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Abstract. Automatic segmentation of medical images is an important
task for many clinical applications. In practice, a wide range of anatom-
ical structures are visualised using different imaging modalities. In this
paper, we investigate whether a single convolutional neural network
(CNN) can be trained to perform different segmentation tasks.

A single CNN is trained to segment six tissues in MR brain images,
the pectoral muscle in MR breast images, and the coronary arteries in
cardiac CTA. The CNN therefore learns to identify the imaging modal-
ity, the visualised anatomical structures, and the tissue classes.

For each of the three tasks (brain MRI, breast MRI and cardiac CTA),
this combined training procedure resulted in a segmentation performance
equivalent to that of a CNN trained specifically for that task, demon-
strating the high capacity of CNN architectures. Hence, a single system
could be used in clinical practice to automatically perform diverse seg-
mentation tasks without task-specific training.

Keywords: Deep learning · Convolutional neural networks · Medical
image segmentation · Brain MRI · Breast MRI · Cardiac CTA

1 Introduction

Automatic segmentation is an important task in medical images acquired with
different modalities visualising a wide range of anatomical structures. A common
approach to automatic segmentation is the use of supervised voxel classification,
where a classifier is trained to assign a class label to each voxel. The classical
approach to supervised classification is to train a classifier that discriminates
between tissue classes based on a set of hand-crafted features. In contrast to this
approach, convolutional neural networks (CNNs) automatically extract features
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that are optimised for the classification task at hand. CNNs have been success-
fully applied to medical image segmentation of e.g. knee cartilage [11], brain
regions [1,10], the pancreas [12], and coronary artery calcifications [18]. Each of
these studies employed CNNs, but problem-specific optimisations with respect
to the network architecture were still performed and networks were only trained
to perform one specific task.

CNNs have not only been used for processing of medical images, but also for
natural images. CNN architectures designed for image classification in natural
images [7] have shown great generalisability for divergent tasks such as image
segmentation [13], object detection [3], and object localisation in medical image
analysis [17]. Hence, CNN architectures may have the flexibility to be used for
different tasks with limited modifications.

In this study, we first investigate the feasibility of using a single CNN architec-

ture for different medical image segmentation tasks in different imaging modali-
ties visualising different anatomical structures. Secondly, we investigate the fea-
sibility of using a single trained instance of this CNN architecture for different
segmentation tasks. Such a system would be able to perform multiple tasks in dif-
ferent modalities without problem-specific tailoring of the network architecture
or hyperparameters. Hence, the network recognises the modality of the image,
the anatomy visualised in the image, and the tissues of interest. We demonstrate
this concept using three different and potentially adversarial medical image seg-
mentation problems: segmentation of six brain tissues in brain MRI, pectoral
muscle segmentation in breast MRI, and coronary artery segmentation in car-
diac CT angiography (CTA).

2 Data

Brain MRI – 34 T1-weighted MR brain images from the OASIS project [9]
were acquired on a Siemens Vision 1.5 T scanner, as provided by the MICCAI
challenge on multi-atlas labelling [8]1. The images were acquired with voxel sizes
of 1.0×1.0×1.25mm3 and resampled to isotropic voxel sizes of 1.0×1.0×1.0mm3.
The images were manually segmented, in the coronal plane, into 134 classes that
were, for the purpose of this paper, combined into six commonly used tissue
classes: white matter, cortical grey matter, basal ganglia and thalami, ventricular
cerebrospinal fluid, cerebellum, and brain stem.

Breast MRI – 34 T1-weighted MR breast images were acquired on a Siemens
Magnetom 1.5 T scanner with a dedicated double breast array coil [16]. The
images were acquired with in-plane voxel sizes between 1.21 and 1.35 mm and
slice thicknesses between 1.35 and 1.69 mm. All images were resampled to
isotropic voxel sizes corresponding to their in-plane voxel size. The pectoral
muscle was manually segmented in the axial plane by contour drawing.

1 https://masi.vuse.vanderbilt.edu/workshop2012.

https://masi.vuse.vanderbilt.edu/workshop2012
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Cardiac CTA – Ten cardiac CTA scans were acquired on a 256-detector row
Philips Brilliance iCT scanner using 120 kVp and 200–300 mAs, with ECG-
triggering and contrast enhancement. The reconstructed images had between
0.4 and 0.5 mm in-plane voxel sizes and 0.45/0.90 mm slice spacing/thickness.
All images were resampled to isotropic 0.45 × 0.45 × 0.45mm3 voxel size. To
set a manual reference standard, a human observer traversed the scan in the
craniocaudal direction and painted voxels in the main coronary arteries and
their branches in the axial plane.

3 Method

All voxels in the images were labelled by a CNN using seven different training
experiments (Fig. 1).

3.1 CNN Architecture

For each voxel, three orthogonal (axial, sagittal, and coronal) patches of 51 ×

51 voxels centred at the target voxel were extracted. For each of these three
patches, features were determined using a deep stack of convolution layers. Each
convolution layer contained 32 small (3×3 voxels) convolution kernels for a total
of 25 convolution layers [14]. To prevent over- or undersegmentation of structures
due to translational invariance, no subsampling layers were used. To reduce the
number of trainable parameters in the network and hence the risk of over-fitting,
the same stack of convolutional layers was used for the axial, sagittal and coronal
patches.

The output of the convolution layers were 32 features for each of the three
orthogonal input patches, hence, 96 features in total. These features were input
to two subsequent fully connected layers, each with 192 nodes. The second fully
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Fig. 1. Example 51×51 triplanar input patches (left). CNN architecture with 25 shared
convolution layers, 2 fully connected layers and an output layer with at most 9 classes,
including a background class common among tasks (centre). Output classes included
in each training experiment (right).
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connected layer was connected to a softmax classification layer. Depending on
the tasks of the network, this layer contained 2, 3, 7, 8 or 9 output nodes. The
fully connected layers were implemented as 1 × 1 voxel convolutions, to allow
fast processing of arbitrarily sized images. Exponential linear units [2] were used
for all non-linear activation functions. Batch normalisation [5] was used on all
layers and dropout [15] was used on the fully connected layers.

3.2 Training Experiments

The same model was trained for each combination of the three tasks. In total
seven training experiments were performed (Fig. 1, right): three networks were
trained to perform one task (Experiments 1–3), three networks were trained to
perform two tasks (Experiments 4–6), and one network was trained to perform
three tasks (Experiment 7). The number of output nodes in the CNN was modi-
fied accordingly. In each experiment, background classes of the target tasks were
merged into one class.

Each CNN was trained using mini-batch learning. A mini-batch contained
210 samples, equally balanced over the tasks of the network. For each task, the
training samples were randomly drawn from all training images, balanced over
the task-specific classes. All voxels with image intensity > 0 were considered
samples. The network parameters were optimized using Adam stochastic opti-
misation [6] with categorical cross-entropy as the cost-function.

4 Experiments and Results

The data for brain MRI, breast MRI and cardiac CTA were split into 14/20,
14/20 and 6/4 training/test images, respectively. Four results were obtained for
each task: one with a network trained for only that task, two with networks
trained for that task and an additional task, and one with a network trained for
all tasks together. Each network was trained with 25000 mini-batches per task.

No post-processing steps other than probability thresholding for evaluation
purposes were performed. The results are presented on the full test set. In brain
MRI, the voxel class labels were determined by the highest class activation.
The performance was evaluated per brain tissue type, using the Dice coefficient
between the manual and automatic segmentations. In breast MRI and cardiac
CTA, precision-recall curve analysis was performed to identify the optimal oper-
ating point, defined, for each experiment, as the highest Dice coefficient over the
whole test set. The thresholds at this optimal operating point were then applied
to all images.

Figure 2 shows the results of the described quantitative analysis, performed at
intervals of 1000 mini-batches per task. As the networks learned, the obtained
Dice coefficients increased and the stability of the results improved. For each
segmentation task, the learning curves were similar for all experiments. Nev-
ertheless, slight differences were visible between the obtained learning curves.
To assess whether these differences were systematic or caused by the stochastic
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Fig. 2. Learning curves showing Dice coefficients for tissue segmentation in brain MRI
(top three rows), breast MRI (bottom left), and cardiac CTA (bottom right), reported
at 1000 mini-batch intervals for experiments including that task. The line colours cor-
respond to the training experiments in Fig. 1.
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Fig. 3. Example segmentations for (top to bottom) brain MRI, breast MRI, and cardiac
CTA. Shown for each task: (left to right, first row) image with an input patch as
shown in Fig. 1, reference standard, segmentation by task-specific training, (left to right,

second row) two segmentations by networks with an additional task, segmentation
by a network combining all tasks. The coloured borders correspond to the training
experiments in Figs. 1 and 2.
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nature of CNN training, the training experiment using only brain MR data
(Experiment 1) was repeated (dashed line in Fig. 2), showing similar inter-
experiment variation. Figure 3 shows a visual comparison of results obtained
for the three different tasks. For all three tasks, all four networks were able to
accurately segment the target tissues.

Confusion between tasks was very low. For the network trained with three
tasks, the median percentage of voxels per scan labelled with a class alien to the
target (e.g. cortical grey matter identified in breast MR) was <0.0005% for all
tasks.

5 Discussion and Conclusions

The results demonstrate that a single CNN architecture can be used to train
CNNs able to obtain accurate results in images from different modalities, visu-
alising different anatomy. Moreover, it is possible to train a single CNN instance
that can not only segment multiple tissue classes in a single modality visualising
a single anatomical structure, but also multiple classes over multiple modalities
visualising multiple anatomical structures.

In all experiments, a fixed CNN architecture with triplanar orthogonal input
patches was used. We have strived to utilise recent advances in deep learning
such as batch normalisation [5], Adam stochastic optimisation [6], exponential
linear units [2], and very deep networks with small convolution kernels [14].
Furthermore, the implementation of fully connected layers as 1 × 1 convolution
layers and the omission of downsampling layers allowed fast processing of whole
images compared with more time-consuming patch-based scanning [10–12,18].
The ability of the CNN to adapt to different tasks suggests that small architec-
tural changes are unlikely to have a large effect on the performance. Volumetric
3D input patches might result in increased performance, but would require a high
computational load due to the increased size of the network parameter space.

The results for brain segmentation are comparable with previously published
results [10]. Due to differences in image acquisition and patient population, the
obtained results for pectoral muscle segmentation and coronary artery extraction
cannot be directly compared to results reported in other studies. Nevertheless,
these results appear to be in line with previously published studies [4,19]. No
post-processing other than probability thresholding for evaluation purposes was
applied. The output probabilities may be further processed, or directly used as
input for further analysis, depending on the application.

Including multiple tasks in the training procedure resulted in a segmentation
performance equivalent to that of a network trained specifically for the task
(Fig. 2). Similarities between the tasks, e.g. presence of the pectoral muscle in
both breast MR and cardiac CTA, or similar appearance of brain and breast
tissue in T1-weighted MRI, led to very limited confusion. In future work, we will
further investigate the capacity of the current architecture with more data and
segmentation tasks, and investigate to what extent the representations within
the CNN are shared between tasks.
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