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Abstract: Laying hen activities in modern intensive housing systems can dramatically influence the
policies needed for the optimal management of such systems. Intermittent monitoring of different
behaviors during daytime cannot provide a good overview, since daily behaviors are not equally
distributed over the day. This paper investigates the application of deep learning technology in
the automatic recognition of laying hen behaviors equipped with body-worn inertial measurement
unit (IMU) modules in poultry systems. Motivated by the human activity recognition literature, a
sophisticated preprocessing method is tailored on the time-series data of IMU, transforming it into
the form of so-called activity images to be recognized by the deep learning models. The diverse
range of behaviors a laying hen can exhibit are categorized into three classes: low-, medium-, and
high-intensity activities, and various recognition models are trained to recognize these behaviors
in real-time. Several ablation studies are conducted to assess the efficacy and robustness of the
developed models against variations and limitations common for an in situ practical implementation.
Overall, the best trained model on the full-feature acquired data achieves a mean accuracy of almost
100%, where the whole process of inference by the model takes less than 30 milliseconds. The results
suggest that the application of deep learning technology for activity recognition of individual hens
has the potential to accurately aid successful management of modern poultry systems.

Keywords: laying hen; activity recognition; wearable sensor; deep learning; time-series data; signal
imaging

1. Introduction

Today’s livestock industry faces important challenges in terms of monitoring, control,
economics, etc. Recognizing animals’ behaviors plays an important role in addressing
most of these challenges, since animals’ different activities in modern intensive housing
systems can dramatically influence the required management systems [1,2]. For an effective
management of such systems, the monitoring task should be performed continuously
during the daytime. Such an intensive monitoring task is no longer feasible to perform
manually by humans, as it is tedious, time-consuming, and also no longer cost-effective.
Therefore, a sort of automation is crucial for monitoring systems of today’s livestock
production, as well as moving towards precision livestock farming [3–8].

There are several reasons supporting the need for development of automatic activity
recognition models for hen housing systems, most notably: (i) A significant source of
fine dust emissions comes from the agricultural industry. Animal matters, such as feces,
hairs, and feathers, are among important contributors in this regard [9–13]. An effective
recognition model could detect high-intensity activities of the hens, and proper control
policies on illumination, feeding, humidity, and other possible inputs can be implemented
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accordingly; (ii) Detecting and preventing abnormal behaviors of hens could decrease
the rate of injuries among them, since intrusive precautions such as beak trimming are
being or have been banned in most developed countries [14,15]. It could also lead to the
early detection of animal illnesses, when the behaviors of an individual hen or a flock are
monitored day-to-day.

Generally, two different approaches can be taken to perceive different behaviors of
hens. Remote sensing through computer vision is one option that provides rich data from
the scene. For example, a deep convolutional neural network is trained in [16] to detect
and segment hens with the goal to assess the plumage condition. A vision-based posture
analysis is developed in [17] to detect sick broilers and give early warnings. Although
getting closer to being operational in low intensive environments, it is truly difficult to use
it for tracking individual hens in today’s loose housing systems [18]. The visual similarities
between hens, the large domain of movements provided in these new housing systems, and
occlusion incidences that could happen quite frequently hinder the effective application
of this solution. Moreover, recognition of the moderate- and high-intensity activities,
accomplished in a short period of time, requires high-frequency data sampling, which is
not affordably available through vision sensing. Nevertheless, there are good opportunities
for the study of flock behaviors using long-shot imagery, which is not the focus of the
present work.

The other option, which is more suited for capturing the behavior of individual
subjects, is to make use of wearable sensors that can be safely attached to a target limb of
hens. Inertial measurement unit (IMU) modules are commonly used for motion capturing in
various domains including human and animal activity recognition [19–21]. Whereas, other
local positioning systems, such as the RFID technology that could help in positioning tagged
subjects within a covered area by antenna receivers, have not received similar attention
mostly due to their expensive and time-consuming setups (see [22] for a recent review). The
use of IMU sensors for motion capturing and activity recognition has seen a breakthrough
after the emergence of MEMS-based modules, which are low-cost, lightweight, easy-to-log,
and low-power devices. The attachment of such sensors on animals such as hens does
not introduce significant restrictions, and the subject can hopefully behave seamlessly [23].
IMU can provide data about the translational and angular movements of the subject in
3D, which can then be analyzed to infer high-level information about the type of activities
being performed [19,21].

Real-time sensor-based hen activity recognition models dealing with the time-series
IMU signals typically make use of machine learning technology. Machine learning provides
a framework for large datasets to extract hidden features and patterns of signals that are
otherwise impossible to be identified by manual or physics-based analyses [24]. A heavy
preprocessing practice is required before machine learning-based classifiers can digest
the time-series sensory data. Generally, this is accomplished by handcrafting a limited
number of features, typically of a statistical flavor, then extracting these features from
the segmented raw data, and finally allowing machine learning techniques to learn the
correlations between these features and the output.

Based on the intensity of behaviors, Kozak et al. [25] identified three super classes
a typical hen can perform: low-, medium-, and high-intensity activities. Accordingly,
in [26] we presented a machine learning framework for recognizing these classes using
9-axis IMU modules worn by different hen subjects. A custom dataset was established for
this study, and each data sample was manually labeled with the aid of the video streams
recorded for this purpose. From the segments of raw data, skewness, kurtosis, mean,
standard deviation, variance, minimum, maximum, entropy, energy, and covariance were
manually calculated as representative features, and a number of standard machine learning
techniques including support vector machine (SVM), and Bagged Trees were trained while
the influences of different parameters and settings were thoroughly analyzed. The best
predictor model, namely the Bagged Trees, achieved 89% accuracy for the classification.
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In a binary classification task, Hepworth et al. [27] showed that applying a SVM model
to routinely collected bird farm management data enables the prediction of sickness status
with a superior accuracy of up to 99.5%. The activity recognition of hens in a non-cage
maintenance system was studied in [28], where wireless accelerometers were installed
on the subjects for real-time activity monitoring. The entropy and mean were extracted
from the segments of recorded data, and several machine learning models including the
Decision Tree and Radial Basis Function were employed to classify the static (sit/sleep),
dynamic (walk/run), and resource (feed/drink) activities of the subjects. Accelerometers
were also examined in classifying cow behaviors into three classes: standing, walking, and
lying down [29]. If further research supports behavioral monitoring to identify animal
health status, accelerometers could be used for larger populations of animals at risk for
diseases [29].

Apart from the reviewed literature that focused on the training of classical machine
learning algorithms using handcrafted features of data, a recent body of literature has
studied the autonomous feature learning capabilities of Deep Learning (DL) technology.
This paradigm has received particular attention in the field of human activity recognition
(see [30] for a recent review). The efficacy of the methods in this scheme has further
been enhanced by the rapid advancements in the hardware (i.e., lightweight sensors for
large data acquisition, and powerful processors for deep networks training), and software
(advanced framework for optimization and parallel computations). Motivated by the
outstanding performance of DL models in image classification and object detection, a
number of studies have investigated the possibility of encoding IMU signals into a form of
images that can readily be recognized by the well-known DL-based models [19,21,31–34].
This encoding technique is sometimes referred to as the signal imaging.

The primary objective of the present study is to adopt the signal imaging and deep
feature learning techniques to the problem of individual hen activity recognition. We
would like to explore to what extent the introduced methodology can improve the results
obtained by taking a traditional machine learning approach in our earlier study [26]. As
a second objective, this study benchmarks the influence of different setups, parameters,
and properties pertaining to the data collection and preprocessing, model architecture,
and model training process. The results of this benchmark could aid further studies in
examining different possibilities through remote/wearable sensing to move from individual
hen analysis to a large-scale practical implementation being useful in optimally managing
the future’s livestock systems.

The reset of this paper is organized as follows. In Section 2, we start by presenting
the pipeline of the work, followed by the description of the dataset establishment. Next,
the sophisticated data preprocessing presented in this paper is carefully detailed, and
deep learning recognition architectures and the training process are described. Section 3
is devoted to the presentation of results and discussion. Here, the proposed model is
investigated in terms of efficacy, robustness, and generalizability. Finally, the paper is
concluded in Section 4.

2. Materials and Methods
2.1. System Overview

As outlined in the introduction, the diverse types of hen behaviors can be categorized
into three super classes: low-intensity, moderate-intensity, and high-intensity activities.
Figure 1 depicts an overview of the behavior recognition system developed to automatically
identify these three groups of activities. The process starts by acquiring movement data
from the wearable sensor the subject hens are equipped with (Section 2.2). The movement
data includes the linear acceleration, angular velocity, and the attitude determined from
the magnetic field data. The acquired sensory signals are then sampled through a specific
time windowing step (Section 2.3.1), and then transformed into a set of so-called signal
images following an encoding algorithm described in Section 2.3.2. The signal images are
further transformed into activity images applying Discrete Fourier Transform (DFT). The
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resulting images serve as the input to a deep neural network (DNN) performing the actual
classification task (Sections 2.4 and 2.5). The rest of this section is devoted to a detailed
presentation of all materials and methods involved in the introduced system.

IMU Signal

Imaging

Alghorithm

Discrete

Fourier 

Transform 

DNN Classi�er
OUT

Acc(A), Gyro(M), Mag(M)

Activity image

Signal image

Probability of occurrence

Movement data

Low-intensity

Moderate-intensity

High-intensity

Figure 1. Overview of activity recognition model proposed in this study.

2.2. Data Acquisition, Labeling, and Bundling

Data plays a central role in the success of any deep learning model. Here, we describe
how the devised experiments are performed to acquire data, the way by which the time-
series data are labeled, and in what combinations they can be bundled for the next steps.

2.2.1. Data Acquisition

An experiment was designed in a part of a commercial laying hen poultry farm
to collect data on the behavior of laying hens [26]. The experimental environment was
separated from the other parts of the poultry house with a fence. In terms of facilities,
this environment was similar to other parts of the poultry farm. The hen house lights
were on at 4:30 a.m. and off at 7:45 p.m. Fifteen laying hens that were 34 weeks old were
placed in the experimental environment. Two comfortable backpacks to contain a light
IMU module of 16 grams were installed on two individual hens for data collection. The
backpack attachment is inspired by a common back support belt. The first two days of the
experiments were only meant for hens to get used to the new situations [35], and the actual
data acquisition was started from the third day.

The MTw2 Awinda Wireless 3DOF Motion Tracker (IMU) from Xsens was used for
inertial measurement. The module houses an accelerometer, a gyroscope, and a magne-
tometer whose specifications can be consulted in Table 1. It contains a built-in battery
providing sufficient power for the course of experiments, and the logged data are saved in
an internal memory. Please refer to [26] for more details on data acquisition.

Table 1. Technical properties of MTw2 Awinda Wireless 3DOF Motion Tracker (www.xsens.com,
accessed on 12 December 2022).

Parameter Angular Velocity Acceleration Magnetic Field

Dimensions Three axes 3 axes 3 axes
Full scale 2000 deg/s 160 m/s2 1.9 Gauss

Non-linearity 0.1% of FS 0.5% of FS 0.1% of Fs
Bias stability 10 deg/h 0.1 -

Noise 0.01 deg/s/
√

HZ 0.01 µg/
√

HZ 02 mGauss/
√

HZ
Alignment error 0.1 deg 0.1 deg 0.1 deg

Bandwidth 180 Hz 180 Hz 10–60 Hz (var.)

www.xsens.com
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2.2.2. Data Labeling

To distinguish the hens from each other, two distinct colors are used for the backpacks,
namely green and blue. Accordingly, we shall refer to the subjects as blue hen and green
hen, as shown in Figure 2. The green hen data includes 2 h and 20 min of wearable sensor
log at a rate of 1000 Hz, whereas the blue hen data includes only 29 min at the same
sampling rate. For the sake of labeling, video recording was also performed and synced
by the movement signals. An in-house expert has carefully processed recorded sequences
frame by frame and labeled the data accordingly. As outlined earlier, only three super
classes are considered for labeling, which include different types of low-, moderate-, and
high-intensity activities listed in Table 2. The distribution of data among the three classes is
shown in Figure 3. Note that the dataset is imbalanced, since the high-intensity (Class 3)
samples are much fewer than the other two classes. Additionally, the green hen dataset is
considerably larger than the blue one.

Figure 2. The experimental setup where two annotated hens are backpacked for data collection.
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Figure 3. Overview of green and blue hen datasets.
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Table 2. Classification of physical activity of laying hens based on their intensity [26].

Low-Intensity Moderate-Intensity High-Intensity

Sleep-like resting Preening Walking
Neck shortening resting Foraging & pecking Running

Sleeping Drinking & eating Jumping
Quiet sitting/standing Small wing adjustments Wing flapping

Small postural Scratching & stretching Controlled aerial ascent/descent
head/shoulder/neck movements Head shaking Full-body shaking

Perching Feather fluffing Shaking phase of dust bathing
Egg laying Searching behavior

Side-laying phase of dust bathing

2.2.3. Data Bundling

The deployed 9-axis Xsens IMU generates rich movement data including three-
dimensional linear acceleration, angular velocity, and magnetic field data, symbolized
here by “A”, “V”, and “M”, respectively. One can argue that an efficient training of the
activity recognition model may not need all these axes of measurements. For example, if
the recognition model trained by only linear acceleration data is proven to be effective,
this simply means that practically less expensive wearable sensors and computational
power are demanded. Therefore, it is justified to study the different combinations of sensor
outputs, which are hereon referred to as the data bundles. Four different data bundles are
considered in our experiments, as listed in Table 3. Notice the presence of linear acceleration
(A) in all bundles, since it naturally provides the most informative movement data for a
hen. Additionally, the size of signal images corresponding to each data bundle, reported
in the last column of the table, is determined by the time windowing and signal imaging
techniques to be presented in the next section.

Table 3. Data bundles separately considered for the training of activity recognition models in
this study.

Data Bundle Axes Signal Image Size

AVM
Acceleration—Velocity—

Magnetic
field

36× 50

AV Acceleration—Velocity 14× 50
AM Acceleration—Magnetic field 14× 50
A Acceleration 10× 50

2.3. Data Preprocessing
2.3.1. Time Windowing

A form of sampling is usually needed for time-series signals to be digested by DNNs.
This is mainly because the durations of different activities, embodied through special
patterns in the signals, are substantially different, while DNNs prefer to receive constant-
size inputs. As such, a time windowing technique is applied in which a sliding window of
a specific size spans the signals, yielding sampled (segmented) pieces of data. As illustrated
in Figure 4, an overlap can be considered between every two adjacent segments to ensure a
smooth transition. Unless otherwise specified, a sliding window of 50 data samples and
50% overlap are considered in this study. Figure 5 shows how this windowing technique
affects the size of data for the green hen. It is easy to show that letting x be the number of
samples in a class, the number of data segments after windowing will be x

25 . The width of
DNN inputs is determined by the windowing size.
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Acceleration

Attitude

Angular Velocity

Window width
Overlapping

Current data sample

Previous data sample Next data sample

Figure 4. Illustration of sampling method for the AVM data bundle.

290,700 Low-intensity data samples

535,800 Moderate-intensity data samples

6850 High-intensity data samples

Before Windowing

11,627 Low-intensity data segments

21,431 Moderate-intensity data segments

273 High-intensity data segments

After Windowing (Window size: 50, Overlap: 50%)

Figure 5. The distribution of green hen data before and after time windowing.

2.3.2. Signal Imaging

One more step is required for the sampled (segmented) data to be transformed into
a suitable form for the DNN recognition model. As outlined in the introduction, the
traditional way is the handcrafted feature extraction, which is studied in our previous
work [26]. Although proven to be effective, it suffers from a few shortcomings. Most notably,
it features a form of abstraction in the sense that not all distinctive features embodied in
the raw data are necessarily captured by the handcrafted features. Moreover, there is no
guarantee that the extracted features are the best representatives of the data. As briefly
introduced earlier, an alternative which has been proven to be effective in closely related
applications is the signal imaging technique. The encoded time-series data into signal
images form two-dimensional arrays showing features and patterns that are hardly found
in the original one-dimensional signals [36]. Various encoding techniques, e.g., the Gramian
Angular Field [37,38] and the Markov Transition Field [38], have been investigated in the
literature. The signal imaging technique used in the present work is adopted from [19], the
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method that has demonstrated outstanding performance specifically in the realm of human
activity recognition. We refer to this method as the Signal Imaging Algorithm (SIA).

Following the SIA proposed in [19], for the AVM data bundle (Table 3) the size of
resulting signal image is 36× 50 (see Figure 6), in which the number of columns corresponds
to the sliding window width, that is 50 data samples. The 36 rows of the image are formed
by stacking the nine signal channels in an order defined by the algorithm so that every
channel is repeated four times and there is a chance for every channel to be adjacent to every
other channel. This order is systematically generated by the algorithm. For the particular
case of nine channel signals, the order would be “123456789135792468147158259369483726”,
where each digit corresponds to a specific channel in the windowed signal. Similarly, for
the AV and AM data bundles (Table 3), since the input signal has six channels, the resulting
signal images would have 14 rows, as shown in Figure 6. In this case, the generated order
by the algorithm would be “12345613514624”.

Acc_X
Acc_Y
Acc_Z
Mag_X
Mag_Y
Mag_Z
Gyro_X
Gyro_Y
Gyro_Z

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

AVM

Acc_X
Acc_Y
Acc_Z

Gyro_X
Gyro_Y
Gyro_Z

(1)
(2)
(3)
(4)
(5)
(6)
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Acc_Y
Acc_Z
Mag_X
Mag_Y
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(2)
(3)
(4)
(5)
(6)

AM

Acc_X
Acc_Y
Acc_Z

(1)
(2)
(3)
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(14, 50)
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Figure 6. Generation of signal and activity images from the segmented raw data for different data
bundles. The channels of the segmented signals are stacked in the signal images row-by-row in the
following orders: “123456789135792468147158259369483726” for AVM data bundle, “12345613514624”
for AV and AM data bundles, and “1231231” for the A data bundle. Please refer to Table 3 for the
definition of the data bundles. SIA and DFT stand for Signal Imaging Algorithm and Discrete Fourier
Transform, respectively.

For the A data bundle, which includes only the three-channel linear accelerations, the
SIA is no longer applicable. Here, we introduce a duplicate method resulting in 10× 50
signal images, in which the 10 rows are formed by stacking the three channels in the order
“1231231”. Note that the obtained height for the images of this data bundle is the minimum
height acceptable by the implemented DNNs, as will be discussed later. Finally, all signal
images are converted to activity images of the same size applying the two-dimensional
DFT. It was revealed during the preliminary experiments that applying the DFT would
result in more discriminative features.
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2.4. Behavior Recognition Model

As outlined earlier, the main objective of the present study is to investigate the power
of Deep Learning (DL) classifiers in recognizing different behaviors of laying hens repre-
sented by activity images. In the last decade, DL has emerged as one of the best performing
predictor classes within machine learning in various implementation areas [39]. Ever-
increasing processors capabilities, decreasing computational costs, and advancing learning
algorithms promote DL [40]. In particular, Deep Convolutional Neural Networks (DCNNs)
have demonstrated outstanding performance in image classification, object detection, and
tracking. Numerous successful implementations have revolved around breakthrough
DCNN architectures such as LeNet [41], VGG [42], AlexNet [43], ResNet [44], and Mo-
bileNet [45]. We will examine a few of these architectures as well as a simple shallow CNN
model in the experiments.

The LeNet5 architecture with modified input and layer sizes is illustrated in Figure 7
for the AVM data bundle (see Table 3). The network accepts the activity images as input
and gives the probability of occurrence of the three behavior classes as output. The activity
images are normalized in the interval [0, 255] before feeding to the network. The first
two pairs of layers apply convolution and average pooling sequentially, extracting deep
features of the images such as key patterns. A flatten layer then vectorizes the feature map,
making it ready for densification by three consecutive fully-connected layers, which output
the probabilities of each class occurrence. Table 4 reports the number and size of filters
as well as the respective activation functions in each layer when applicable. Additionally,
the obtained shapes of feature maps in each layer for different data bundles are given
in Table 5.

2D Convolution Layer 2D Average Pooling Layer Flatten Layer Dense

120

84

3
Low-intensity

Moderate-intensity
High-intensity

Figure 7. The architecture of LeNet5 model.

Table 4. Adopted LeNet5 properties.

Layer Index Type Filter Size Activation No. of Filters

1 Convolution 3× 3 Relu 6
2 Average Pooling 2× 2 - -
3 Convolution 3× 3 Relu 16
4 Average Pooling 2× 2 - -
5 Flatten - - -
6 Dense - Relu -
7 Dense - Relu -
8 Dense - SoftMax -
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Table 5. Shapes of feature maps in each layer of LeNet5 model for different data bundles.

Layer
Bundle

AVM AV AM A

Input (36 × 50 × 1) (14 × 50 × 1) (14 × 50 × 1) (10 × 50 × 1)
Conv 1 (34 × 48 × 6) (12 × 48 × 6) (12 × 48 × 6) (8 × 48 × 6)

Pooling 1 (17 × 24 × 6) (6 × 24 × 6) (6 × 24 × 6) (4 × 24 × 6)
Conv 2 (15 × 22 × 16) (4 × 22 × 16) (4 × 22 × 16) (2 × 22 × 16)

Pooling 2 (7 × 11× 16) (2 × 11 × 16) (2 × 11× 16) (1 × 11 × 16)
Flatten 1232 352 352 176

We also consider two alternative network architectures; the first one is the well-known
ResNet50 model [44], and the other is a simple shallow CNN network, or the shallow
model for short. This network consists of two convolution layers, a fully-connected layer
followed by a dense layer, which provides the output. The convolution layers include,
respectively, 64 and 128 filters each having a (4× 4) shape. As for the activation functions,
Relu and SoftMax are used for the convolution and dense layers, respectively.

2.5. Network Training and Evaluation Metrics

All DNN models are programmed and trained in Python 3.8 using TensorFlow
2.9.1 [46] on a normal PC with an i7 9th Gen. Intel processor and 16 GB of RAM. The
networks are trained using Adam optimization technique [47] while a categorical cross-
entropy loss function [48] is considered. The evaluation policy is to shuffle the activity
images randomly. Unless otherwise specified, 70% of the shuffled images are used for
the model training while the rest are used for testing. Note that our preliminary experi-
ments revealed that considering a further split between validation and test sets did not
influence the results. As such, and since the size of samples in the high-intensity class is
relatively small, we decided to follow this train-test policy and, therefore, the terms test
and validation are assumed equivalent in this paper.

To illustrate the classification performance, we evaluate commonly used performance
metrics illustrated in Figure 8. A true positive (TP) is an outcome where the model correctly
predicts the true class. Similarly, a true negative (TN) is an outcome where the model
correctly predicts the false class. A false positive (FP) is for the case where the model
incorrectly predicts the true class, and a false negative (FN) means the model incorrectly
predicts the false class. Accuracy describes the general performance across all classes. It
is the ratio of the number of correct predictions to the total number of predictions. Recall
calculates the model’s capability to detect the true samples, i.e., it computes the ratio of true
samples correctly classified as true to the total number of true samples. Finally, precision
measures the ratio between the number of correctly classified true samples to the total
number of true classified samples. These performance metrics can take values in the range
[0, 1] by definition.

 True
Positive

(TP)

 True
Negative

(TN)

 False
Negative

(FN)

 False
Positive

(FP)

Real Label

Predicted
Label

Figure 8. Performance metrics defined.
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3. Results and Discussion

The proposed activity recognition model is thoroughly investigated in terms of ef-
ficacy, robustness, and generalizability. First, only the green hen dataset is used in the
analyses to provide a focused study on the influence of the following settings: (1) exploring
different DCNN architectures; (2) reducing the bundle dimension and dataset size; and (3)
introducing noise to the data to evaluate robustness. Then, both the blue and green hens’
datasets are combined to see how well the model can generalize.

3.1. Full-Feature Data Bundle Results

In order to illustrate the best performance achievable by the proposed framework,
we train the three introduced models on the green hen activity images of the AVM data
bundle, which includes its full-feature dataset. The training process for all models went
smoothly, as shown in Figure 9, where the accuracy and loss during training are plotted.
All accuracies converged to 1 while the corresponding training losses were ever decreasing.
As for testing, Table 6 reports the evaluation of performance indices presented earlier on
the test set of the green hen. Additionally, the confusion matrices for all the three models
are shown in Figure 10.

0 1 2 3 4
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ResNet50
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Figure 9. Accuracy (left) and loss (right) convergences during the training of the considered recogni-
tion models on the green hen AVM dataset.
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Figure 10. Confusion matrices for the considered recognition models when using the AVM data
bundle of the green hen test data.
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Table 6. Evaluation of performance indices for the considered recognition models when using the
AVM data bundle of the green hen test data.

Performance Index LeNet5 ResNet50 Shallow Model

Accuracy 1 0.9991 0.9998
Validation Loss 0.0001 0.0024 0.0003

Recall
[
1 1 1

] [
0.9985 0.9995 1

] [
0.9997 1 1

]
Precision

[
1 1 1

] [
1 0.9996 0.9250

] [
1 0.9998 1

]
Average elapsed time

for generating an
activity image

0.6 ms 0.6 ms 0.6 ms

Average elapsed time
for a network

inference
28.8 ms 64.82 ms 47.93 ms

The results demonstrate absolutely accurate and precise classifications by all the three
models. The perfect confusion matrix of LeNet5, shown in the left panel of Figure 10, implies
that the model has succeeded in correctly predicting the intensity level of all 10,000 instances
in the test set. Even for the confusion matrices of ResNet50 and shallow model, there are
extremely few instances falling off-diagonal. Notice the accurate predictions of high-
intensity instances by all three models, despite the small data size in this class. The best
accuracy achieved in our previous study [26] was 89.4%. The significant improvement
achieved in the present work demonstrates the effectiveness of the deep feature learning
and the data preprocessing method through the implemented signal imaging technique.
On average, generating an activity image by the signal imaging algorithm and its inference
by the trained LeNet5 network on the processing unit introduced in Section 2.5 take 0.6 and
29 milliseconds, respectively, as reported in Table 6. This computation time is short enough
for a real-time implementation, given that each activity image accounts for a 50 milliseconds
data segment. Note that in terms of computational efficiency, again the LeNet5 model
performs slightly better than the ResNet50 and shallow model under the same training
policy and conditions.

Overall, the results suggest that the developed model is capable of recognizing differ-
ent intensity activities of the subject quite accurately, and the computation time complies
with a real-time implementation. The next few analyses will further investigate the perfor-
mance of the model with respect to some important parameters and settings that could be
crucial for a large-scale practical implementation. Without loss of generally and for brevity,
hereon only the LeNet5 model will be used in the experiments.

3.2. Influence of Bundle Dimension and Trainset Size Reduction

Data collection for animal activity recognition can be cumbersome because of the strict
regulations of dealing with animals as well as the lack of continuous control on the sensor
proper attachment during the acquisition process. Data labeling can also become chal-
lenging in some situations since the subjects do not generally move in any programmable
directions for video data recording. As such, it is worth exploring how the performance
indices of our model vary with respect to the amount of training data. To this end, we
investigate different test-to-train ratios as well as different data bundles introduced in
Table 3. A test-to-train ratio of 30/70 implies that 70% of the data are used for training
and 30% for testing, which is the default choice in this paper except for the discussion that
follows here.

Figure 11 illustrates the distribution of green hen data when different test-to-train
ratios are considered. The numbers provided underneath the plot are the sample counts for
each subclass used for training. Note that the amount of data used for the high-intensity
class is kept constant, because it is already small. In Figure 12a,b, we plot the test accuracy
and loss versus different test-to-train ratios for different data bundles. Overall, the model
demonstrates satisfactory performance even when extremely small datasets are used for
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training. Subtle drops in accuracy are seen when the ratio is smaller than 20/80, where
the testset size is small, and the model tends to overfit as such. One can see the best
performance when the ratio is around 30/70, as expected. As for the different data bundles
used for training, no major differences are seen in the results for the small and medium
test-to-train ratios. However, we will have more to say about this in the following analysis
where we consider noisy data.
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Figure 11. The distribution of green hen data in different test-to-train ratios.
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Figure 12. LeNet5 test accuracy (a) and loss (b) vs. test-to-train ratios for different data bundles of
the green hen dataset.

3.3. Robustness Analysis

Apart from the size of labeled data discussed in the previous section, accuracy and
precision in data measurement are other important factors influencing the robustness of
the model. It is clear that a clean or less noisy measured dataset would result in more
accurate data interpretations by the recognition model. However, one should take into
account the trade-off between accuracy and cost, especially if the wearable sensors are to
be implemented in a relatively large scale. To evaluate the robustness of the model against
inaccuracies arisen from the measurement device, Gaussian noise is intentionally added to
the green hen trainset. In a series of separate experiments, zero-centered Gaussian noises
of different standard deviations corrupt the data before training the LeNet5 model.

Figure 13 illustrates the accuracy and validation loss of the model trained by the AVM
data bundle of the green hen against the increasing noise levels. As can be seen, the model
exhibits a very high level of robustness against even large corruptions on the training data.
We expect that this significant performance mainly owes to the effective data preprocessing
through the signal imaging adopted for the hen motion data. Representing the motion
data in the form of activity images enables the model to take advantages of the now-
matured DCNN structures, the tools whose efficacy is demonstrated for real-world image
understanding and classification tasks. The results might also imply that the proposed
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recognition model would perform almost equally well when low-cost wearable sensors are
used instead.
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Figure 13. The effect of corrupting the green hen AVM data bundle by Gaussian noises of different
levels on the test accuracy (a) and loss (b). The recognition model uses the LeNet5 architecture.

Introducing noise to the data will allow us to also study the effect of factors that are
otherwise hard to see, such as the windowing size presented in Section 2.3, and different
data bundles introduced in Section 2.2. Figure 14 shows the accuracy of the LeNet5
recognition model trained by different data bundles whose associated activity images are
generated using three different windowing widths, being 25, 50, and 100 data samples
with a 50% overlap. The figure contains three panels corresponding to situations in which
zero-, mid-, and high-level noises are introduced to the green hen training set. Multiple
observations can be made from this analysis as follows.
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Figure 14. The effect of window width and data bundle variations on accuracy of LeNet5 recognition
model in the absence and presence of noise corruptions on the green hen dataset.

First, the considered variations on the data bundle and window width do not present
remarkable effects on the performance when uncorrupted data are used for training. Second,
when noisy data are involved, however, the performance starts to degrade. In this case,
the effect of window size is revealed earlier even with the mid-level noises (middle panel
of Figure 14), while the difference between different data bundles remains subtle until
high-level noises are considered, as in the right panel of the figure. Third, irrespective of the
window width, the noise corruption shows stronger effects on poorer data bundles. This
can be seen when comparing the accuracies of the AVM and A data bundles in the right
panel of Figure 14. Additionally, notice in the same figure that the AV data bundle performs
better than the AM data bundle, suggesting that the angular velocity data may be more
useful (i.e., discriminative) than the magnetic field data in the performed experiment and
analysis. Finally, when it comes to comparing the performance of models with different
window widths, it looks as though there is an optimum value, as can be seen in the right
panel of Figure 14. Small window widths result in poor performance because the noise
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affects the 2D patterns of the data more severely in this case. On the other hand, large
window widths are also not desirable, most likely because in this case the number of data
segments, i.e., activity images, becomes small and the network cannot train satisfactorily
on the small dataset.

3.4. Performance Illustration on Unseen Dataset

Lastly, we would like to study how well the developed algorithms and models are
applied to a different subject. To do so, we first train a fresh model on the blue hen dataset
following the similar steps taken for the green hen. The results are very similar to what
were achieved for the green hen. Table 7 reports the evaluation of different performance
indices considered in this study. Additionally, Figure 15 shows the corresponding confusion
matrix, indicating the success of the model in predicting the correct class, even for the high-
intensity activities for which only a few instances were present. Overall, this experiment
corroborates the repeatability of the presented approach on a new subject.

Table 7. Evaluation of the performance indices when the AVM data bundle of blue hen is used for
both training and testing of the LeNet5 model.

Performance Index Amount

Accuracy 0.9961
Validation Loss 0.0027

Recall
[
0.9844 1 0.9643

]
Precision

[
0.9977 0.9956 1

]
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Figure 15. Confusion matrix for the experiment in which the AVM data bundle of blue hen is used
for both training and testing of the LeNet5 model.

Next, the datasets of both green and blue hens were shuffled, and the LeNet5 model
was trained on this combined dataset. Although some of the performance indices suffered
slightly in this case (see Table 8), most of them remained remarkably high. This is also
evident in the corresponding confusion matrix in Figure 16, where the majority of the
instances are on the main diagonal. Overall, the results support the generalizability of the
recognition model presented in this work.
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Figure 16. Confusion matrix for the experiment where the combined dataset of both hens is used for
training and testing of the LeNet5 model.

Table 8. Evaluation of the performance indices when the combined dataset of both hens is used for
training and testing of the LeNet5 model.

Performance Index Amount

Accuracy 0.9991
Validation Loss 0.0032

Recall
[
0.9981 1 0.9687

]
Precision

[
1 0.9987 1

]
One may wonder about the generalizability criterion on the leave-one-out experiment

scenario. This refers to the scenario in which the data of multiple subjects are used for
training, while one subject’s data are kept reserved for testing. Given that the dataset
established in this study contains only two subjects, our results for the leave-one-out
experiment were not satisfactory, as expected. To achieve decent performance on this type
of experiment requires the involvement of multiple subjects with enough diversity in terms
of important factors defining the problem domain.

One final note about typical multi-subject experiments is discussed here on the sensor
misalignment across different subjects. To exclude the possibility of having this issue
dominantly affecting the leave-one-out experiment, we performed the following offline
analysis. The average 3D accelerations for both green and blue hens are calculated from
the respective datasets. The rotational transformation between these two vectors could give
an indication of the possible misalignment between the coordinate frames independently
affixed to the subjects. This rotation matrix R for our dataset is obtained as

R =

0.98 0.17 0
0.17 0.98 0

0 0 1

,

which is close to the identity matrix. This suggests that the sensors’ frames on the two
subjects were almost perfectly aligned.
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4. Conclusions

In this study, a deep learning framework was developed for accurately recognizing
the activity levels of individual laying hens in a poultry system, using body-worn IMU
modules. The framework employs a signal imaging technique that encodes the time-series
data of sensors to some form of synthetic images for classification by off-the-shelf deep
learning models. The approach allows the deep learning model to learn hidden patterns and
significant correlations while end-to-end training, resulting in superior performance metrics
compared to classical machine learning techniques and handcrafted feature selection.
The developed model offers high performance even with a reduced trainset size and
affected data richness, indicating the potential for deploying simpler IMU modules or
different sensing technologies fulfilling minimal data requirements. The model also exhibits
outstanding robustness to the Gaussian noise of different levels, and even a simple shallow
model can perform as well as deeper structures such as ResNet. Also discussed was the
generalizability of the model by illustrating its performance on unseen datasets.

The findings highlight the relevance of high-autonomy activity recognition models for
monitoring modern poultry houses. They have the potential to effectively detect anomaly
behaviors indicative of malfunctions in the management system or the emergence of animal
diseases when combined with state-of-the-art unsupervised learning models such as auto-
encoders. Future research shall focus on identifying correlations between individual and
flock behaviors in poultry systems and exploring noninvasive sensing technologies such as
machine vision. For the latter, the objective could be to identify features that fit well into
the signal imaging paradigm.
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