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Deep Learning for Massive MIMO Channel State 

Acquisition and Feedback

1 Introduction

Massive multiple-input multiple-output (MIMO) 
systems are an important component of 5G and 
future generation wireless networks due to their 
ability to serve many users simultaneously with 
high spectral and energy efficiency. The main idea 
in massive MIMO is to equip base stations (BSs) 
in wireless networks with large arrays of coop-
erating antennas to facilitate spatial multiplex-
ing of many user equipments (UEs) within the 
same time-frequency resources. Since the number 
of antennas at the BS is typically assumed to be 
significantly more than the number of users, a 
large number of degrees of freedom are available 
in the downlink, which can be used to shape the 
transmitted signals in a specific direction or to 
null interference. This yields a beamforming gain 
that translates into increased energy efficiency, 
reduced interference, or improved coverage. In 
the uplink, each single-antenna user in a massive 
MIMO system can scale down its transmit power 
proportionally to the number of antennas at the 
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Abstract | Massive multiple-input multiple-output (MIMO) systems are a 

main enabler of the excessive throughput requirements in 5G and future 

generation wireless networks as they can serve many users simultane-

ously with high spectral and energy efficiency. To achieve this massive 

MIMO systems require accurate and timely channel state information 

(CSI), which is acquired by a training process that involves pilot trans-

mission, CSI estimation, and feedback. This training process incurs a 

training overhead, which scales with the number of antennas, users, and 

subcarriers. Reducing the training overhead in massive MIMO systems 

has been a major topic of research since the emergence of the concept. 

Recently, deep learning (DL)-based approaches have been proposed 

and shown to provide significant reduction in the CSI acquisition and 

feedback overhead in massive MIMO systems compared to traditional 

techniques. In this paper, we present an overview of the state-of-the-art 

DL architectures and algorithms used for CSI acquisition and feedback, 

and provide further research directions.
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BS while maintaining the same performance as 
the corresponding single-input single-output 
(SISO) system. This leads to higher energy effi-
ciency, which is a major benefit in next genera-
tion wireless networks, where excessive energy 
consumption is a growing concern. On the other 
hand, if adequate transmitting power is available, 
a massive MIMO system can significantly expand 
its coverage compared to a single-antenna system.

In communication systems, channel state 
information (CSI) is required at the receiver to be 
able to decode the information transmitted over a 
time-varying channel. CSI is acquired by a train-
ing process which involves pilot transmission and 
CSI estimation at the receiver. This imposes a 
training overhead on the communication system 
which scales up with the number of antennas, 
receivers and subcarriers. In massive MIMO sys-
tems, to achieve the aforementioned performance 
gains, accurate and timely CSI is required both 
at the BS and the UEs. Availability of downlink 
CSI at a massive MIMO BS is crucial to enable 
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beamforming and achieve spatial multiplexing 
gains. Reducing the training overhead in massive 
MIMO has been a major topic of research since 
the emergence of the concept.

Massive MIMO was originally introduced 
in a time division duplex (TDD) setting where 
the uplink and downlink channels are separated 
in time1, 2. In the TDD mode of operation, due 
to uplink/downlink channel reciprocity, which 
holds under certain conditions 3, downlink CSI 
does not induce extra training overhead. How-
ever, motivated by spectrum regulation issues, 
FDD operation gained significant interest4, 5, 
and there has been a long-standing debate on the 
relative performance of TDD and FDD schemes 
6–8. Although the FDD scheme is favorable due 
to its improved coverage and reduced interfer-
ence, these benefits come at the price of increased 
complexity of the training process for FDD mas-
sive MIMO. Unlike in TDD, in the FDD mode of 
operation, the uplink and downlink channels are 
separated in frequency, and hence, they are not 
reciprocal. Consequently, in FDD massive MIMO, 
downlink CSI need to be first estimated at each 
UE, and then fed back to the BS through the 
uplink channel, which significantly increases the 
CSI overhead. Fig. 1 depicts the downlink train-
ing process in FDD mode.

For smaller number of BS antennas, simple 
vector quantization (VQ) along with exhaustive 
search may work sufficiently well for MIMO CSI 
compression and feedback. In the fourth gen-
eration long term evolution (4G-LTE) advanced 
standard, a 4-bit channel quality index (CQI) and 

the pre-coding matrix indicator (PMI) are fed 
back to the BS to reveal the CSI9. However, with 
the increased number of massive MIMO anten-
nas, CSI dimensions increase drastically and the 
traditional VQ-based approaches are no longer 
practical. This has encouraged great interest in 
more efficient training and compression tech-
niques. Initial efforts in this direction followed 
a model-based approach assuming sparse or 
low-rank models on the CSI matrix. However, a 
sparse model on the channel is less accurate when 
MIMO dimensions are not sufficiently large, 
which degrades the performance of sparsity-
based techniques. The same discussion holds for 
low-rank based techniques 10, 11, where there is a 
model mismatch. These approaches do not take 
into account the inherent statistical correlations 
and structures beyond sparse or low-rank pat-
terns. Moreover, sparse and low-rank reconstruc-
tion techniques are computationally demanding 
iterative algorithms, which may further limit their 
practical implementation.

NN-based approaches have recently shown 
significant improvements over their model-based 
counterparts in various wireless communica-
tion problems 12–15. Data-driven approaches have 
also been proposed for massive MIMO channel 
estimation and feedback, in order to exploit the 
common structures observed in typical massive 
MIMO CSI matrices. Data-driven approaches 
train neural network (NN) structures over large 
datasets of CSI matrices to capture these struc-
tures and use them to reduce the CSI acquisition 
overhead.

Figure 1: Massive MIMO downlink training process in FDD mode.
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Consider the following massive MIMO chan-
nel matrix H(τ ) ∈ C

NU×NB in the delay domain:

where NB and NU denote the number of anten-
nas at the BS and UE, respectively, L is the num-
ber of multi-path components with αl denoting 
the propagation gain of the lth path. Also, aB and 
aU are the array response vectors for the BS and 
user with θl and φl denoting the azimuth angles of 
arrival and/or departure (AoA/AoD), respectively, 
and (·)H denotes the conjugate transpose opera-
tion. For uniform linear arrays, we have

where d and � denote the distance between adja-
cent antennas and the carrier wavelength, respec-
tively. Equivalently, the MIMO channel matrix at 
the kth subcarrier in OFDM, Hk ∈ C

NU×NB , is 
given by

where fs denotes the sample rate and K is the total 
number of subcarriers.

According to (4), the CSI values for nearby 
users, sub-carriers and antennas are correlated 
due to similar propagation paths, gains, delays 
and AoDs/AoAs. Apart from the correlations 
governed by (4), there exists inherent charac-
teristics in MIMO environments due to specific 
user distributions, scattering parameters, geom-
etry, materials, etc., that cause common struc-
tures among MIMO CSI matrices. We note that 
the joint statistics of the channel gains across 
antennas, subcarriers and users is extremely com-
plex. Even if accurate models are known on the 
statistics in (4), identifying a lossy compression 
scheme to optimally exploit structures and cor-
relations in (4) is challenging. On the other hand, 
NNs are extremely powerful in learning complex 
distributions and exploiting them for various 
classification/regression (supervised learning) 
or compression (unsupervised learning) tasks. 
NNs can be used to learn the common struc-
tures and inherent correlations to leverage them 

(1)

H(τ ) =

√
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for efficient CSI estimation, compression and 
feedback, reducing the overall MIMO training 
overhead.

Success of data-driven approaches depends 
critically on the datasets used to train the NN 
models. Unlike some more popular applications 
of NNs, rich and standardized datasets of CSI 
measurements in actual massive MIMO scenar-
ios do not yet exist. However, there exists MIMO 
channel models that have proved to be very accu-
rate in statistically modeling actual CSI meas-
urements in practical MIMO scenarios. Among 
these are the third generation partnership project 
(3GPP) spatial channel model (SCM)16, WIN-
NER II17 and COST 210018. Unfortunately, exist-

ing results in the literature use different channel 
models to generate CSI datasets ranging from 
the simple formula in (4) to more sophisticated 
channel models like COST 2100, 3GPP TR 38.901 
release 1519 or the DeepMIMO ray-tracing prop-
agation model 20. The most widely used channel 
model so far has been COST2100, which will also 
be used in this paper. We would like to emphasize 
that different datasets hamper the comparison of 
different results and there is a pressing need for 
standard datasets.

This paper provides an overview of how 
NNs can be used in massive MIMO systems to 
improve the performance of CSI acquisition and 
feedback while reducing both the complexity 
and overhead. In the following sections, we shall 
review recently proposed data-driven approaches 
for CSI estimation, compression and feedback, 
and provide suggestions for future research.

2  MIMO Channel Estimation by DL

Consider uplink MIMO training where the user 
transmits a block of P pilot signals, denoted by 
X ∈ C

NU×P , which is known at both the UE and 
the BS. The BS needs to estimate the channel 
matrix H ∈ C

NB×NU from received measurements 
Y ∈ C

NB×P , given by

(5)Y = HX + Z,
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where Z ∈ C
NB×P is the complex additive white 

Gaussian noise (AWGN).
Standard channel estimation techniques are 

typically based on linear minimum mean square 
error (LMMSE) estimation method. A common 
assumption in LMMSE-based channel estimation 
techniques is that the pilot length is larger than 
the number of transmit antennas, which may 
be prohibitive in downlink training of massive 
MIMO systems ( P ≥ NB ). For downlink massive 
MIMO channel estimation, where NB is large, it 
is challenging to ensure P ≥ NB not only because 
it shall increase the training overhead and com-
putational complexity for channel estimation, but 
also because a large P may even exceed the chan-
nel coherence interval. If this assumption does 
not hold, LMMSE-based channel estimation per-
formance degrades significantly.

Many previous works take a model-based esti-
mation approach assuming sparse21–23 or low-
rank 10, 11 models on the channel matrix. Sparsity 
of the channel in the angular-delay domain has 
been assumed in 21–23, where compressive sens-
ing based reconstruction techniques are used to 
reduce the pilot length and training overhead. 
Sparsity based techniques can decrease the pilot 
length required to sense and estimate the channel 
by an order of magnitude 24 compared to a sim-
ple exhaustive search approach. However, as men-
tioned earlier, these techniques rely on the sparse 
or low-rank properties of the channels, which 
may not be very accurate and do not take into 
account the inherent statistical correlations and 
structures beyond sparse or low-rank patterns.

This motivates the use of data-driven 
approaches based on NNs to learn these complex 
structures and correlations. The authors in 25, 26 
use convolutional NNs to improve the quality of 
a coarse initial estimate of the channel matrix by 
exploiting temporal and inter-frequency correla-
tions. Let Hk(n) ∈ C

NB×NU denote the MIMO 
channel matrix for the kth subcarrier at tempo-
ral slot n, where the channel is assumed constant 
during each slot, which corresponds to the chan-
nel coherence time. A coarse initial estimate of 
Hk(n) is given by Rk(n) = Yk(n)Xk(n)† , where 
Xk(n)† denotes the pseudoinverse of the pilot sig-
nals transmitted over the kth subcarrier at time n. 
The authors form large tensors by concatenating 
Rk(n) ’s along time and frequency dimensions, 
and then apply multi-dimensional convolution 
kernels on it. During training, these kernels cap-
ture temporal and inter-frequency correlations, 
and can be exploited to provide accurate estimates 
of the channel matrix. This idea outperforms 

non-ideal minimum mean square error (MMSE) 
(with estimated covariance matrix) estimation 
and achieves performance very close to the ideal 
MMSE (with true covariance matrix) that is very 
difficult to be implemented in practical situa-
tions. The NN architecture used in25 consists of 
12 convolutional layers. There is still much work 
to be done to design NN architectures with 
reduced complexity and improved performance 
to guarantee that the channel estimation task can 
be carried out rapidly within the channel coher-
ence time.

On the other hand, many massive MIMO 
structures use low-resolution analog-to-digital 
converters (ADCs) to reduce the power con-
sumption and hardware complexity at the BS; 
and hence, only a coarsely quantized version of Y 
shall be available for channel estimation at the BS. 
For the quantized case, we have

where Q(·) denotes quantization performed ele-
ment-wise on the real and imaginary parts of the 
received signals independently. Low-resolution 
ADCs incur nonlinear distortion, which poses 
significant challenges to channel estimation from 
highly quantized measurements. Hence, efficient 
estimation techniques from quantized received 
signals Y are needed.

With coarsely quantized measurements, the 
pilot length required for reliable estimation of 
the channel; and hence, the training overhead 
increases significantly. Model-based estimation 
techniques generally minimize a cost function 
(e.g., maximum likelihood, square error, etc.) 
iteratively subject to sparsity 27–29 or low-rank30 
constraints on the channel matrix H . Due to the 
additional non-linearity introduced by quanti-
zation, NN-based techniques can be even more 
beneficial in channel estimation from low-resolu-
tion received signals.

For the extreme case of 1-bit ADCs, recon-
struction is possible only up to a scale factor. The 
initial results reported in31, 32 show that a sim-
ple fully-connected network trained in a super-
vised setting to estimate the channel directly 
from sign measurements can reduce the required 
pilot length roughly by an order of magnitude, 
while achieving similar reconstruction perfor-
mance in comparison with previous sparse or 
low-rank based techniques. In33, the authors 
consider a mixed-ADC scenario, where several 
BS antennas are equipped with high resolution 
ADCs and others with few-bit ADCs to achieve 
a trade-off between the performance and power 

(6)Yq = Q(HX + Z),
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consumption. They input an initial least square 
(LS) channel estimate to a 5-layer fully-connected 
NN, and show that the NN can learn to utilize 
the correlation between antennas to improve the 
estimation performance for the low-resolution 
branches. The above works utilize inter-antenna 
correlations for channel estimation; temporal and 
spectral correlations can be similarly exploited by 
convolutional kernels.

While fully-connected NNs have been com-
monly used in previous works and they have the 
potential to learn and exploit complex joint dis-
tributions across all antennas and subcarriers, 
they do not easily scale with MIMO dimensions 
and need separate training for different num-
ber of antennas, subcarriers, etc. However, as 
discussed earlier, correlations in typical MIMO 
channels exhibit locality among antennas and 
subcarriers, which encourages utilizing convo-
lutional architectures, which can significantly 
reduce the complexity in both training and infer-
ence. This is especially critical in wireless appli-
cations, as it is important to acquire an accurate 
channel estimate within the channel coherence 
time. Moreover, convolutional kernels, once 
trained, work for different input dimensions; that 
is, we do not need to train and use a different NN 
when the number of antennas in either side of the 
channel, or the number of subcarriers allocated 
for communication change.

3  DL-Based MIMO CSI Reduction 

and Feedback

Once the channel matrix H is estimated at the 
UE, it needs to be transmitted back to the BS 
through a feedback channel, which incurs further 
overhead. With massive number of antennas and 
increased bandwidth and users, the CSI dimen-
sions, and the resulting overhead, increase signifi-
cantly, which motivate CSI reduction techniques. 
Traditional CSI compression techniques include 
vector quantization (VQ), sparsifying trans-
forms (e.g., discrete cosine transform (DCT), 
Karhunen–Loeve transform (KLT)), principal 
component analysis (PCA)-based dimensionality 
reduction and compressed sensing (CS) to com-
press the CSI using spatio-temporal MIMO chan-
nel correlations.

However, as we have mentioned earlier, lossy 
compression is a challenging task even when the 
underlying source distributions is known per-
fectly. While we have a relatively good under-
standing of the fundamental rate-distortion 
performance for independent and identically 
distributed sources in the asymptotic limit, lossy 

compression for practical sources, such as image, 
audio, or video, has been a research challenge for 
many decades. Recently, dimensionality reduc-
ing autoencoders have shown significant suc-
cess for lossy compression of such sources with 
a data-driven approach. Similarly for the CSI, 
dimensionality reducing autoencoders have 
recently been used to efficiently reduce the mas-
sive MIMO CSI overhead. These autoencoder 
architectures can be trained to learn a lower 
dimensional representation of the original CSI 
matrix to be transmitted over the feedback chan-
nel with a reduced overhead. An initial study 
using this autoencoder approach showed signifi-
cant improvement in comparison with the best 
performing sparsity-based techniques 34. The 
authors in34 proposed CSINet, which has since 
been adopted as a benchmark architecture for 
performance comparisons by subsequent works. 
CSINet includes convolutional layers as well as 
dense layers and Refine-Net architectures. In 35, 36, 
the authors combine CSINet and long short-term 
memory (LSTM) cells to improve upon the basic 
CSINet architecture by exploiting the temporal 
correlations in CSI matrices for consecutive time 
instances. The authors in 37 use the uplink CSI 
(which is already available to the BS by uplink 
training) as a side information to further improve 
CSI reconstruction performance utilizing the cor-
relations between downlink and uplink channels.

These DL-based CSI reduction techniques 
mainly train an end-to-end auto-encoder struc-
ture, assuming ideal feedback of the reduced CSI. 
However, the estimated CSI (of the downlink 
channel) is fed back to the transmitter through 
the uplink channel, which also suffers from noise, 
interference, and fading. It becomes crucial to 
design CSI compression and feedback schemes 
that not only reduce the CSI overhead efficiently, 
but are also robust against the feedback channel 
impairments.

There are two main approaches to cope with 
the limitations in the CSI feedback channel, 
i.e., the digital and analog CSI schemes. Digital 
schemes, which have traditionally received more 
attention, are based on the separation approach: 
CSI is first compressed into as few bits as pos-
sible and these bits are reliably fed back to the 
transmitter using a low-rate channel code, which 
adds redundancy in a way to cope with the chan-
nel noise and error in the feedback link. On the 
other hand, analog CSI follows a joint source-
channel coding approach, and directly maps the 
downlink CSI to the uplink channel input in 
an unquantized and uncoded manner. Analog 
approach simplifies the feedback operation as it 
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does not require explicit quantization, coding, 
and modulation. If the uplink feedback channel is 
an additive white Gaussian noise channel, and the 
downlink CSI is Gaussian and perfectly known 
at the UE, the analog CSI scheme (that incurs 
zero delay) is optimal in that it achieves the same 
minimum mean-squared error distortion for 
the reconstructed CSI at the BS as a scheme that 
optimally quantizes and encodes the CSI, while 
incurring infinite delay. The low-latency of the 
analog CSI scheme makes it a favorable alterna-
tive in rapidly changing MIMO channels where 
the CSI needs to be estimated and fed back to the 
BS periodically. We shall overview both analog 
and digital CSI schemes in the presence of feed-
back channel impairments in the following 
subsections.

3.1  Digital CSI Feedback

The earlier autoencoder-based CSI reduction 
techniques34, 35, 37 overlooked the subsequent 
feedback of the reduced CSI, and mainly focused 
on the dimensionality reduction by a direct appli-
cation of the autoencoder architecture. These 
works are based on the assumption that reduc-
ing the dimension of CSI matrix would result in 
reduced feedback overhead. This is not necessar-
ily correct since the reduced representation con-
sists of real numbers, which may still need to be 
compressed further, and the impact of such com-
pression on the final CSI accuracy is not taken 
into account. Several subsequent works assume 
that the reduced CSI is quantized before being 
digitally fed back to the BS. The authors consider 
simple uniform quantization in 38 and non-uni-
form µ-law quantization in39. Since quantization 
is a non-differentiable function, the gradient can-
not pass through it in the backpropagation step 
of the learning algorithm. This makes it chal-
lenging to train digital CSI feedback schemes in 
an end-to-end manner and requires further con-
siderations to overcome the gradient backpropa-
gation issue. A widely used solution is to set the 
quantization gradient to a constant, and train 

end-to-end for a specific number of quantization 
bits. The authors in 39 add an offset module to the 
decoder to compensate for the quantization dis-
tortion, where the network is trained in multiple 
stages: end-to-end training without quantization 
with a larger learning rate, followed by quantiza-
tion and optimization of the offset module, and 
finally the offset and decoder are fine-tuned by 
further training with a small learning rate.

Although the authors in38, 39 consider quanti-
zation of the reduced CSI to convert it into bits to 
be transmitted over the feedback link, the simple 
scalar quantization approach cannot fully exploit 
the potential correlations remaining among the 
components of the reduced CSI. Indeed, the 
quantizer output does not produce equally prob-
able bits; and hence, additional lossless compres-
sion of the bits would further reduce the feedback 
overhead.

In40, 41, a DL-based CSI matrix compression 
technique, called DeepCMC, is proposed, which 
employs entropy coding to further compress the 
quantizer outputs. Figure 2 provides the end-
to-end block diagram for a downlink digital 
CSI feedback scheme based on DeepCMC40, 41. 
In this figure, Hd and H̃d denote the downlink 
CSI matrix at the UE and its estimate at the BS, 
respectively, and the two model input matrices 
represent R(Hd) and I(Hd) . The UE applies a 
CNN-based feature encoder on Hd to obtain its 
low-dimensional representation, which is subse-
quently quantized and compressed using context-
adaptive binary arithmetic coding (CABAC) 42. 
The resulting bit stream passes through channel 
coding and digital modulation. The modulation 
output is then mapped over OFDM subcarriers 
and transmitted back to the BS over the uplink 
channel. The BS performs maximum ratio com-
bining (MRC) on the received signals to maxi-
mize the SNR and benefit from the diversity in 
the feedback channel. The resulting signal then 
passes through the demodulation, channel decod-
ing, entropy decoding, and finally the CNN-based 
feature decoder to reconstruct H̃d.

Figure 2: DeepCMC for MIMO CSI compression.
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In the CNN architecture in Fig. 2, 
“Conv|256|9 × 9| ↓ 4|BN|PRelu” represents a 
convolutional layer with 256 features and kernel 
size of 9 × 9 followed by downsampling by a fac-
tor of 4, batch normalization and parametric rec-
tified linear activation unit (PReLU). As depicted 
in Fig. 2, the feature decoder consists of three 
convolutional layers and two residual blocks with 
shortcut connections, where “+” denotes simple 
element-wise addition. Fig. 3 illustrates the archi-
tecture for each residual block, where “ | − − ” 
means the corresponding convolution output 
is not downsampled. The residual and shortcut 
structures ease training of the network by pre-
venting vanishing gradients along the stacked 
non-linear layers and improve the performance 
according to our simulation results.

The training cost for DeepCMC is a weighted 
sum of the mean square error (MSE) of the 
CSI reconstruction and the quantizer’s output 
entropy. A weight parameter � controls the trade-
off between the reconstruction quality and the 
feedback bit rate, with a larger value resulting in 
improved MSE at an increased bit rate. For a good 
quality feedback channel with larger capacity, uti-
lizing a network trained with a larger � results in 
improved CSI quality at the BS. However, if the 
feedback channel capacity is smaller than the 
resulting bit rate, the feedback channel will fail to 
deliver the CSI. To avoid this, a network trained 
to work at a lower bit rate (trained with smaller 
� ) should be used. Different � values will provide 
networks that work on different points on a rate-
distortion curve. The UE will store different net-
works, and use the proper one depending on the 
uplink channel state and the capacity achievable 
for CSI feedback.

We note that, in contrast to the literature on 
CSI feedback, which has mainly focused on mini-
mizing the reconstruction error, DeepCMC is 
trained with a rate-distortion cost that takes into 
account both the compression rate (in terms of 
bits per channel dimension) and the reconstruc-
tion MSE. As we will see below, this additional 

compression step leads to a significant improve-
ment in the achieved performance. It also allows 
adapting the CSI quality to the available feedback 
channel quality.

Another important benefit of the DeepCMC 
architecture is that, it is fully convolutional, and 
has no densely connected layers, which makes it 
flexible for a wide range of MIMO scenarios with 
different number of sub-channels and antennas. 
As shown by the simulation results, although 
DeepCMC is trained for a specific number of 
sub-channels and antennas, it generalizes well 
to other configurations with different number 
of sub-channels and antennas40, 41. This is very 
important for practical implementation of NN-
based CSI compression techniques, as otherwise 
the nodes would have to store a large number of 
NN parameters for every possible combination of 
antenna and subcarrier configurations.

In Fig. 4, we present a comparison of the out-
put rate-distortion curves for DeepCMC40, 41, 
CSINet 34 and CRNet43. In this comparison, we 
use the normalized mean square error defined as 

NMSE � E
�Hd−H̃d�

2
2

�Hd�
2
2

 . We plot the achieved 

NMSE, in dBs, as a function of the average num-
ber of bits used to encode each CSI entry. Note 
that the outputs for CSINet and CRNet are fea-
ture vectors of type “float32”, and hence 32-bit 
quantization is considered to calculate the result-
ing bit rate for them.

For the comparison in Fig. 4, we con-
sider downlink training for a single-antenna 
user in an FDD MIMO setting. We set 
K = 256,NB = 32,NU = 1 , and use the 
COST2100 channel model 18 to generate sam-
ple channel matrices for training and testing. 
We consider the indoor picocellular scenario at 
5.3 GHz, where the BS is equipped with a ULA 
of dipole antennas positioned at the center of a 
20m × 20m square. The user is placed within this 
square uniformly at random. All other param-
eters follow the default settings in18. The number 
of training and testing samples are 80,000 and 
20,000, respectively, and the batch size is 100.

As it can be observed from Fig. 4, Deep-
CMC provides significant improvement in the 
quality of the reconstructed CSI at the BS with 
respect to CSINet and CRNet at all bit rate val-
ues. We remark here that, CSINet itself provides 
3 − 6 dB improvement in NMSE compared to 
model-based CSI compression techniques in the 
literature exploiting sparsity of the channel gain 
matrix34. However, the gains from DeepCMC are 
even more drastic, achieving remarkably good 

Figure 3: The residual block model.
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reconstruction of the channel gain matrix with 
NMSE of −13 dB at a bit rate lower than 0.16 bits 
per CSI entry. These results show that DeepCMC 
outperforms CSINet 4–6 dB in NMSE for the 
range of compression rates considered here. For 
example, for a target value of NMSE = −5 dB, 
DeepCMC can provide more than 5 times reduc-
tion in the number of bits that must be fed back 
from the UE to the BS.

3.2  Analog CSI Feedback

Analog CSI feedback follows a joint source-
channel coding approach, and directly maps the 
downlink CSI to the uplink channel input in 
an unquantized and uncoded fashion. A CNN-
based analog CSI feedback scheme, namely 
AnalogDeepCMC is proposed in44, to carry out 
the CSI compression and feedback tasks simulta-
neously, taking into account the feedback channel 
impairments. It uses a fully convolutional autoen-
coder model to efficiently map the downlink CSI 
at the UE to the uplink channel inputs, and to 
reconstruct them at the BS. The model is trained 
treating the uplink feedback channel as a non-
trainable layer in the autoencoder. In this section, 
we provide performance comparisons between 
AnalogDeepCMC and the digital approach using 
DeepCMC for CSI compression, based on the 
quality of the reconstructed CSI at the BS when 
the same amount of uplink channel resources is 
devoted to CSI feedback. We will observe that the 
analog scheme improves the CSI reconstruction 
quality and consequently the achievable down-
link rate without requiring the UL CSI at the UE 
for feedback transmission.

Consider CSI feedback from a single-antenna 
user to a BS with NB antennas utilizing OFDM. 
Denote the uplink and downlink channel 
matrices by Hu ∈ C

Ku×NB and Hd ∈ C
Kd×NB , 

respectively. Assume that the downlink CSI Hd 
available at the UE is fed back to the BS over NF 
uplink OFDM subcarriers devoted to CSI feed-
back picked uniformly at random, with ρ �

NF

Ku
 

denoted as the feedback overhead. The feedback 
channel over the j-th uplink subcarrier denoted 
by h

j
F ∈ C

NB×1, j = 1, · · · ,NF , is obtained from 
the corresponding row of Hu , which specifies a 
SIMO channel with its output given by

in which yj ∈ C
NB×1 is the received signal at the 

BS antennas, xj is the symbol fed back over the j-
th subcarrier and zj ∈ C

NB×1 is the independent 
AWGN component. With NF uplink sub-carriers 
dedicated for CSI feedback, a maximum rate of 
CFB =

∑NF
j=1 log2(1 + SNRFB�h

j
F�2) is available 

for CSI feedback, where SNRFB is the signal to 
noise ratio (SNR) in the uplink channel. How-
ever, note that CFB depends on the uplink channel 
state, which is not known by the UE. In a digital 
CSI feedback scheme, the UE will typically take a 
conservative approach and transmit at a rate that 
can be decoded with high probability. Using CFB 
as the feedback rate provides an upper bound 
on the performance of any digital CSI feedback 
scheme.

Figure 5 depicts the model architecture for 
Analog-DeepCMC44. The UE applies a CNN-
based feature encoder composed of three con-
volutional layers, which outputs real-valued 
features. Each pair of these real numbers are 
then grouped to form a complex-valued symbol, 
which are subsequently normalized to ensure the 
input power constraint over the feedback chan-
nel is met. These normalized symbols are then 
directly mapped to the corresponding subcarri-
ers, and transmitted over the CSI feedback chan-
nel. The BS then performs MRC and feature 
decoding to reconstruct the original CSI matrix 
Hd . AnalogDeepCMC is trained including the 
feedback channel (noise and fading) as well as the 
MRC block as non-trainable layers in between the 
autoencoder structure.

For comparison of the digital and analog feed-
back performance results, we will assume that the 
digital feedback can be provided at the instan-
taneous capacity of the feedback channel. As we 
have discussed above, this would require the UE 
to know the uplink channel state. However, dur-
ing downlink channel training in an FDD MIMO 

(7)yj = h
j
Fxj + zj ,
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scenario, the UE does not yet know the uplink 
CSI, and hence, will typically take a cautious 
channel coding and modulation approach which 
works at a rate significantly below CFB . Moreover, 
we assume error-free transmission at the capacity 
despite a codelength of only NF symbols. There-
fore, the corresponding NMSE result presented 
for the digital feedback scheme can be treated as a 
rather generous lower bound on the actual NMSE 
performance of any practical digital CSI feedback 
scheme.

Figure 6 depicts the average NMSE (dB) 
as a function of the CSI overhead ρ for differ-
ent values of the uplink channel SNR based on 
digital feedback using separate CSI compres-
sion with the DeepCMC algorithm followed by 
capacity-achieving channel coding. In this figure, 
DeepCMC is trained for two different � values 
resulting in NN1 and NN2. NN1 corresponds 
to a point with better reconstruction quality at 
a higher rate on the rate-distortion curve given 
in Fig. 4. The simulation scenario is the same as 

in Fig. 4 with Kd = 256,NB = 32,NU = 1 . Note 
that DeepCMC is a variable-length lossy com-
pression scheme; that is, for each CSI matrix, 
the UE obtains different number of bits at the 
output of the entropy coder. On the other hand, 
the capacity of the feedback channel is also ran-
dom, depending on the states of the NF sub-
carriers dedicated to CSI feedback. Therefore, 
if the number of bits at the encoder’s output 
exceeds CFB , the feedback channel fails to deliver 
the CSI, called an outage event, and the NMSE 
will equal 0dB. This is why the NMSE curves all 
saturate at 0dB for low ρ values. If the CSI over-
head decreases below a threshold, outages will 
occur with increasing frequency resulting in 
an increased NMSE. As ρ increases beyond this 
threshold value, outage probability decreases with 
ρ . Beyond another higher threshold value, outage 
probability approaches zero, and the autoencoder 
reconstructs the CSI at the NMSE that it has 
been trained for (depending on the � value which 
controls the rate-distortion trade-off). This is 
the reason why the NMSE curves also saturate 
at high ρ values. According to the figure, as the 
uplink SNR decreases, thresholds for both satura-
tion regions increase. We would like to highlight 
that, for the setting considered here ( Ku = 256 ), 
ρ = 20% would correspond to a channel code of 
length 51 symbols, in which case the code rates 
with reasonable reliability are significantly below 
the capacity 45; that is, the NMSE values in this 
figure are quite generous for the digital scheme.

As observed in Fig. 6, for efficient digital CSI 
feedback, the UE requires the uplink CSI not only 
to decide on the appropriate channel coding rate, 
but also to use a NN trained with the proper � 
value to achieve the minimum possible NMSE. 
Networks trained for different reconstruction 
qualities result in different threshold behaviors. 
A network trained for better reconstruction qual-
ity results in an increased performance threshold 
but achieves a smaller NMSE for overhead values 
above the threshold. If uplink CSI is not available, 

Figure 5: AnalogDeepCMC for analog MIMO CSI feedback.
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which is the case during downlink training of 
FDD massive MIMO, the UE will typically need 
to take conservative source and channel coding 
approaches, which will result in considerable deg-
radation of the CSI reconstruction quality with 
respect to those presented in Fig. 6.

Figure 7 depicts the average CSI reconstruc-
tion NMSE (dB) as a function of the CSI over-
head ρ for different values of the uplink SNR 
using AnalogDeepCMC. The curves for different 
SNR values in Fig. 7 correspond to NN models 
trained for the corresponding uplink SNR. As 
observed in Fig. 7, there is no threshold behav-
ior in the analog CSI scheme and the NMSE 
curves exhibit graceful performance degrada-
tion with decreasing SNR in the uplink chan-
nel. This is unlike the digital feedback approach, 
which may result in severely degraded CSI qual-
ity (NMSE = 0 dB) due to outages if the uplink 
SNR decreases below a threshold. Hence, unlike 
the digital CSI scheme, AnalogDeepCMC does 
not require uplink CSI to send the downlink CSI 
back to the BS. The analog CSI scheme is much 
more favorable not only due to avoiding the per-
formance thresholds and eliminating the need 
for explicit uplink CSI, but also for avoiding the 
channel coding and modulation delays.

4  CSI Training with Side Information

In the previous sections, we have focused on 
exploiting the joint distribution of CSI matrices 
to reduce the overhead for CSI estimation and 

feedback using NNs for lossy CSI compression. In 
this section, we will explore how we can exploit 
joint distribution across antennas and subcarri-
ers, or across time and space to further reduce, or 
even completely remove the amount of required 
CSI feedback. This is based on the idea of using 
the available CSI information at the BS at a cer-
tain point in time, space or frequency or a sub-
set of antennas as correlated side information to 
improve the compression efficiency with NNs. 
This can be considered as implementing Wyner-
Ziv lossy compression 46 in the presence of cor-
related side information at the receiver.

As an example, consider a FDD massive 
MIMO scenario, where channel reciprocity does 
not hold, and separate downlink and uplink 
training would normally be necessary. Although 
the uplink and downlink channels are not fully 
reciprocal, the uplink and downlink signals trav-
erse the same geometrical paths with different 
frequencies, which imposes some correlation 
between them. The authors in 37 use the uplink 
CSI (which is already available at the BS by uplink 
training) as a side information to further improve 
downlink CSI reconstruction performance by 
utilizing the correlations between downlink and 
uplink channels. In 38, the authors use delayed 
CSI (which has been delayed due to the limited 
communication rate in the feedback channel) 
as the correlated side information. As another 
example, the BS can exploit joint distribution 
of the CSI for nearby UEs to estimate, compress 
and feedback the CSI jointly at a reduced over-
head. Considering downlink training of a FDD 
massive MIMO system, the authors in 41, 47 use a 
NN to learn and exploit joint distribution of the 
CSI for nearby UEs and the correlation among 
their channels to reduce the CSI feedback over-
head similarly to a distributed lossy compression 
scheme.

If the side information proves to be sufficient 
for predicting the required CSI with an acceptable 
distortion using a NN, then the NN can charac-
terize a mapping function to predict the required 
CSI from the available side information with zero 
overhead. Such mappings can significantly reduce 
the CSI acquisition overhead and have been con-
sidered in 48 for different mapping scenarios in 
frequency and space. As an example, the authors 
in 48, 49 train a fully connected NN to predict 
downlink from the uplink CSI, and hence totally 
eliminate the downlink training and feedback 
overhead.
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5  Conclusion and Future Research 

Directions

Massive MIMO systems are considered as the key 
technology to enable the excessive throughput 
requirements in 5G and future generation wire-
less networks due to their ability to serve many 
users simultaneously with high spectral and 
energy efficiency. However, due to the drastic 
increase in the number of antennas, CSI acqui-
sition and feedback become challenging, requir-
ing excessive time, frequency and computational 
resources potentially crippling benefits of mas-
sive MIMO systems. Many previous works have 
taken model-driven approaches assuming sparse 
or low-rank models on the CSI matrix to reduce 
the overhead. However, these techniques can-
not exploit statistical structures that go beyond 
sparsity. This encouraged data-driven approaches 
based on training NN architectures over large 
datasets of CSI matrices, generated using accurate 
channel models or even from channel measure-
ments, to capture these structures and use them 
to reduce CSI acquisition and feedback overhead. 
DL-based approaches have shown significant 
improvements in comparison with traditional 
methods for CSI estimation, compression and 
feedback. Yet, there is still much room for future 
research.

Many NN architectures proposed so far use 
fully-connected layers for different estimation/
compression tasks. While fully-connected NNs 
have the potential to learn and exploit complex 
joint distributions across all the antennas and 
subcarriers, they do not easily scale with MIMO 
dimensions, and need separate training for dif-
ferent number of antennas, subcarriers, etc. 
Hence, more insights on the correlation struc-
tures of the CSI in practical massive MIMO 
systems need to be exploited to design more 
efficient and less complex NNs for the CSI 
acquisition tasks. On the other hand, many of 
the existing works focus on a single task (e.g., 
channel estimation) and propose a NN archi-
tecture to achieve optimized performance for 
that specific task. However, the complete CSI 
training process consists of pilot transmission, 
CSI estimation, and feedback, and these tasks 
interact and effect each other (e.g., a less accu-
rate channel estimate may be good enough if 
the subsequent CSI compression block would 
introduce significant distortion due to the lim-
ited capacity of the feedback channel). On the 
other hand, NNs have the capability to model 
and optimize processes in an end-to-end man-
ner. A NN architecture trained end-to-end for 
the CSI acquisition task is not yet available. We 

believe such an end-to-end optimized architec-
ture will not only benefit from the interactions 
between different tasks, but also can reduce 
the overall complexity of the NN by avoiding 
repeated layers that would be required in a task-
by-task design process. We also note that, most 
of the existing results consider a single-user or 
a single-cell massive MIMO system, and extend-
ing these results to more general multi-cell 
multi-user massive MIMO scenarios is another 
potential direction for future research. Finally, 
practical implementation of these NN-based 
techniques in real environments on real devices 
has not yet been studied, but may be critical not 
only to evaluate the performance of the NNs 
trained on data generated by various chan-
nel models in real channel conditions, but also 
to understand the impact of limited computa-
tional resources available at the UEs.
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