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Abstract— Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain
injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid
the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-
ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to
offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution
to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the
high inter-subject variability in EEG data. We propose two patient-independent deep learning architectures with different
learning strategies that can learn a global function utilizing data from multiple subjects. Proposed models achieve state-
of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy
respectively. In conclusion, the Siamese model trained on the proposed learning strategy is able to learn patterns related
to patient variations in data while predicting seizures. Our models show superior performance for patient-independent
seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are
the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and
we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and
pre-ictal brain states.

Index Terms— Sensor data processing, machine learning, neural networks, biomedical signal processing, model interpre-
tation, seizure prediction, electroencephalography

I. INTRODUCTION

According to the World Health Organization (WHO),

epilepsy is a chronic non-communicable disease of the brain

that affects humans of all ages. Around 50 million people in

the world suffer from epilepsy, and almost 80% of those people

live in third-world countries [1]. Since epileptic seizures are

unpredictable events, they affect the daily lives of sufferers by

leading to unexpected accidents and increased mental stress.

Early detection of seizures can help to reduce the physical and

mental damage caused, and supports early medical diagnosis

of seizures [2]–[4].

Electroencephalography (EEG) is commonly used to study

variations in brain activity and helps to identify normal and

abnormal events occurring in the human brain. In addition,

EEG is relatively low-cost which makes it ideal for patients

with epilepsy. To accurately determine seizure events, longer

duration EEG signals need to be collected, which requires

expert monitoring and constrained experimental settings.

Figure 1 illustrates the problem definition of epileptic

seizure prediction and the four main brain stages in an epileptic

seizure event. In the same figure, we also highlight the problem

of epilepctic seizure detection, which is considered a separate

problem to seizure prediction. The interictal state refers to

the normal brain state of a patient. The brain state before a

Theekshana Dissanayake, Tharindu Fernando, Simon Denman,
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Fig. 1: Seizure Prediction vs Seizure Detection: Seizure pre-

diction seeks to predict the brain state prior to a seizure

occurring, allowing the seizure to be forecast in advance.

seizure event is termed the pre-ictal state. This state may last

from minutes to hours depending on the subject. The ictal state

is the state in which the seizure occurs, and after the seizure

event the brain shifts to the post-ictal state.

Generally, epileptic seizure-related machine learning ap-

plications can be categorized into three common types. The

first type is epileptic seizure prediction where a classifier is

designed to predict a seizure event by identifying the pre-ictal

brain state of a given subject [5], [6]. The second category

is seizure detection (or abnormal EEG detection), where a

model is designed to classify between seizure (ictal) and non-

seizure (interictal) EEG segments [7]–[12]. The third category

deals with seizure classification where an EEG seizure sample



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

is classified into the specific seizure type (e.g. focal or non-

focal seizures) [13]. Here, in this study, we focus on epileptic

seizure prediction considering its importance as an early

diagnosis technique.

As illustrated in Figure 1, seizure prediction deals with de-

signing models to distinguish between pre-ictal and interictal

states of the given subject’s brain. Since the pre-ictal state

duration is subjective [5], pre-ictal duration becomes a design

choice in proposed algorithms. Hence, if the classifier predicts

the given EEG signal is pre-ictal, the model is indicating that a

seizure will occur within the defined pre-ictal time (duration).

The early prediction capability of the designed classifier varies

depending on the duration taken as the pre-ictal time. For

instance, if the pre-ictal duration is defined as one hour, then

the designed classifier has the ability to recognize seizures with

a one-hour prediction window [6] (see Figure 1). In addition,

researchers often consider the interictal brain state to be four

hours before or after seizure onset [6].

Epileptic seizure prediction can be solved using two ap-

proaches:

1) Patient-independent studies aim to design a classifier

that can recognize seizures across multiple subjects.

When designing such models, the entire dataset is uti-

lized, and the objective is to learn a global predictive

function that has the ability to perform prediction across

multiple subjects in the dataset [14].

2) Patient-specific studies deal with designing one clas-

sifier per subject considering the high inter subject

variability in EEG data [15]. Here, a single classifier

architecture is designed and is fine-tuned for each sub-

ject. The final performance of the model is denoted by

the average accuracy after training/testing the classifier

across all or a selected set of subjects in the dataset

[6]. This approach simplifies the problem by focusing

on each subject separately when designing a model, but

these methods suffer from limited data availability.

It should be noted that designing patient-independent mod-

els is a complex task given that EEG data contain high

inter subject variability. Acknowledging this, researchers have

simplified the problem by designing patient-specific models,

however we argue that they do not offer a reliable solution

for the problem when a subject in the dataset has fewer

recordings. Studying recent literature, some researchers have

generated artificial data [16] and others have ignored subjects

with fewer samples when designing patient-specific models

[6]. Therefore, there is an essential need to investigate deep

learning techniques that can learn from data from multiple

subjects to effectively address the patient-independent seizure

prediction task [14], [17].

The main contribution of this study is the proposal of

a patient-independent model for epileptic seizure prediction.

Such a method has the capability to learn from subjects with

fewer samples while learning from subjects with compara-

tively higher number of samples uniformly, providing attention

to all subjects in the dataset. It should be acknowledged

that if the number of recordings available for each patient is

consistent across the dataset, and those recordings have longer

durations, then designing a patient specific model is a feasible

approach. However, often medical datasets comprise a varied

number of recordings per subject, and therefore, being able

to learn a global function considering the entire dataset is

important for real world scenarios [14].

Since the medical definition of an epileptic seizure event is

uniform for humans, another advantage of learning a global

function is it can be used to understand overall patterns in

the dataset. Given that existing epileptic seizure studies lack

model interpretation [18], the designed model can be used

along with a model interpretation algorithm to understand

hidden seizure-related patterns in data. Furthermore, design-

ing patient-independent models can be used as a prior step

for designing patient-specific seizure classifiers; enabling the

creation of models from less data [19]. Our main contributions

are the following:

1) We propose two different patient-independent seizure

prediction models with a one-hour early prediction win-

dow, which out perform the state-of-the-art approaches:

Model I: 88.81(±0.27)%, Model II: 91.54(±0.17)% on

the the CHB-MIT EEG dataset [20].

2) We comparatively analyse the learning power of Siamese

networks and classical CNN models as deep learning

techniques that can be used to learn from data with high

inter-subject variability.

3) We employ model interpretation to understand the input

attribution. To the best of our knowledge, this is the

first study that uses model interpretation to analyze the

channel-level input contribution of models designed for

epileptic seizure prediction.

4) We examine the change in predictive characteristic (bio-

marker) when the brain state shifts from the interictal

stage to the pre-ictal stage using a probabilistic ap-

proach.

5) We demonstrate how our Siamese network can be trans-

ferred to a patient specific model with almost 97%

average accuracy.

The rest of the paper is organized as follows. In Section

II, we discuss recent investigations related to epileptic seizure

prediction. In Section III, we explain the dataset used for the

study and deep learning strategies adopted. In Section IV, we

present the results of proposed deep learning models, and we

also demonstrate how to use model interpretation to under-

stand hidden patterns learned by the best performing model.

Furthermore, in the same section, we explain our results

on predictive bio-marker analysis and additional analysis we

conducted to evaluate the robustness of the proposed approach.

Finally, in Section V, we summarize our findings.

II. RELATED WORK

The literature on deep learning-based epileptic seizure

prediction can be divided into two key branches: patient-

independent seizure prediction and patient-dependent seizure

prediction. Clearly, developing patient-independent classifiers

can be recognized as the complex task since researchers have

to handle patient variations and distinguish between seizure-

related patterns in the data [5], [21].

The recent study by Tsiouris et al. [21] proposed a Support

Vector Machine classifier to identify pre-ictal and interictal
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brain states from EEG signals. They have employed time

domain, frequency domain, and graph theory-based features

for training their model. Their final classifier, which was eval-

uated on all 24 subjects from the CHB-MIT EEG dataset [20]

achieved an accuracy of 68.50% for patient-independent clas-

sification. The deep learning model proposed by Khan et al. [5]

is the state-of-the-art model for patient-independent epileptic

seizure prediction, and it achieves 0.8660 ROC-AUC score for

pre-ictal state detection with a 10 minute early prediction win-

dow. This prediction window was determined by the authors as

the location where the adopted features start to change when

the brain is shifting from the pre-ictal to interictal state in a

majority of subjects.

Compared to patient-independent studies, a large number

of studies can be found investigating patient-specific seizure

classification, as a result of the high inter subject variability in

EEG data. The recent study conducted by Daoud and Bayoumi

[6] achieves almost 100% performance for a classifier trained

separately for eight patients (from 24) using an Encoder-

Decoder CNN + Bidirectional LSTM network. They have

used an Encoder-Decoder network as the feature extractor,

and have proposed a channel selection algorithm to achieve

improved performance. In another recent investigation, Zhang

et al. [16] proposed a CNN model for patient-specific seizure

prediction. To overcome the data limitation problem, they have

used multi-segment cutting and splicing method and a gener-

ative adversarial network for to synthesise new data. In their

study they have emphasised that using such an augmentation

methods adds complexity and increases the training time of

the overall process. Their classifier achieved 92.2% accuracy

with a 30 minutes early prediction window for 23 subjects

from the CHB-MIT EEG dataset [20]. A similar study that

used data augmentation techniques to design patient-specific

models can be found in [19].

Another algorithmic method to overcome data scarcity is

extracting multiple descriptive features from the EEG wave-

forms that contain seizure related characteristics. The study

by Tsiouris et al. [22] presents such an evaluation on patient-

specific models and employs the CHB-MIT EEG dataset [20].

Some of the features they considered include time-domain

statistical, spectral power-based, autocorrelation-based, and

graph theory-based features. They have been able to achieve

99.84% average accuracy using a Long-Short Term Memory

(LSTM) network.

As noted, to overcome data scarcity issues when train-

ing patient-specific deep learning models, researchers have

used data-level and feature-level improvement strategies. The

problem of high inter subject variability in EEG data has

been acknowledged and discussed in the seizure prediction

literature, yet few researchers have considered ways of over-

coming this problem by designing patient-independent models.

Similar concerns have been raised in the recent review on

deep learning-based EEG analysis by Roy et al. [14] who

observe that patient-specific models designed for EEG appli-

cations demonstrate good performance, since the data has low

variability considering a subject, whereas designing patient-

independent models is a challenging task. They further note

that, examining a broad range of EEG-related studies which

have investigated both approaches, patient-specific approaches

have often shown better performance than patient independent

methods [14]. According to their observations on current EEG-

based deep learning applications, there has been a clear trend

in investigating patient-independent models recognizing their

advantages as real world solutions for EEG applications.

In summary, we recognize the following limitations in the

current epileptic seizure prediction literature.

Little attention has been given to patient-independent studies

considering the high inter subject variability in EEG data. As

in [14], we argue that designing patient-independent models

is a challenging task, but conducting research related to such

models is important as they offer a more realistic solution to

the problem. In the context of this objective, the prediction

accuracy and prediction horizon of such methods should be

improved considering the predictive capabilities of patient-

specific studies.

Other observed limitations are related to the explainability

of the model and the predictive capacity of the input feature

representations used. The recent review by Rasheed et al [18]

discusses the importance of interpretability of the design

model. We observe that model interpretation can be an ef-

fective tool to build understanding and trust among end-

users (who do not necessarily possess a machine learning

background) regarding the generated predictions. Furthermore,

according to recent review by Kuhlmann et al. [23], deep

learning-based seizure prediction studies haven’t focused on

the predictive capabilities of the input features used. Therefore,

acknowledging these limitations further investigations should

be conducted.

III. METHODOLOGY

Convolutional Neural Networks (CNNs) have achieved

tremendous success in a number of different machine learning

tasks ranging from object recognition to autonomous driving

[24]. Furthermore, they have been successfully applied to

learning from biosignal data after transforming biosignals into

time-frequency representations [25]. Their success lies in the

fact that they can automatically learn salient features from the

data without need for hand-crafting feature representations.

Moreover, CNN models are inherently shift invariant, making

them a robust solution to learning from biosignal data.

In this study, we propose two deep learning models for

patient-independent epileptic seizure prediction inspired by the

novel multitask learning techniques [26], [27], which allow us

to train models that have the ability to recognize differences

within patients while also performing seizure classification.

Here, we argue that understanding patient differences during

training is key to enabling the model to learn complex patterns

in the data, which ultimately leads to higher prediction accu-

racy. The remainder of this section is organized as follows. In

Section III-A, we discuss the dataset used for the evaluation.

In Sections III-B and III-C, we propose two different deep

learning models for patient-independent seizure prediction. In

Section III-D, we discuss additional studies we conducted to

evaluate the effectiveness of the proposed patient-independent

learning technique.



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 2: CNN network architecture. LBCE : Binary Cross Entropy Loss, LCCE Categorical Cross Entropy Loss. Conv2D:XX(h,w)

refers to a 2D Convolution layer with XX (h,w) sized filters. Dense:XX: A fully connected linear layer with XX neurons.

Fig. 3: Siamese network architecture. LBCE : Binary Cross Entropy Loss, LCons Categorical Cross Entropy Loss. Here, we

only show a one CNN-encoder branch of the Siamese network with the extended classification output. Conv2D:XX(h,w) refers

to a 2D Convolution layer with XX (h,w) sized filters. Dense:XX: A fully connected linear layer with XX neurons.

A. Data Preparation

We use recordings from the CHB-MIT EEG dataset col-

lected at the Children’s Hospital Boston [20]. This dataset

contains 24 EEG recording samples captured from 23 subjects:

5 male subjects aged between 3–22 years, 17 female subjects

aged between 1.5–19 years and an additional non-annotated

sample was added later. The additional sample was later

captured from subject 1 after 1.5 years, and recent studies

have treated this as a separate recording captured as a different

subject (i.e yielding 24 cases/subjects) [21], [28]. The dataset

was intended to be recorded as a continuous EEG database.

Therefore, for each subject, it contains annotations related to

the capture start times and end times. However, there are some

samples with gaps from 10s to multiple hours as a result of

hardware limitations.

Furthermore, some subjects contain 22 EEG-channel record-

ings from the 10-20 system. To be consistent with other

cases, we added an additional channel for those subjects by

computing the average across the available 22 channels. We

followed this step to ensure the consistency of the dataset, as

dropping 1 channel from the 23-channeled EEG spectrum may

remove some important seizure related patterns in data.

Similar to the investigation by Daoud and Bayoumi [6],

we assume the pre-ictal state duration of each patient to be

at least one hour before the seizure onset, and the interictal

state of the brain occurs four hours before or after the seizure

onset. Given that the pre-ictal state of the brain is subjective,

and it may appear hours before the seizure encounter, this

criterion will ensure that we capture the most promising

samples to accurately represent the interictal brain state of the

subject. After selecting pre-ictal and interictal samples from

each patient, we obtained a 158,902 sample balanced dataset

where each sample has a duration of 10s and 23-channels.

When constructing this balanced dataset, since the original

data has a limited number of pre-ictal signals (or recordings

with seizures) we used 2s overlap while windowing those

signals. However, our interictal samples are non-overlapping

10s signals and the balanced dataset contain samples from all

available EEG recordings in the database.

For training deep learning models, we used the Mel Fre-

quency Cepstral Coefficients (MFCCs) of the sampled signal.

This selection is based on MFCC’s wide range of applicability

for biomedical signal-related deep learning tasks [29]. To

compute the spectrum, we used 13 Filter Banks within the

frequency range of 0-256.0Hz, resulting in a feature map of

shape [23 × 13 × 201] (for 23 channels). It should be noted

that, similar to [5], we use a 10-Fold Cross-Validation to

evaluate performance, in each fold our deep learning model

will be trained on ≈140k instances and be validated on ≈15k

instances.

B. Multitask Deep Learning Architecture

In this section, we introduce a multitask Convolution Neural

Network for recognizing pre-ictal brain states. The proposed

CNN is able to differentiate between patients and pre-ictal-

interictal brain classes. As shown in Figure 2, the proposed
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model has two outputs: a seizure-related binary classification

output and a patient prediction output of size [24×1]. Consid-

ering the architecture of the model, it has five 2D convolution

layers with different filter sizes. Furthermore, for regulariza-

tion, we use Dropout with 0.6 probability and 0.4 MaxNorm

kernel normalization constraint for each convolution layer.

Loss = λ LBCE + (1− λ) LCCE . (1)

As shown in Equation 1, we employ a combined loss

function to train the model. Here, LBCE refers to the Binary

Cross-Entropy loss for the seizure classification task, LCCE

refers to the Categorical Cross-Entropy loss for the patient

prediction task, and λ is a hyperparameter that determines

the contribution from individual losses and is determined

experimentally.

C. Siamese Architecture

The model discussed in Section III-B implements a deep

learning architecture that is able to learn two different but

related concepts in the data. Inspired by our previous study

in domain generalization for biosignal data [30], we evaluate

how efficiently Siamese networks can be utilized as pre-

ictal/interictal brain state classifiers.

Figure 3 illustrates one classification branch of the proposed

Siamese network architecture for computing a unique embed-

ding for each patient (of shape [100× 1]). The model has two

convolution channels as the input, which extract features using

two different kernels shaped [5× 9] and [5× 11]. This model

also uses Dropout with 0.4 probability as a regularizer. Since

the model also acts a as a pre-ictal-interictal classifier, we use

a linear (40 neurons) layer to produce the final classification

output.

Loss = γ LCons + (1− γ) LBCE . (2)

Equation 2 expresses the loss function used for training the

Siamese network. Here, LCons refers to the Contrastive loss

[31], LBCE refers to the Binary Cross Entropy loss, and γ

is a hyperparameter that controls the relative weight of the

terms. The Contrastive loss can be expressed in the following

equation where Ytrue indicates whether the two samples are

from the same class, d is the distance measure used and

margin is the minimum separation between embeddings of

different classes.

LCons = Ytrue d2 + (1− Ytrue) max(margin− d, 0). (3)

We set the margin to 1.0 and we use L2 distance as the

distance measure (d). Within the Siamese framework, we

consider pairs of samples from the same patient to be a

matched pair, and pairs of samples from different patients to

be mis-matched pairs. For this, offline mining [31] is used to

generate paired data to train the network. Binary Cross Entropy

loss for seizure classification is computed for the first sample

of the pair (see Figure 3).

For the offline mining technique, the data stream yields pairs

of samples for the loss calculation (primary and secondary).

To generate this data stream, we use the original dataset. For

each unique primary sample in the dataset, we select a second

sample such that 50% of pairs contain samples from the same

patient, and 50% contain samples from different patients.

D. Additional Evaluation: Patient-specific Seizure

Prediction

As mentioned above, the primary focus of this study is

developing a patient-independent seizure prediction model.

We also conduct an additional evaluation regarding designing

subject-specific classifiers using Transfer Learning.

As discussed in Section II, the number of data instances

available for a particular patient is a major limitation when

designing patient-specific seizure classifiers. Therefore, to

address this problem, we use Transfer Learning to transfer

information learnt in patient-independent models to patient-

specific models. It should be noted that our dataset does

contain a considerable amount of samples from each patient

(all 24), but those samples are not sufficient to train a deep

learning classifier from scratch. Therefore, in this experiment,

we demonstrate how we can use Transfer Learning to achieve

state-of-the-art patient specific classification from the learned

model from Section III-C (i.e the Siamese-based classifier).

This strategy can be seen as the most data efficient way to

solve the problem compared to previous studies [6], [22].

In this experiment, first we remove instances (di) extracted

from the selected subject i (i ∈ [1, 2, . . . , 24]) from the dataset

(both training and evaluation). Then, we train the model (M
′

i )

using the rest of the available data. After training the model,

we transfer the learned model (M
′

i ) to the space of subject i

by re-training (or fine-tuning) the model utilizing the instances

(di) from subject si. We perform this evaluation for all 24

subjects, and train models for 200 epochs. As an additional

task, we evaluate the performance of Transfer Learning by

varying the number of selected training examples from di.

Here, to compare the classification accuracy, we use the same

validation dataset selected from di. By doing this, we analyse

the performance variation of the model as the number of

instances available changes.

IV. RESULTS AND DISCUSSION

The results and discussion is organized as follows. In

Section IV-A, we discuss the accuracies obtained by proposed

learning techniques introduced in Sections III-B and III-C. In

this section, we also use t-SNE [32] analysis to visualize how

those two methods represent the patient differences in the data

while acting as pre-ictal-interictal state classifiers. In the next

section we demonstrate how we can use model interpretation

techniques to understand what sort of input features in the

MFCC map contribute to the final prediction. Here, we only

focus on channel-level attribution of the input feature maps

of the Siamese network. Next, we employ a KL-Divergence-

based probabilistic technique to determine the exact point

where the brain state changes from the interictal state to the

pre-ictal state using MFCC features. The final section presents

results from the additional evaluation discussed in Section III-

D
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(a) Subjects (b) Pre-ictal interictal samples (c) Subjects (d) Pre-ictal interictal samples

Fig. 4: t-SNE [32] visualizations for the embeddings from models introduced in Sections III-B (Figs. a, b) and III-C (Figs. c,

d). Each visualization shows 400 randomly selected instances from each subject.

A. Patient Independent Seizure Prediction

As previously mentioned, we set the prediction horizon

as one hour, and our dataset contains 10s 23-Channel EEG

samples from all 24 subjects. We trained our models for 200

epochs with a batch size of 600. We used the Adam optimizer

with a 0.001 learning rate.

The following list demonstrates the 10 Fold Cross Validation

results for our two models (Model 1 from Section III-B and

Model 2 from Section III-C),

• Model I: Accuracy: pre-ictal-interictal state detec-

tion 88.81(±0.27)%, patient detection (additional task):

95.00(±0.56)%. Sensitivity: 93.45(±0.22)%, Specificity:

81.64(±0.23)%, ROC-AUC score: 0.9273(±0.0029), λ =

0.9

• Model II: Accuracy: pre-ictal-interictal state detection

91.54(±0.17)%, Sensitivity: 92.45(±0.22)%, Specificity:

89.94(±0.21)%. Constrastive loss: 0.0475(±0.002),

ROC-AUC score: 0.9694(±0.0018), Optimal Embedding

size: 100, γ = 0.6

As discussed in previous sections, both models in the

investigation have been trained as multitask models to predict

seizure and patient-related information. In this setting, the

Siamese network from Section III-C shows superior perfor-

mance. However, considering that the models incorporate data

from a one-hour prediction window, both models perform

better than the state-of-the-art model discussed in [5], which

achieves 0.8660 ROC-AUC score for a 10 minute prediction

window. We also note [5] only considered 15 subjects from

the same dataset, while models proposed in our investigation

shows higher accuracies on a more diverse dataset with 24

subjects. The classifiers also achieve significant accuracy gains

compared to studies by [21] and [33].

Examining the proposed models, both architectures consist

of a CNN encoder network followed by an additional linear

layer(s). Looking at the number of trainable parameters in each

classifier: the CNN multitask model contains 102k parameters

and the Siamese network holds 128k parameters. Even though

the proposed models have similar architectural arrangements,

they employ two different strategies to learn, and the in-

termediate embeddings produced by both models differ (it

should be noted that the lengths of those two embeddings

were experimentally chosen to achieve high classification

accuracies). We use t-SNE [32] to understand the capability

of those embeddings. By doing this, we seek to understand

how effectively each of these embeddings interprets patient

and seizure-relevant information.

Figure 4 shows four t-SNE [32] visualizations, illustrating

how each of the intermediate embeddings represents the con-

cepts in the data in a 2D plane. Figures 4a and 4b present

t-SNE [32] visualization of the ([360 × 1]) sized embedding

from the CNN model. The next two figures use the [100× 1]
embedding from the Siamese network. Here, for each selected

embedding, first we show the subject distribution (different

colours represent different subjects) and then we demonstrate

how pre-ictal and interictal samples are distributed in the same

space.

According to Figures 4a and 4c, compared to the CNN-

based embedding, the embedding generated from the Siamese

network shows comparatively good results in separating

patient-related information in the data. In most cases, for a

particular patient, the Siamese embedding yields a smaller

number of sub-clusters than the CNN-based embedding (see

specific color codes). Furthermore, observing class separations

in Figures 4b and 4d, the CNN-based embedding appears

to clearly divide class information in the higher dimensional

space by producing multiple clusters. In contrast, rather than

appearing as sub-clusters in the embedding space, class-related

patterns in Siamese embeddings seem to be distributed within

the patient-clusters. In fact, that behavior itself forces the

Siamese model to have a smaller number of clusters.

Analysing Figure 4, one of the reasons for the Siamese

model showing superior performance is it’s ability to clearly

separate patients. Hence, knowing the patient differences while

being trained as a pre-ictal-interictal state classifier seems to

be the key to achieving higher seizure prediction performance.

Recent patient-independent seizure prediction architectures in

the literature have overlooked this, and as mentioned, this may

be one of the reasons for having considerably low performance

compared to patient-dependent seizure models in [6], [22].

Table I shows cross validation results when varying the

pre-ictal duration taken to create the dataset. As shown in

the table, the proposed Siamese network demonstrate higher

performance when evaluated on shorter pre-ictal durations (i.e

closer to the seizure onset).
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B. Model Interpretation

The SHAP (SHapley Additive exPlanations) by Lundberg

and Lee [34] is one of the most popular model interpretation

techniques in the deep learning literature. The SHAP algorithm

provides insights related to the input feature contributions

for a particular prediction (i.e attribution). Simply, the SHAP

algorithm can be expressed as the following linear regression

equation where xi refers to the ith feature, wi refers to the

weight associated with the ith feature and ŷ is the prediction

made by the model.

ŷ = w0x0 + w1x1 + w2x2 + · · ·+ wnxn. (4)

In this context, a Shapley value determined by the SHAP

algorithm denoted by wi, is an indication of the contribution

of feature xi to the final prediction. Furthermore, Shapley

values can be negative or positive symbolizing the direction

of influence. For simplicity, in this investigation, we only use

absolute Shapley values such that a larger value indicates a

greater contribution.

Since the input data to the network is high dimensional,

we use a channel-level interpretation strategy to discuss how

each channel contribute to the final prediction made by the

model. To demonstrate this, we use six samples from four

different patients from the CHB-MIT EEG dataset. In our

visualizations, Figures 5, 6, and 7 are samples with seizures,

and Figure 8 is a normal sample selected from subject four.

Furthermore, samples shown Figures 5 and 7 are combined

samples with less than 60s between their capture (see specific

file names in the figure). In this analysis, we only consider

the Siamese network proposed in Section III-C, which demon-

strates superior performance compared to the CNN model.

For a given instance k[23×13×201] in the input dataset, the

SHAP algorithm returns a Shapley value map with the same

shape. To compute channel-level attribution (C[23×1]), we use

Equation 5,

C[23×1] =

i=13×201∑

i=0

|kji|, ∀ j ∈ [1, 2, . . . , 23]. (5)

Each plot in the bottom of Figures 5 to 8 illustrates the

channel-level Shapley value map shaped 23×N (N: the num-

ber non overlapping of 10s MFCC input feature instances).

Here, we indicate higher Shapley values (i.e. greater contribu-

tion) in darker shades of green. The top figure of each plot is

the prediction made by the model for those instances before

the seizure onset (the selection period varies from 3.5 hours

to 7.0 hours). For clear visualization of the interpretation, we

apply a Hanning smoothing window [35] to the predictions.

Duration (minutes) 15 30 60

Accuracy 95.72% 94.72% 91.54%
ROC-AUC 0.9877 0.9843 0.9694
Sensitivity 97.88% 96.43% 92.45%

TABLE I: Results after changing the pre-ictal sample duration

selected for training the Siamese Network. Overlaps in pre-

ictal samples:15mins : 3.5s, 30mins : 2.5s

Figure 5 demonstrates the channel-level Shapley value

variation with the prediction made by the model (exact and

thresholded) for subject six. According to the prediction, the

pre-ictal brain state of subject six appears to be visible 1.25

hours (1 hour 15 minutes) before the seizure onset. Examining

the SHAP variations, the highest contributing EEG channel

appear to change at point at which the brain state switches

from interictal to pre-ictal brain state. Furthermore, looking at

the overall Shapley values, almost all channels appear to show

some contribution to the final prediction.

Figure 6 shows the interpretation visualization for the

combined EEG signal from subject nine. As per the previous

interpretation, this also shows similar channel transfers at point

at which the brain state shifts. However, the pre-ictal stage

seems to be appear three hours before the seizure.

Compared to previous results, the prediction for patient

seven shown in Figure 7 has a steady shift between interictal

and pre-ictal brain states. Furthermore, this figure does not

seem to show the channel shifting behavior observed in the

previous two explanations.

The final sample taken for the interpretation is from pa-

tient four in the CHB-MIT EEG dataset. This interpretation

visualization shows how the model classifies a seizure-free

sample. Examining Shapley values, a single channel (channel

18) seems to contribute prominently to the prediction made by

the model. Unlike previous interpretations, this clearly shows

an individual channel from the EEG signal as the primary

contributor for the prediction.

Collectively examining the results, the Siamese model pro-

posed in this study has a steady pre-ictal-interictal brain state

recognition capability. Looking at the predictions made for

patients six and nine, the pre-ictal brain state appears to be

visible 1.5 hours before the seizure onset. Moreover, observing

Shapley values for each channel, it is apparent that almost

all channels in the input feature map do contribute to the

prediction made by the model.

C. Pre-ictal bio-markers derived from MFCC feature

maps.

Recognizing one of the limitations discussed in [36], in this

section, we investigate what sort of predictive characteristic (or

feature) appears when the brain state shifts from the pre-ictal

to interictal stage. This analysis will help to localize the exact

point where the feature distribution changes, and will help to

determine if such a detail is visible in the MFCC feature space

rather than in the hidden space of the deep learning model.

As in the previous section, we use channel-level evaluations

due to the high dimensionality of the input data. First, we

represent a particular input feature channel Ft at a given time

t as a probability distribution Pt, and in this setting, Pt(f
k
t ) is

the probability of having feature value fk
t in the distribution

(fk
t ∈ Ft). Next, we define the change of the feature map

due to the brain-state-shift as the KL-Divergence between Pt

and Pt+1. Then, we compute this for all time steps in a given

channel, and the resulting computation for all 23 channels has

the shape 23× N (N: number of time steps).

Figure 9 illustrates the results after calculating these varia-

tions for five seizure samples. Here, each visualization contains
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Fig. 5: Prediction (top) and Channel-Shapley value variation (bottom) for the seizure sample chb06 09.edf. Shapley values

with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the final prediction

(thresholded).

Fig. 6: Prediction (top) and Channel-Shapley value variation (bottom) for seizure samples chb09 05.edf and chb09 06.edf.

Shapley values with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the

final prediction (thresholded).

Fig. 7: Prediction (top) and Channel-Shapley value variation (bottom) for seizure samples chb07 11.edf and chb07 12.edf.

Shapley values with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the

final prediction (thresholded).

Fig. 8: Prediction (top) and Channel-Shapley value variation (bottom) for the normal sample chb04 17.edf. Shapley values

with higher contributions are indicated in a darker blue color. Top figure shows the actual prediction and the final prediction

(thresholded).
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Fig. 9: Visualization for the KL-Divergence variation of Channel-Level input feature maps ([13×201]) computed for a sample

with a seizure onset (chb06 09.edf, chb07 12.edf, chb09 06.edf, chb04 05.edf and chb22 11.edf). In each plot, darker purple

color spots indicates a higher distribution shift. We also indicate the prediction of model (0.0, 1.0) in a red colorbar, and the

final (thresholded) prediction purple interictal, green pre-ictal.

P N LOPO 100 1000 2000 N P N LOPO 100 1000 2000 N

chb01 6905 60.01 92.14 96.62 97.91 99.50 chb13 5989 63.11 95.17 97.49 98.27 99.62
chb02 5283 58.36 88.82 94.63 97.85 98.63 chb14 6523 61.58 75.57 79.38 81.48 91.17
chb03 6255 49.75 85.88 97.10 97.10 99.20 chb15 7734 37.21 69.88 81.22 83.57 97.69
chb04 16876 78.72 85.50 92.58 93.91 98.75 chb16 3661 53.99 83.10 89.92 92.21 96.71
chb05 6089 55.36 62.89 80.81 85.32 94.63 chb17 4515 41.55 85.10 96.43 97.28 97.28
chb06 9542 59.56 61.81 74.45 75.50 93.11 chb18 6390 56.04 80.44 97.12 96.90 96.98
chb07 9042 61.22 81.10 90.78 92.75 98.92 chb19 4697 56.71 98.30 100.0 100.0 100.00
chb08 5749 68.38 86.46 92.52 91.41 96.65 chb20 4580 48.08 97.34 98.17 99.56 99.56
chb09 8958 62.79 82.27 90.20 92.33 97.59 chb21 5567 64.05 73.21 86.65 87.56 88.56
chb10 10480 58.50 81.43 87.92 92.96 98.01 chb22 5251 60.52 81.45 84.26 87.04 87.04
chb11 4513 51.64 90.89 97.00 97.65 99.00 chb23 3847 73.59 93.33 98.17 98.10 98.10
chb12 5804 69.81 88.15 92.50 92.33 96.68 chb24 4662 53.77 80.00 88.33 88.55 88.55

Average Accuracies: 58.55 83.34 91.01 92.39 96.67

TABLE II: Validation results from the Transfer Learning approach for patient-dependent seizure prediction (N: the number of

samples). Batch sizes for the selected samples (sample size:batch size): 100 : 10, 1000 : 100, 2000 : 200, N : 400. Leave One

Patient Out (LOPO) column presents the validation accuracies before transferring the model.

three rows. The top row presents the KL-Divergence-based

map computed. The middle row represents the prediction made

by the model within the range (0, 1), where a darker red color

indicates prediction of a pre-ictal brain state. The third row

shows the final prediction of the model, which is taken by

thresholding the prediction shown in the previous map. Here,

green indicates pre-ictal brain states.

Examining all visualizations, it is apparent that the input

feature maps shows a clear change when shifting brain state

from the interictal state to the pre-ictal state. Furthermore, in

the top three figures, all channels in the EEG seem to have

changing characteristics, whereas the rest of the explanations

only show variations in a single-channel.

Observing the MFCC feature distribution variation, the

designed deep learning classifier does identify a shifting

point, and the identified point may be the actual pre-ictal

brain state start time/location. Even though this result aligns

with the prediction made by the model, we believe that the

physiological characteristics related to this observation should

be further investigated on a larger database. Importantly, this

evaluation implies that such a feature exists in the data, and

it can be determined through a simple probabilistic evaluation

in the input space.

Furthermore, given that we can observe such variations for

all five subjects, it is apparent that the MFCC feature does offer

a unified higher dimensional representation of the EEG signals

that helps to differentiate between pre-ictal and interictal shifts.

In fact, that point itself demonstrates the validity of the patient-

independent model, and the strength of MFCC features used.
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D. Additional Evaluation: Patient-Specific Seizure

prediction.

Examining recent studies on patient-specific seizure pre-

diction, we observed that some of those studies restricted

their evaluations to fewer patients due to the lack of seizure

recordings. Therefore, in this section, we report the results

from Section III-D, where we introduced Transfer Learning as

a method for addressing data limitations. It should be noted

that this is an additional evaluation we conducted along with

our main objective i.e designing a patient-independent model

for epileptic seizure prediction.

Table II presents the results after applying transfer learning

to all 24 patients in the dataset. As discussed, we show the

Transfer Learning accuracy variation as the number of samples

used for transferring the model changes. Table II also presents

the validation accuracy obtained from the entire dataset before

transferring the model (i.e a Leave One Patient Out (LOPO)

validation). Similar to the previous analysis, we use the Adam

optimizer for fine-tuning the model, and we adjust the batch

size depending on the number of available training samples

(see Table II). For performance comparison purposes, we keep

the same validation dataset for all Transfer Learning evalua-

tions. Observing the accuracies gained after transferral, the

majority of transferred models employing the entire training

dataset perform with an accuracy of 96.67±3.62% for patient-

specific seizure prediction. Also, the proposed method shows

comparatively good accuracy even when transferred using a

smaller data sample. Therefore, we believe this demonstrates

the realistic and efficient nature of Transfer Learning when

designing seizure classifiers for patients with fewer EEG

recordings.

Along with the Transfer Learning evaluation, we test the

model’s generalization ability by supplying a set of instances

from a completely unseen subject (i.e LOPO evaluation). Here,

it should be noted that the problem of patient independence

does not deal with generalization aspects [14], and therefore,

generalizing across multiple subjects should be separately

investigated. Studying the literature, we were unable to find

a deep learning-based patient-independent epileptic seizure

prediction study that directly focused on the generalization

aspects of the designed model regarding completely unseen

patients. However, there are some studies who have used

the Leave One Sample Out evaluation method (deals with

generalizing to an unseen sample from a subject) [6], and

determining a generalized set of features for training deep

learning models on different databases [37]. However, as in

[3], [14], we argue that the generalization capability of the

model should be evaluated using completely unseen subjects,

and therefore acknowledging this further investigations should

be conducted.

Examining the results, it is apparent that in most cases the

model struggles (average: 58.55%). However, for 11 subjects

in the dataset (from 24), the model shows classification capa-

bility higher than 60%, which is a promising result considering

the prediction horizon used to design the model. Furthermore,

looking at the transfer learning results, even with few data

instances, the model is capable of achieving comparable results

for solving the problem.

Recent machine learning models for patient-dependent

seizure prediction have shown promising results, and our pro-

posed model also achieves similar accuracies when evaluated

on all 24 patients. Considering the number of patients adopted

for evaluation and the performance, our model outperforms the

recent studies by [6], [38], [39].

V. CONCLUSION

The main objective of this study is to design a deep learning

classifier for patient-independent epileptic seizure prediction.

Such models can be used in situations where subjects in the

dataset have fewer labeled examples (EEG recordings). We

recognize this is a typical case in Intensive Care Unit (ICU)

monitoring scenarios where an adequate number of samples

can not be obtained to train a prediction model.

In this research, we proposed two different CNN architec-

tures for this problem. Both proposed models have the ability

to accurately recognize seizures with a one-hour prediction

window, and those models outperform the state-of-the-art

with 7% and 11% ROC-AUC score gains respectively. The

Siamese model introduced in this study demonstrated excellent

performance and we investigated its capability through t-SNE

[32] and SHAP model interpretations.

In addition to the developed models, we also explained

how we can apply the SHAP algorithm as a technique for

understanding individual EEG channel contributions, which

further enhances the importance of subject-independent mod-

els. Since this phenomenon has never been studied in the

epileptic seizure prediction literature, we believe our study

will provide researchers with insight into the importance of

model interpretation as a way of understanding the behavior

of the model.

In the context of deep learning, we evaluated how clas-

sical CNN models can be effectively used for learning

two-different-but-related problems. Our t-SNE visualizations

proved that a Siamese architecture in a multi-task learning

setting is in fact a robust solution for the problem compared to

a classical CNN. We also believe that our proposed method can

be used in other-related scenarios where the dataset possesses

high inter-subject-variability.

As an additional step to evaluate the robustness of our

classifier, we showed how to design patient-specific seizure

prediction models employing Transfer Learning. The models

proposed in our study had 96% an average accuracy consid-

ering all 24 subjects in the dataset.

We also conducted an additional analysis regarding the

generalization aspect of the model. Given that learning a

subject-independent function is itself a complex task, our

model showed promising generalization for some completely

unseen subjects. Designing a classifier that generalizes to

completely unseen subjects is a complex task. However ex-

isting investigations in the literature largely fail to consider

the generalizability of the model, given that most of them

have focused on implementing subject-specific classifiers. As

a future direction, we encourage researchers to conduct further

research related to the generalizability of designed classifiers,
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acknowledging their importance as real-world solutions for

seizure prediction.

REFERENCES

[1] “Epilepsy, key facts,” https://www.who.int/health-topics/epilepsy#tab=
tab 1, 2020.

[2] Z. Zhang and K. K. Parhi, “Low-complexity seizure prediction from
ieeg/seeg using spectral power and ratios of spectral power,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 10, no. 3, pp.
693–706, 2016.

[3] D. Ahmedt-Aristizabal, C. Fookes, S. Denman, K. Nguyen, S. Sridharan,
and S. Dionisio, “Aberrant epileptic seizure identification: A
computer vision perspective,” Seizure, vol. 65, pp. 65 – 71,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1059131118307076

[4] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning
framework for EEG seizure detection,” IEEE Journal of Biomedical and

Health Informatics, vol. 23, no. 1, pp. 83–94, 1 2019.

[5] H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener, “Focal onset
seizure prediction using convolutional networks,” IEEE Transactions on

Biomedical Engineering, vol. 65, no. 9, pp. 2109–2118, 9 2018.

[6] H. Daoud and M. A. Bayoumi, “Efficient Epileptic Seizure Prediction
Based on Deep Learning,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 13, no. 5, pp. 804–813, 10 2019.

[7] Z. Jiang and W. Zhao, “Optimal selection of customized features
for implementing seizure detection in wearable electroencephalography
sensor,” IEEE Sensors Journal, vol. 20, no. 21, pp. 12 941–12 949, 2020.

[8] M. Radman, M. Moradi, A. Chaibakhsh, M. Kordestani, and M. Saif,
“Multi-feature fusion approach for epileptic seizure detection from eeg
signals,” IEEE Sensors Journal, pp. 1–1, 2020.

[9] A. R. Hassan, A. Subasi, and Y. Zhang, “Epilepsy seizure
detection using complete ensemble empirical mode decomposition
with adaptive noise,” Knowledge-Based Systems, vol. 191, p. 105333,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950705119306045

[10] A. R. Hassan, S. Siuly, and Y. Zhang, “Epileptic seizure detection
in eeg signals using tunable-q factor wavelet transform and bootstrap
aggregating,” Computer Methods and Programs in Biomedicine, vol.
137, pp. 247 – 259, 2016. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0169260716304370

[11] A. R. Hassan and A. Subasi, “Automatic identification of epileptic
seizures from eeg signals using linear programming boosting,”
Computer Methods and Programs in Biomedicine, vol. 136, pp. 65
– 77, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0169260716304928

[12] A. R. Hassan and M. A. Haque, “Epilepsy and seizure detection
using statistical features in the complete ensemble empirical mode
decomposition domain,” in TENCON 2015 - 2015 IEEE Region 10

Conference, 2015, pp. 1–6.

[13] D. Ahmedt-Aristizabal, T. Fernando, S. Denman, L. Petersson, M. J.
Aburn, and C. Fookes, “Neural memory networks for seizure type
classification,” in 2020 42nd Annual International Conference of the

IEEE Engineering in Medicine Biology Society (EMBC), 2020, pp. 569–
575.

[14] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk,
and J. Faubert, “Deep learning-based electroencephalography analysis:
A systematic review,” p. 37, 8 2019. [Online]. Available: https:
//doi.org/10.1088/1741-2552/ab260c

[15] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri,
“Cost-sensitive learning of deep feature representations from imbalanced
data,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 8, pp. 3573–3587, 8 2018.

[16] Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, “Epilepsy seizure
prediction on eeg using common spatial pattern and convolutional neural
network,” IEEE Journal of Biomedical and Health Informatics, vol. 24,
no. 2, pp. 465–474, 2020.

[17] E. Lashgari, D. Liang, and U. Maoz, “Data augmentation for
deep-learning-based electroencephalography,” Journal of Neuroscience

Methods, vol. 346, p. 108885, 2020. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0165027020303083

[18] K. Rasheed, A. Qayyum, J. Qadir, S. Sivathamboo, P. Kwan,
L. Kuhlmann, T. O’Brien, and A. Razi, “Machine Learning for
Predicting Epileptic Seizures Using EEG Signals: A Review,” 2 2020.
[Online]. Available: http://arxiv.org/abs/2002.01925

[19] A. Hussein, M. Djandji, R. Mahmoud, M. Dhaybi, and H. Hajj, “Aug-
menting deep learning with adversarial training for robust prediction of
epilepsy seizures,” Journal of the ACM, 03 2020.

[20] A. H. Shoeb, “Application of Machine Learning to Epileptic Seizure
Onset Detection and Treatment MASS NSl OF TECHNOLOGY,”
Tech. Rep., 2009. [Online]. Available: https://dspace.mit.edu/handle/
1721.1/54669

[21] K. M. Tsiouris, V. C. Pezoulas, D. D. Koutsouris, M. Zervakis, and
D. I. Fotiadis, “Discrimination of Preictal and Interictal Brain States
from Long-Term EEG Data,” vol. 2017-June, pp. 318–323, 11 2017.

[22] Tsiouris, V. C. Pezoulas, M. Zervakis, S. Konitsiotis, D. D. Koutsouris,
and D. I. Fotiadis, “A Long Short-Term Memory deep learning network
for the prediction of epileptic seizures using EEG signals,” Computers

in Biology and Medicine, vol. 99, pp. 24–37, 8 2018.
[23] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and

H. P. Zaveri, “Seizure prediction — ready for a new era,” pp.
618–630, 10 2018. [Online]. Available: https://www.nature.com/articles/
s41582-018-0055-2

[24] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Deep inverse
reinforcement learning for behavior prediction in autonomous driving:
Accurate forecasts of vehicle motion,” IEEE Signal Processing Maga-

zine, vol. 38, no. 1, pp. 87–96, 2021.
[25] T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, H. Ghaem-

maghami, and C. Fookes, “A robust interpretable deep learning classifier
for heart anomaly detection without segmentation,” IEEE Journal of

Biomedical and Health Informatics, pp. 1–1, 2020.
[26] R. Caruana, “Multitask Learning,” Machine Learning, vol. 28, no. 1,

pp. 41–75, 1997. [Online]. Available: https://link.springer.com/article/
10.1023/A:1007379606734

[27] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” 7 2017.
[Online]. Available: http://arxiv.org/abs/1707.08114

[28] W. Bomela, S. Wang, C.-A. Chou, and J.-S. Li, “Real-time inference and
detection of disruptive eeg networks for epileptic seizures,” Scientific

Reports, vol. 10, 12 2020.
[29] T. Dissanayake, T. Fernando, S. Denman, S. Sridharan,

H. Ghaemmaghami, and C. Fookes, “Understanding the Importance
of Heart Sound Segmentation for Heart Anomaly Detection,” 5 2020.
[Online]. Available: http://arxiv.org/abs/2005.10480

[30] T. Dissanayake, T. Fernando, S. Denman, H. Ghaemmaghami, S. Sridha-
ran, and C. Fookes, “Domain generalization in biosignal classification,”
IEEE Transactions on Biomedical Engineering, pp. 1–1, 2020.

[31] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, vol. 2,
2006, pp. 1735–1742.

[32] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[33] V. Sridevi, M. Ramasubba Reddy, K. Srinivasan, K. Radhakrishnan,
C. Rathore, and D. S. Nayak, “Improved Patient-Independent System
for Detection of Electrical Onset of Seizures,” Journal of clinical

neurophysiology, vol. 36, no. 1, pp. 14–24, 1 2019. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/30383718/

[34] S. M. Lundberg and S.-I. Lee, “A unified ap-
proach to interpreting model predictions,” pp. 4765–
4774, 2017. [Online]. Available: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf

[35] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

[36] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and
H. P. Zaveri, “Seizure prediction — ready for a new era,” pp.
618–630, 10 2018. [Online]. Available: https://www.nature.com/articles/
s41582-018-0055-2

[37] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang,
S. Ippolito, and O. Kavehei, “Convolutional neural networks for
seizure prediction using intracranial and scalp electroencephalogram,”
Neural Networks, vol. 105, pp. 104 – 111, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018301485

[38] Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, “Epilepsy
Seizure Prediction on EEG Using Common Spatial Pattern and
Convolutional Neural Network,” IEEE Journal of Biomedical and

Health Informatics, vol. 24, no. 2, pp. 465–474, 2 2020. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/31395568/

[39] M. Zabihi, S. Kiranyaz, V. Jäntti, T. Lipping, and M. Gabbouj,
“Patient-Specific Seizure Detection Using Nonlinear Dynamics and
Nullclines,” IEEE Journal of Biomedical and Health Informatics,



12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

vol. 24, no. 2, pp. 543–555, 2 2020. [Online]. Available: https:
//pubmed.ncbi.nlm.nih.gov/30932854/

Theekshana Dissanayake is a PhD student in
the Signal Processing, Artificial Intelligence and
Vision Technologies (SAIVT) research group at
the Queensland University of Technology, Bris-
bane, Australia. He received Bachelor of Sci-
ence in Engineering, specialized in Computer
Engineering from University of Peradeniya, Sri
Lanka. His current research is focused on deep
learning applications for biosignal data.

Tharindu Fernando (Member, IEEE) received
the B.Sc. degree in computer science from the
University of Peradeniya, Sri Lanka, and the
Ph.D. degree from the Queensland University
of Technology (QUT), Brisbane, QLD, Australia.
He is currently a Postdoctoral Research Fellow
with the SAIVT Research Program, School of
Electrical Engineering and Robotics, QUT. His
research interests include human behavior anal-
ysis and prediction.

Simon Denman (Member, IEEE) received the
B.Eng. degree in electrical and the B.I.T. and
Ph.D. degrees in object tracking from the
Queensland University of Technology (QUT),
Brisbane, QLD, Australia. He is currently a Se-
nior Lecturer with the School of Electrical Engi-
neering and Robotics, QUT. His research inter-
ests include intelligent surveillance, video ana-
lytics, and video-based recognition.

Sridha Sridharan (Life Senior Member, IEEE)
received his M.Sc. degree in communication
engineering from the University of Manchester,
U.K., and the Ph.D. degree from the University
of New South Wales, Sydney, NSW, Australia.
He is currently with the Queensland University
of Technology (QUT), where he is a Professor
with the School of Electrical Engineering and
Robotics. He is also the Leader of the Research
Program in Signal Processing, Artificial Intelli-
gence and Vision Technologies (SAIVT), QUT,

with strong focus in the areas of computer vision, pattern recognition,
and machine learning. He has published more than 600 articles consist-
ing of publications in journals and in refereed international conferences
in the areas of Image and Speech technologies. He has also graduated
over 80 Ph.D. students in these areas. He has received a number of
research grants from various funding bodies including Commonwealth
competitive funding schemes, such as the Australian Research Council
(ARC) and the National Security Science and Technology (NSST) unit.
Several of his research outcomes have been commercialized.

Clinton Fookes (Senior Member, IEEE) re-
ceived the B.Eng. degree in aerospace/avion-
ics and the M.B.A. and Ph.D. degrees from
the Queensland University of Technology (QUT),
Brisbane, QLD, Australia. He is currently a Pro-
fessor with the Science and Engineering Faculty,
QUT. His research interests include computer vi-
sion, machine learning, and pattern recognition
areas. He is a Senior Member of an Australian
Institute of Policy and Science Young Tall Poppy,
an Australian Museum Eureka Prize winner, and

a Senior Fulbright Scholar. He serves on the Editorial Board for the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.


