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Abstract—Microscopic analysis of breast tissues is necessary
for a definitive diagnosis of breast cancer which is the most
common cancer among women. Pathology examination requires
time consuming scanning through tissue images under different
magnification levels to find clinical assessment clues to produce
correct diagnoses. Advances in digital imaging techniques offers
assessment of pathology images using computer vision and
machine learning methods which could automate some of the
tasks in the diagnostic pathology workflow. Such automation
could be beneficial to obtain fast and precise quantification,
reduce observer variability, and increase objectivity.

In this work, we propose to classify breast cancer histopathol-
ogy images independent of their magnifications using convo-
lutional neural networks (CNNs). We propose two different
architectures; single task CNN is used to predict malignancy and
multi-task CNN is used to predict both malignancy and image
magnification level simultaneously. Evaluations and comparisons
with previous results are carried out on BreaKHis dataset.
Experimental results show that our magnification independent
CNN approach improved the performance of magnification
specific model. Our results in this limited set of training data
are comparable with previous state-of-the-art results obtained
by hand-crafted features. However, unlike previous methods, our
approach has potential to directly benefit from additional training
data, and such additional data could be captured with same or
different magnification levels than previous data.

I. INTRODUCTION

Cancer is still one of the top leading cause of death

worldwide [1]. And breast cancer is the most common cancer

among women [1], [2]. A biopsy followed by microscopic

analysis of breast tissue is necessary for a definitive diagnosis

of breast cancer [2]. Firstly, thin sections are cut from biopsy

material and then stained generally with hematoxylin and

eosin (H&E). Hematoxylin highlights nuclei by binding DNA

and eosin highlights other structures by binding proteins [3].

Visualization is the next step after staining. Finally, patholo-

gists evaluate tissue biopsies under microscope under various

magnifications or on the digital image with no appreciable

difference in diagnoses [4]. Pathologist examines tissue pat-

terns, textures, and morphology to find clinical assessment

clues to produce correct diagnoses. They may need to pan,

focus, zoom, and scan through the entire image at high

magnification which may be very time consuming [5]. In

addition to timely and costly process, such analysis can be

hampered by pathologists different interpretations [3].

Fig. 1. Sample breast cancer histopathology images from BreaKHis database.
They were all acquired at a magnification factor of 100×.

The advances in digital imaging techniques enables digi-

tizing pathology images at microscopic resolution [5]. This

development offers the histological assessment of hematoxylin

and eosin stained sections by computer vision and machine

learning methods. These methods could automate some of the

tasks in the diagnostic pathology workflow which could be

used to reduce observer variability and increase objectivity.

In addition, fast and precise quantification could enhance

the healthcare quality. However, this requires robust image

analysis algorithms which is still far from clinical acceptance

[4]. Nonetheless, there has been a progress in the development

of image analysis algorithms for histopathological image as-

sessment. For more information on automated image analysis

methods in histology, we refer reader to [3], [4], and [6].

Appearance variability of hematoxylin and eosin stained

sections is one of the major challenges in breast cancer

histopathology image analysis [3] (see Figure 1). These vari-

ations are due to variability among people, differences in

protocols between labs, fixation, specimen orientation in the

block, human skills in tissue preparation, microscopy main-

Fig. 2. A malignant breast tumor acquired from a single slide seen in different
magnification factors: 40×, 100×, 200×, and 400×.



tenance, and color variation due to differences in staining

procedures [4]. However, the main challenge for image anal-

ysis researchers is accessing relevant images and databases.

Development of more efficient data analysis methods to be

applied in pathological diagnosis could be facilitated by pub-

licly available large annotated datasets which is currently

lacking. Such datasets and benchmarks enable validating and

comparing algorithms to develop more robust ones.

Recently, a dataset of breast cancer histopathology im-

ages (BreaKHis) is released for this purpose [7]. It was

collected from 82 patients using different magnifying factors

(40×, 100×, 200×, 400×) (Figure 2). The database contains

2,480 benign and 5,429 malignant images. Moreover, the

study in [7] provides the classification performance of several

hand-crafted textural features as baselines to discriminate

between benign and malignant tumors. These include state-

of-the-art descriptors such as Local Binary Patterns (LBP) [8],

Completed LBP (CLBP) [9], Local Phase Quantization (LPQ)

[10], Grey-Level Co-occurrence Matrix (GLCM) [11], Ori-

ented FAST and Rotated BRIEF (ORB) [12], and Threshold

Adjacency Statistics (PFTAS) [13].

In this paper, we propose to classify breast cancer

histopathology images independent of their magnifications.

We present the classification performance of a deep learning

method on the BreaKHis dataset in order to provide additional

baseline. Moreover, we propose to detect the image magnifi-

cation level and classify benign and malignant tumors simul-

taneously by utilizing a similar network architecture which

is adapted for multi-task classification. Most importantly, we

introduce a learning based approach which could benefit from

additional labeled training data in straightforward manner,

unlike the approaches based on hand-crafted features.

II. METHOD

Recently, neural networks achieved a great success in object

classification [14]. Specifically, Convolutional Neural Network

(CNN) based approaches showed significant improvements

over state-of-the-art recognition and classification approaches.

CNNs are also applied to solve various problems in biomedical

image analysis research. For example, Ciresan et. al [15] detect

mitosis in breast cancer histology images and won the related

contest. It has been also used in cell classification [16], [24],

tumor cell detection in blood samples [17] and in segmenting

magnetic resonance images of the human brain into anatomical

regions [18].

In breast cancer histopatholoy image analysis, convolutional

neural networks are used for region of interest detection [19],

segmentation [20], and also for mitosis detection [15]. On the

other hand, for classification purposes, hand-crafted features

are often employed [5], [21], [2], [7]. They include complex

preprocessing pipeline including stain normalization, nucleus

detection, and region of interest segmentation. This is mainly

due to the heterogeneous structure of histopatholoy images.

First, there is a wide variety of tissues and the complexity

in appearance increases at lower microscopy magnifications.

Various multi-cellular structures and diverse backgrounds are

Fig. 3. Schematic presentation of our proposal for classifying breast histology
images which is independent from the image magnification factor.

captured in different magnifications. Therefore, in order to ob-

tain distinguishable characteristics, structure specific features

are needed. Second, images could contain both benign and

malignant regions and therefore, it is challenging to learn

discriminative features globally from histology images and

therefore, segmentation is needed. When the training data is

small, the later issue becomes a challenge also for CNNs.

One way to reduce variability in microscopy images is

to utilize images acquired at the same magnification level.

Vast majority of previous studies adopt this method and

employ single magnification level. Some studies ([7], [22])

utilize multiple magnifications but they use a different clas-

sifier for each magnification level. However, such approaches

have practical limitations. First, multiple training stages are

needed for different magnifications. Second, during test time,

the magnification factor of the test image must be known

and corresponding model should be used. Such information

might not be available all the time. Third, the classification

method might perform poorly when test images are acquired

at new magnification levels. Because, during training stage,

classifiers learn magnification specific features and they could

not adapt themselves to unseen image features. Therefore,

a classification systems which is intended to be used in a

diagnostic practice should handle the diversity in microscopy

images and should not depend on the device settings such as

microscopy magnification. Our approach has ability to utilize

additional training data from various imaging devices with

different magnification factors.

Magnification independent classification(single-task CNN):

We propose to employ deep learning method to handle the



Fig. 4. Schematic presentation of our network architecture for classifying bening and malignant images (single task CNN).

diversity of breast cancer histopathology image appearance.

CNN models have high capacities to represent diverse fea-

tures. We used BreaKHis database [7] in our experiments.

BreaKHis provides images at four different magnifications

(40×, 100×, 200×, 400×). They also provide magnification

specific baseline results. To train our CNN model, we utilized

all available data in the training set of BreaKHis independent

of their magnifications. We needed only one training stage for

parameter learning and we tested each image using the learned

model (Figure 3).

The network architecture used in our experiments is pre-

sented in Figure 4. Previously, it was used for age and

gender estimation from real-world images [23]. The network

contains three convolutional layers, each one followed by a

rectified linear operation and a pooling layer. Local response

normalization [14] is employed after the first two layers. In

the first convolutional layer, 96 filters of size 3 × 7 × 7
pixels are applied to the input. This layer is followed by a

rectified linear operator (ReLU), a max-pooling layer taking

the maximal value of 3x3 regions with two-pixel strides,

and a local response normalization layer [14]. The second

convolutional layer contains 256 filters of size 5 × 5. ReLU,

max-pooling and normalization layer is applied again after the

second convolutional layer. Finally, in the third convolutional

layer, a set of 384 filters of size 3× 3 are used. This layer is

followed by ReLU and a max-pooling layer. Finally, two fully-

connected layers are added after the convolutional layers. Each

fully-connected layer contains 512 neurons and each followed

by a ReLU and a dropout layer with a dropout ratio of 0.5.

Preprocessing and data augmentation:

Increasing the number of training samples is useful for small

training sets in CNN frameworks. We augment the training

set by affine transformations. We rotate the images around

their centers with angles 90°, 180°, and 270°. Rotated and

original images are then flipped and added to the training set.

Each image is cropped around its center to obtain a square

patch. For non-square images, rotation operations introduce

discontinuities at the image borders therefore, images are

cropped to include only tissue pixels. Images are then all

scaled to a fixed size for speed up.

Multi-task classification:

CNN models build highly non-linear mappings between the

input and the output using cascaded convolutional layers. Such

complex hierarchical representations are capable of capturing

features from basic to more complicated structures which are

then used to predict attributes. Attributes could simply be

class labels defined for a task. Different tasks could share

common features. Therefore, convolutional neural networks

are well-suited for multi-task learning. Based on this, we

propose a multi-task framework to jointly learn classifiers

for image malignancy and magnification factor. We modified

the network architecture to generate two output layers by

splitting the last fully connected layer into two branches.

During backpropagation, the two gradients are added together

in the split layer. The network is shown in Figure 5. After the

network splits into two branches:

• The first branch learns the benign/malignant decision. The

output is fed into a 2-way softmax, and we minimize the

softmax loss which is equivalent to the cross-entropy loss

in the 2-class case.

• The second branch learns the magnification factor. Again

the output is fed into a 4-way softmax and the softmax

loss is minimized.

Multi-task loss:

Each output layer computes a discrete probability distribution

by a softmax over the outputs of a fully connected layer.

During training phase, the minimization is done over the

softmax loss function given by Equation 1.

L(x, y) = −

∑

i

yi log pi(x) (1)

where pi(x) is the probability of input x being labeled with

li and y is the true distribution (i.e. ground truth) where∑
i yi = 1, with the true class equal to one and the rest are

zero.

We define the total cost (C) in the multi-task setting as the

weighted sum of the benign/malignancy cost and magnifica-

tion cost:

C = ωbmLbm + ωmagLmag (2)

where ωbm and ωmag are the cost weights for malignancy

and magnification tasks respectively. We used ωbm = ωmag =
0.5, but different weights might improve the results which is

difficult to determine theoretically but it needs to be estimated

empirically.

III. EXPERIMENTS AND RESULTS

BreaKHis database provides 7,909 histopathology images

divided into benign and malignant tumors that are obtained



Fig. 5. Schematic presentation of our network architecture for classifying both malignancy and image magnification level (multi-task CNN).

from 82 patients. Images are of 3-channel RGB, 8-bit depth

in each channel, and of size 700 × 460. On the average,

24 images per patient is captured from each slide using the

lowest magnification factor (40×). The magnification is then

manually increased by the pathologist to 100×, 200×, and

400× and a similar number of images is captured inside the

initial region at each magnification level. Out-of-focus images

are then discarded by a final visual inspection. In addition to

the images, BreaKHis also provides a testing protocol. The

dataset has been divided into a training (~70%) and a testing

(~30%) set where the patients used to build the training set

are not used for the testing set. The split protocol has been

used to obtain 5-folds and results were reported based on the

average of five folds.

BreaKHis also presents performances of six state-of-the-

art hand-crafted features (Table IV) and four classifiers (1-

Nearest Neighbor, Quadratic Linear Analysis, Support Vector

Machines, Random Forests) on the database. Method perfor-

mances were reported at the patient level, and not at the image

level. Recognition rate is defined as follows:

Recognition Rate =

∑
P Patient ScoreP

Total number of patients
(3)

where the patient score is defines as:

Patient ScoreP =
Nrec

NP

(4)

where NP is the number of images of patient P and Nrec is

the number of correctly classified images.

In our study, we follow the same test protocol and also the

same performance measure to make a fair comparison with

previous results. In our preprocessing step, images are cropped

from their centers to 460 × 460 sized images. Square sized

patches are adopted in order to avoid image discontinues at

the image borders in rotated images and also fixed size images

are required in CNN frameworks. Training sets are populated

by rotations and flipping operations that enlarged the sets by 8

times. In our tests, all the images are resized to 100×100 both

in training phase and testing phase for speeding-up purposes.

The network is trained using the minibatch stochastic gradient

descent with a momentum factor of 0.9. Each iteration operates

on a minibatch of 100 images that are sampled randomly

from the training set. BreaKHis is a small database compared

to the appearance variation in breast cancer histopathology

images therefore, image features were not reflected evenly

in the training sets. This leads the optimal iterations and the

learning rates vary from fold to fold. We utilized images from

one magnification level (40×) in the test set to tune the number

of iterations and base learning rates. We applied early stopping

when we noticed over-fitting. We observed that when we

continue learning, the training set accuracies for folds usually

reaches up to 100%. This is an indication that the network has

a sufficient capacity to classify breast cancer histopathology

images and, at the same time, this is an indication that we have

a very limited amount of labeled training data, as often is the

case. However, our approach which combines data from all

magnification levels to train a single network is able to reach

good performance despite the lack of magnification specific

training data.

TABLE I
COMPARISON OF BENIGN/MALIGNANT CLASSIFICATION PERFORMANCE

FOR MAGNIFICATION SPECIFIC AND MAGNIFICATION INDEPENDENT

TRAINING (SINGLE TASK CNN)

Patient Score (%)

Fold 1 Mag. Specific Mag. Independent

40× 79.40 80.97

100× 78.69 80.92

200× 83.72 83.42

400× 80.83 83.02

In our first experiment in Table I, we compare perfor-

mances of our CNN framework for both magnification specific

and magnification independent training for benign/malignancy

classification (single task CNN). In magnification specific

experiments, for each magnification level we trained a separate

network starting from a random state and tested images

according to their magnification factor. For the magnification

independent training, we augment the training set with all the

training images independent of their magnifications (Figure

3) and trained a single network (Figure 4). Images are then

tested using the learned model. Comparison is done for the



first fold. Mixing images from different magnifications in the

training stage does not degrade the classification performance.

On the contrary, the performance is slightly increased. The

increase is due to the expansion of training set with additional

data imported from other magnification levels and also due to

affine transformations.

Recognition rates using magnification independent training

(single task CNN) for the five folds are presented in Table

II. For benign/malignant classification, with our single task

CNN model, an average recognition rate of 83.25% is achieved

with a single training per fold. The differences in recognition

rates for different folds are due to uneven distribution of the

data in test and training sets. This indicates that there is a

need to increase the amount of training data with additional

patients in order to better cover variation in image features

during training. On the other hand, the average recognition rate

which is shown in last column of Table II is similar among

all magnification levels. This shows that, proposed network

learns balanced set of features from different levels and dur-

ing test time, the model generates magnification independent

predictions which we aimed in the first place.

Next, we tested our multi-task network framework (Fig-

ure 5) for predicting both magnification factor of an input

image and its malignancy. Table III shows recognition rates

for both tasks. An average recognition rate of 82.13% is

achieved for benign/malignant classification task and an aver-

age recognition rate of 80.10% is achieved for magnification

estimation task. Compared to single task CNN, performance

of malignancy estimation is not degraded much in multi-task

setting. Therefore, multi-task model could be more useful in

applications where magnification factor of an input image

needs to be estimated and/or where there is insufficient amount

of training data from a single magnification level.

In Table IV, we compare our results (single task CNN

(CNN) and multi-task CNN (mt CNN)) with previous meth-

ods. We have selected the best performed classifier results for

hand-crafted features. For example, for PFTAS features, best

results in 40× and 100× magnifications are achieved with

QDA classifier while SVM performed better at factors 200×
and 400×. PFTAS features are based on a three dimensional

convolution operation on thresholded color channels which is

similar to CNN in that sense. Therefore, PFTAS and CNN

performances are similar (83.33% vs. 83.25%). On the other

hand, there is a large gap between results of CNN and other

hand-crafted features at all magnification levels. We believe

that additional training data would enhance CNN results and

therefore, deep learning is more promising as their capacities

for classify training sets are shown to be perfect.

IV. DISCUSSIONS AND CONCLUSION

In this work, we have proposed a general framework based

on CNNs for learning breast cancer histopathology image

features. The proposed framework is independent from mi-

croscopy magnification and faster than previous methods as

it requires single training. Speed and magnification indepen-

dence properties are achieved without sacrificing the state-

of-the-art performance. Magnification independent models are

scalable, new training images from any magnification level

could be utilized and trained models could easily be tuned

(fine-tuning) by introducing new samples.

In this work, we have also proposed a multi-task CNN

architecture to predict both the image magnification level

and its benign/malignancy property simultaneously. The pro-

posed model allows combining image data from many more

resolution levels than four discrete magnification levels. In

fact, magnification level prediction could be formulated as a

regression problem which is not limited to a discrete set of

levels. Multi-task prediction requires essentially no additional

computation over single-task prediction. Besides, experimental

result shows that classification performance does not degrade

in multi-task network.

For the future work, stain normalization, deeper architec-

tures, and splitting the network before the last fully-connected

layer could be investigated. It would be interesting to observe

task-wise early stopping in multi-task architecture. More im-

portantly, additional data with increased number of patients

should be introduced. We believe CNNs are more promising

in breast cancer histopathology image classification than hand-

crafted features and the data is the key issue to obtain more

robust models.
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