an external tool to estimate the 

data irregularity and the convolution operations are adjusted 

accordingly [31]. In our SCNN, the input features are 

represented as an input data signal S, the elements of which Si 

are the values of the energies of the individual narrow 

frequency bands (Section III-A). The input signal is 

represented as a graph G = {V,W}, in which the vertecies are 

samples of the signal. The adjacency matrix W defines a 

neighborhood of every vertex from V, ordering those in the 

time domain for the signals [31]. In our case, the 

neighbourhood for each frequency band is defined in the time-

frequency domain. On graphs, the convolutions can be 

efficiently realized as a multiplication in the frequency domain 

[32], while the transition to the frequency domain is a singular 

value decomposition of the Laplacian L of the graph G [31], 

[32]. In this study, the non-normalized Laplacian of G was 

used that is defined as L = D - W, where D is a diagonal 

weight matrix with elements: 𝑑𝑑𝑖𝑖𝑗𝑗 = ∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑖𝑖 , and 𝑤𝑤𝑗𝑗𝑖𝑖  are the 
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Figure 2 a) A typical AE signal from one complete layer of a high quality (79 J/mm3, 500 mm/s). SRW and LRW are the short and long running windows that 

scan the acquired signal; b) the pyramidal extraction of frequency content from the given signal using M-band wavelets; c) the complete reconstructed 

spectrogram from the relative energies of the M-band wavelets for the SRW time span bounded in red in Fig. 3a). 
 

 

elements of W. The frequency domain of S is defined by the 

Fourier transform: 𝑆𝑆𝑓𝑓 = 𝑈𝑈𝑇𝑇𝑆𝑆, where U represents the 

eigenvectors of the Laplacian L [33]. Its inverse is defined as 

S = U Sf [33]. The perception maps are the product of the 

convolution and, according to [36], are defined through the 

spectral domain as: Pout = U Sf  k, where k are the spectral 

multipliers that link the original and spectral domains [31]. 

The training back propagation of such a network takes into 

consideration the gradients of both, the input feature signals 

and the spectral multipliers: 𝛻𝛻𝑆𝑆𝑗𝑗 = 𝑈𝑈∑ 𝑈𝑈𝑇𝑇𝛻𝛻𝑃𝑃𝑗𝑗𝑖𝑖𝑘𝑘𝑗𝑗𝑖𝑖𝑖𝑖 , where j 

specifies the graph signal in the batch and i passes through all 

the input channels [31]. The back propagation for the spectral 

multipliers are defined as: 𝛻𝛻𝑘𝑘𝑖𝑖 = ∑ 𝑈𝑈𝑇𝑇𝛻𝛻𝑃𝑃𝑛𝑛𝑈𝑈𝑇𝑇𝑆𝑆𝑛𝑛𝑛𝑛 , where n 

passes through all perception maps. Besides, the spectral 

multipliers are projected to the neuronal weights as:         𝛻𝛻𝑘𝑘 = 𝐹𝐹𝑇𝑇𝑘𝑘, where F is a smoothing kernel. For pooling of the 

graph nodes, we used the max pooling strategy since Thomas 

et al. [27] demonstrated that this strategy is very efficient in 

acoustic recognition tasks. We used a general realization of 

SCNN [30] and more mathematical details are in [30]-[33].   

The cause of overfitting in the present application is a big 

dimensionality of the input data (defined by the narrow 

frequency bands within the given time span of LRWs and 

SRWs) and the reduced training set (which is suitable for 

industrial usage). Under these circumstances, the 

regularization allowed reducing the errors. First, the Laplacian 

eigenmap regularization of the loss, £, for each layer was used 

[34]: £ = £0 +  𝜆𝜆𝑓𝑓(𝑋𝑋)𝑇𝑇𝐿𝐿𝑓𝑓(. ), where L is a non-normalized 

Laplacian, f(.) is the layer output [34], 𝜆𝜆 is the regularization 

term that was taken as 10-5. In addition, the dropout [35] with 

the filter excluding rate of 0.75 was applied to the last 

convolution layer. In addition, to process the double inputs 

(SRW and LRW as discussed in Section III-B), we developed 

a special configuration of the SCNN. 

D.  SCNN classifier for AE analysis 

The developed SCNN model processed two flows of input 

data and the corresponding scheme is shown in Fig. 3. The 

classifier included two channels that provided the processing 

of the information from the LRWs and SRWs. As discussed in 

Section III-A, in Strategy 1, the LRWs and SRWs were 

directly fed to the classifier, whereas in Strategy 2, the LRWs 

were encoded with the labels of the clustered SRWs (See 

Section III-B). The propagation of the data was separated by 

the SCNN structure and after one layer was merged in a 

common convolution layer as shown in Fig. 3. This structure 

provides the construction of the optimal features during the 

training procedure. The final classification is carried out by 

two fully connected layers as schematically shown in Fig. 3. 

The final results were observed in the output softmax loss 

layer that returns the label of the porosity concentration.  

The domain of the input LRW and SRW spectrograms is a 

time-frequency domain of the real AE signal. In this case, the 

objective of the self-feature extraction was to detect any 

invariant combinations of individual frequency bands (Wi in 

Fig. 3) and their modulations in time (Wj in Fig. 3) that 

uniquely characterize the AE signals from each category. The 

separate channels in the SCNN from Fig. 3 allow extracting 

separately such invariants.  

The SCNN described and all tests were carried out in Visual 

Studio 2017 and the code was developed based on the library 

CSharpConvNet. The tests were run on a single i5 processor 

and 16 Gb of RAM. The running time for a single 

classification task was 0.7 second using an un-optimized code. 

IV. RESULTS AND DISCUSSIONS 

A. The operating dynamic range  

The level of the background noise produced by the industrial 

M2 machine was estimated before the data processing using 

wavelet spectrograms. A representative example of the AE 

spectrograms without and with the AM process is shown in 

Fig. 4,a and 4,b, respectively. The channels in spectrograms 

from Fig. 4 corresponds to the filters outputs, seen in wavelet 

decomposition scheme in Fig. 2,b and also denoted in in 

Fig.2,c. The pseudo frequencies were estimated with respect to 

the central frequencies of the wavelets [37] that were 

employed and presented in Table I. As seen from Fig.4, a, the 

noise from Concept M2 machine was observed in a wide 

spectral range. Although, the differences brought by the AM 

process are still visually recognizable when comparing Fig. 

4,a and 4,b. The added content is mainly observed in the 

channels 9 – 15, which are, therefore, the most suitable ranges 

for a search of the distinct features. The other ranges of the 

time-frequency space were selected by taking into 

consideration the following information. The noises of the 
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Concept M2 machine were mainly generated by the moving 

mechanical parts in conjunction with the turbulences of the 

gas flow inside the operating chamber. The characteristics of 

such AE are well known and are mainly characterized by low 

frequencies [38]. Taking this information into account, the 

content from channels 21-25 (Fig. 4,a and 4,b) were excluded 

from further analysis. Despite the possible noises in higher 

decomposition channels (greater than channel 9 in Fig.4,a and 

4,b), those were included into analysis relying on the SCNN to 

suppress stationary noises [27], [29]. 

B. Estimation of the spatial resolution of the method 

The maximum resolution of the method and the SCNN 

classifier was estimated for the two strategies, as is explained 

in Section III-B. During this the classifier was fed with:         

1) both, SRWs and LRWs and 2) SRWs and encoded LRWs. 

Using the wavelets spectrograms as the input for the SCNN 

classifier, the time spans for both strategies were estimated 

through an exhaustive search, while gradually decreasing both 

time spans and observing the classification accuracy. For 

Strategy 1, the minimum time spans for the SRWs and LRWs 

without losses in classification efficiency were reached at 80 

and 160 ms, respectively. For Strategy 2 with the encoded 

LRWs, these values were greater and corresponded to 90 ms 

for the SRWs and 1120 ms for the LRWs. For both strategies, 

any further decrease of the time spans negatively affected the 

classification accuracy, while longer time spans did not bring 

any visible improvements.  

The corresponding spatial resolutions of our method are 

defined by RW time spans. Taking into consideration the 

known scanning speed (V), laser spot size (d) and a powder 

layer thickness (lt) of 30 microns (see Section II), the spatial 

resolution can be calculated in terms of processing area [mm2] 

and powder volume processed [mm3] according to:  

A= d·tRW·V [mm2], where tRW is either the LRW or SRW time 

span. The powder volume processed is defined by A·lt. The 

powder volume here, of course, does not characterize the heat 

affected zone (which may be greater in depth), although was 

used as a rough estimation of the method precision. The 

corresponding resolution values are given in Table II. As seen 

from that data, the spatial resolutions for Strategy 1 varied in 

the range 4.3 – 11.6 mm2 and 2.2 – 5.8 mm2 for the LRW and 

SRW, respectively. For Strategy 2, these values raised to   

30.3 – 80.6 mm2 and 2.4 – 6.5 mm2 for the LRW and SRW, 

respectively. The corresponding values for the powder volume 

processed are simply the spatial resolution multiplied by the 

powder layer thickness (lt = 30 μm).  We also have to mention 

that for Strategy 2, the result of spectral graph clustering 

discovered more than one hundred separate clusters encoding 

the LRW. 

C. Classification results 

The collected AE signals were divided into two equal 

datasets without common signals: one for the training and one 

for testing the classification. The split into train and test sets 

were done with random separation of the signals. In total, both 

datasets included 4800 SRWs and 1200 LRWs, extracted from 

all collected AE signals that corresponded to the three 

different quality categories. Each category in each dataset was 

represented by an equal number of samples with 1200 SRWs 

and 400 LRWs. 

The classification test results are presented in Table III. The 

accuracies for Strategy 1 and Strategy 2 are given in the first 

line and in bold and italic, respectively. For comparison, we 

benchmarked the results of our proposed methods with other 

state-of-the-art machine learning methods, in particular, 

conventional CNN, art networks Xception [39] and ResNet 

[40]. These corresponding results are given in bracket in the 

second line in Table III.  

In this table, the accuracy for each quality category is given 

in rows and can be compared to the ground truth, given in 

columns. The match of classification with ground truth is in 

the diagonal cells, while the error structure can be seen from 

non-diagonal ones. The accuracy was defined as the number 

of true positives divided by the total number of the tests for 

the individual categories. As an example for Strategy 1, the 

AE test data from high quality was classified with an accuracy 

rate of 78% and so it has the highest error rate for Strategy 1. 

The classification errors are shared between the medium and 

poor quality with error rates of 10 and 12%, respectively. 

 
 

Figure 3: The structure of the SCNN, where Wi and Wj denote the search direction for the frequency and time shift invariants. Strategy 1 and Strategy 2 
denote the input data for the computational tests described in Section III.A.  
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As seen from Table III, for Strategy 1, the accuracy ranged 

from 78 to 91%. As mentioned, the lowest accuracy is for the 

high quality (78%), followed by the poor quality (87%) and 

the medium quality (91%). It is interesting to note that the 

highest classification accuracy was achieved for medium 

quality characterized by the lowest scanning speed (300 

mm/s) and highest energy density (132 J/mm3). This regime 

may generate a higher local heating/melting of the material 

resulting in a higher intensity of the AE signals and so brings 

more distinct features in the recorded signals. In contrast, the 

lowest accuracy was for the high quality produced with the 

intermediate scanning speed (500 mm/s) and energy density 

(79 J/mm3). One possible reason may be that the features are a 

mix of different events from the other two categories. The 

analysis of the test results indicates that the classification 

errors are approximately shared equally between the other two 

categories, thus supporting this hypothesis. One additional 

reason for errors may be in the strong background noise still 

present. As seen in Fig. 4,b, the AE contents during the 

process in the channels 9 – 15 are affected by regular 

fluctuations. This may be due to a machine noise source that 

was still present in the selected channels of the spectrograms. 

For Strategy 2, the classification accuracy ranges between 

73 and 86% as evident from Table III. As for Strategy 1, the 

lowest classification accuracy is for the high quality (73%), 

followed by poor quality (83%) and medium quality (86%). 

The explanations given for Strategy 1 are also valid for 

Strategy 2. Obviously, the classification accuracy is lower 

than Strategy 1 despite having longer time spans. These results 

may be explained by a coarsening of the information in the 

original spectrogram of LRWs when encoding it with the 

cluster labels. This may be also a reason that requires longer 

time spans (see Section IV-B).  

The results of the conventional CNN, state-of-the-art 

networks Xception [39] and ResNet [40] are also in Table III 

as benchmarks. Both, LRW and the raw AE signals were fed 

to those. The structure of training and test sets was identical to 

the SCNN.  It is evident from Table III that the classification 

accuracies achieved by the three methods are significantly 

worse (> 11% differences) than the method proposed. The 

CNNs are also famous for processing the raw data, as 

construct the best-matched features on their own [29],[30]. 

This minimizes the algorithm development or preparation 

time, excludes the inefficient organization of the input data 

and thus is important for industrial applications. For this 

reason, the same neural networks were tested with the raw AE 

signals as input. The results obtained were worse than the ones 

from Table III and are not shown here. The reasons may be in 

high noise levels in AE signals, that require the expansion of 

the training set. At present, the performance of the networks 

with the raw data is worse than using our model, although the 

models' optimizations for direct raw data input are planned as 

future work. 

The results for conventional CNN were taken from [23], 

which was used without GPU embedding. The recent state of 

the art networks Xception [39] and ResNet [40] were 

constructed using Pythorch library 0.4.1. Each network 

included four convolutions. Both were used in a CPU and 

GPU versions. The GPU embedding used NVidia GPU 1070 

Max-Q, while the PC included i7 processor with 12 cores. It 

 
Figure 4: (a) Spectrograms of Concept M2 machine intrinsic noise background and (b) fragment of the AE signal of the additive process. The pseudo 

frequencies are computed with respect to the central waves of wavelet filters from Table I according to [37]. 
 

 
TABLE II: THE RESOLUTION OF THE METHOD IN QUALITY ESTIMATION IN TERMS OF PROCESSED SURFACE/VOLUME *  

Workpiece quality 
(porosity concentration) 

Scanning speed 
[mm/s] 

Energy density 
[J/mm3] 

Resolution for the LRW 
[mm2 - mm3] 

Resolution for the SRW 
[mm2/mm3] 

   Strategy 1 Strategy 2 Strategy 1 Strategy 2 

Poor (1.42 ± 0.85%) 800 132 4.3 - 1.0·10-1  30.3 - 9.1·10-1 2.2 - 0.7·10-1 2.4 - 0.7·10-1 

Medium (0.30 ± 0.18%) 300 50 11.6 - 3.5·10-1 80.6 - 24.0·10-1 5.8 - 1.7·10-1  6.5 – 1.9·10-1 

High (0.07 ± 0.02%) 500 79 7.2 - 2.2·10-1 50.4 - 15.0·10-1 3.6 - 1.1·10-1 4.1 - 1.2·10-1 

*Strategy 1: SRWs and LRWs spectrograms and Strategy 2: SRWs and encoded LRWs spectrograms. For details, see Section III, B. 

TABLE III: CLASSIFICATION RESULTS FOR DIFFERENT QUALITY (IN ROWS) 

VERSUS GROUND TRUTH (IN COLUMNS) FOR STRATEGIES 1 AND 2* 

Ground truth 

                         
Test categories 

Poor Medium High 

Poor quality 1.42±0.85 

%; 800 mm/s 

87– 83 

(62 –66–70) 

6 – 12 

(19 –15–15) 

7 – 5  

(19 –19–15) 

Medium quality 

0.3±0.18 %; 300 mm/ 

5 – 6 

(25 –18–12) 

91 – 86  

(53 –68–75) 

4 – 8  

(22 –14–13) 

High quality 

0.07±0.02 %; 500 mm/s 

12 – 11  

(20 –21–17) 

10 – 16  

(17 –25–23) 

78 – 73  

(63 –54–60) 

The color fill encodes the match of the test result to the ground truth. The 

results in each cell are given in format: Strategy 1 – Strategy 2 

 (LRW as input  using conventional CNN – LRW as input using Xception 

CNN – LRW input using ResNet) 
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can be seen from the comparison in Table III that all these 

architectures showed lower classification results as compared 

to our SCNN approach. At the same time, a higher processing 

speed for Pythorch realizations was observed. The GPU 

embedded CNNs was 50 s for the entire training and 10 ms for 

single classification operation. In the case of the CPU 

versions, these times increased by factor five.  

Our SCNN was used with a CPU. Hence, the training and 

computational time for each classification operation for our 

realization were distinctly higher, taking 1.5 h for the entire 

training and 70 ms for single classification operation. 

However, it is important to mention that, for industrial 

applications where high dynamics and complex processes are 

involved, this 1.5 h training time is not prohibitive. Even the 

classification time is not an obstacle since today; there is no 

monitoring system that allows stopping the process based on 

quality control directly on the workpiece. 

Based on Table III, we demonstrated that combining 

highly sensitive AE sensors and using an SCNN to classify 

workpiece qualities in terms of porosity is feasible. Moreover, 

the results presented can be enhanced by increasing the 

sensor's sensitivity, their positioning, as well as optimizing the 

signal processing. Additionally, this work demonstrates that 

the continuous PBFAM process can be divided into a finite 

number of momentary events that possess unique acoustic 

signatures. Those signatures can be read by the machine 

learning framework and interpreted in terms of quality.  

The technical aspects are in the computational speed. 

Processing of the collected dataset with conventional CNNs 

using Pythorch library and GPU allowed reaching real-time 

for quality monitoring. The market availability of the GPU 

hardware allows the fast transfer of these methods into mass 

production lines. Based on the test results using GPU the 

porting of our SCNN to GPU is also planned in the future.  

Additionally, the approach proposed has a large potential to 

be a part of the fully automated quality closed loop control 

systems. In this case, the more detailed quality grading could 

be a feedback to the control, indicating the direction of the 

process parameters tuning.  

V. CONCLUSIONS AND FUTURE WORK 

This work presents the results of a feasibility study for in 

situ and real-time quality monitoring in additive 

manufacturing (AM). To achieve this goal, a Concept M2 

industrial machine was used to produce a workpiece with three 

quality categories (high, medium and poor qualities). The 

qualities were defined with respect to the porosity 

concentration and were obtained with specific process 

parameters. The laser power was set to P = 125 W, the 

hatching distance to h = 0.105 mm and the layer thickness to 

t = 0.03 mm. The qualities were obtained using different 

scanning velocities according to: high quality (0.07 ± 0.02 % 

porosity; 500 mm/s; 79 J/mm3); medium quality 

(0.3 ± 0.18 %; 300 mm/s; 132 J/mm3); and poor quality 

(1.42 ± 0.85 %; 800 mm/s; 50 J/mm3). 

Our innovative approach combines a fiber Bragg grating 

(FBG) as an acoustic emission sensor with machine learning 

technique to build a classifier to differentiate those signals. 

Wavelet decomposition was used to digitize the data in the 

time-frequency domain and to extract features. Two 

computational strategies were carried out. In Strategy 1, 

wavelet sonograms were directly fed into the classifier, while 

in Strategy 2, it was substituted by the code of the sequence of 

the momentary sintering events.  

 The results of the classification tests showed that the three 

laser regimes, resulting in different pores concentrations, can 

be recognized with confidences as high as 78 to 91% for 

Strategy 1. The corresponding spatial resolutions varied from 

4.3 – 11.6 mm2 and 2.2 – 5.8 mm2 for the LRW and SRW, 

respectively. For Strategy 2, all SRW spectrograms from the 

training dataset were initially clustered using a basic 

implementation of the hierarchical agglomerative clustering 

technique. The classification accuracies ranged from 73 to 

86% and the spatial resolution was comprised between 30.3 – 

80.6 mm2 and 2.4 – 6.5 mm2 for the LRW and SRW, 

respectively. Obviously, this approach showed a lower 

classification accuracy as compared to Strategy 1. The 

explanation of this may lay in the tremendous reduction in the 

data details when encoding the LRWs.  

 Despite a decrease in the classification accuracy, Strategy 2 

showed that the PBFAM process can be divided into a finite 

number of groups for momentary laser-material interaction 

events that possess unique acoustic signatures. The 

combinations of those events during a continuous AM process 

can be used to differentiate different regimes that potentially 

provoke low manufacturing quality. 

Based on the results presented, we can conclude that the 

acoustic emission provides distinct features from different 

manufacturing quality. The features extracted are 

differentiable within machine learning technique despite the 

high noise levels of the industrial AM machines.  

 The biggest achievement of our approach using both 

strategies is the sub-layer resolution in quality estimates, 

which is not reached with existing image-based methods [5].  

In the near future, several enhancements will be 

implemented in three main areas which are the industrial 

machine, the sensors and the signal processing. 

For the machine, the next significant progress of our 

technology aim to be adapted for in situ and real-time usage 

within existing commercial machines without significant 

modifications. This is supported by the commercial 

availability of both, FBGs and GPUs, which will allow a fast 

embedding into existing manufacturing facilities.  

As far as the FBG are concerned, two major improvements 

will be applied. The first one is related to the positioning of 

the FBG and the second is an optimization of its spectral 

characteristics.  

Finally, in terms of signal processing, five areas will be 

improved. They are the followings: a more efficient noise 

suppression inside the network, an input data dimensionality 

reduction, some investigations of conditions, determine the 

limits for over fit and finally use self-learning of new events. 

The later has been already conducted by using reinforcement 

learning [41].  
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