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ABSTRACT A comprehensive and well-structured review on the application of deep learning (DL) based 

algorithms, such as convolutional neural networks (CNN) and long-short term memory (LSTM), in radar 

signal processing is given. The following DL application areas are covered: i) radar waveform and antenna 

array design; ii) passive or low probability of interception (LPI) radar waveform recognition; iii) automatic 

target recognition (ATR) based on high range resolution profiles (HRRPs), Doppler signatures, and 

synthetic aperture radar (SAR) images; and iv) radar jamming/clutter recognition and suppression. 

Although DL is unanimously praised as the ultimate solution to many bottleneck problems in most of 

existing works on similar topics, both the positive and the negative sides of stories about DL are checked in 

this work. Specifically, two limiting factors of the real-life performance of deep neural networks (DNNs), 

limited training samples and adversarial examples, are thoroughly examined. By investigating the 

relationship between the DL-based algorithms proposed in various papers and linking them together to form 

a full picture, this work serves as a valuable source for researchers who are seeking potential research 

opportunities in this promising research field.  

INDEX TERMS Deep-learning, radar waveform recognition, synthetic aperture radar (SAR), automatic 
target recognition (ATR), adversarial examples, jamming recognition

I. INTRODUCTION 

In recent years, top researchers around the world have 

been increasingly resorting to deep learning (DL) based 

algorithms to solve bottle-neck problems in the field of radar 

signal processing [1], [2]. The amount of publications on 

“deep learning for radar” have been increasing rapidly. To 

illustrate radar engineers’ soaring interests in DL, the number 

of publications on the topic of “deep learning for radar” from 
2016 to 2020 are plotted in Fig. 1 (IEEE Xplore database).  

Specifically, a comprehensive survey of machine learning 

algorithms applied to radar signal processing is given in [3], 

where six aspects are considered: i) radar radiation sources 

classification and recognition; ii) radar image processing; iii) 

anti-jamming & interference mitigation; iv) application of 

machine learning in research fields other than i) - iv); v) 

promising research directions. In [4], Zhu et al. provided a 

comprehensive review on deep learning in remote sensing, 

which is focused on automatic target recognition (ATR) and 

terrain surface classification based on synthetic aperture radar 

(SAR) images. In [5], Zhang et al. presented a technical 

tutorial on the advances in deep learning for remote sensing 

and geosciences, which is also focused on image 

classification.  

In this work, we conduct a comprehensive review on the 

application of DL-based algorithms in radar signal 

processing, which includes the following aspects: 

a) DL for waveform and array design, which is an 

enabling technology for cognitive radar & spectrum 

sharing;  

b) DL-based radar waveform recognition, which could 

potentially 1) boost the possibility of intercepting and 

recognizing the signals transmitted from the low 

probability of interception (LPI) radar; and 2) improve  
FIGURE 1. Publications on “deep learning for radar” (2016-2020, 

IEEE Xplore database)  
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the direct-path signal estimation accuracy for passive 

radar applications; 

c) DL-based ATR based on high range resolution profiles 

(HRRP) profiles, Doppler signatures, SAR images, and 

other characteristics (e.g. RCS); two limiting factors of 

the real-life performance of DNNs are emphasized: 

limited training samples and adversarial examples 

(note that these two factors are also applicable to 

DNNs in other application areas in addition to ATR); 

d) DL-based algorithms for jamming/clutter identification 

and suppression. 

The major contributions of this work are summarized as 

following: 

 A comprehensive review of various DL-based 

algorithms for radar signal processing is provided. The 

papers reviewed in this work are “hand-picked” high-

quality research works and are neatly grouped based on 

the pre-processing methods, DNN structure, main 

features, dataset, etc. 

 Both the positive and the negative sides of stories about 

DL are checked. In contrast, in many existing 

reviews/surveys on this topic, DL has been 

unanimously praised as a “marvelous” tool that can 
overcome all the barriers that preventing radar systems 

reaching the ideal performance goal. In this work, 

considerable pages are spent on the “negative” side, e.g. 
the devastating effects of carefully-crafted adversarial 

examples on an otherwise “well-trained” DL network. 
 The relationship between the algorithms proposed in 

various papers is thoroughly investigated. Generally, a 

“novel” algorithm doesn’t always pop out from 
nowhere. By analyzing the evolution process from one 

algorithm to another by comparing different research 

works rather than taking the contribution claims made 

in each paper based on their face values, one can get 

much deeper insights into the problem at hand and the 

real contribution of a paper. Specifically, in the field of 

DL, open-source Matlab/Python codes are free for 

downloads on many websites. The true value of a 

specific research paper can only be determined by 

linking everything together as a full picture and then 

make observations regarding the position of this 

particular paper within the whole picture. 

The general structure of this review paper is plotted in Fig. 

2. The techniques/applications investigated in this work are 

listed in Fig. 3, with the most popular network architecture 

and application highlighted. The rest of this work is 

organized as following. In Section II, a couple of DL-based 

radar waveform & array design algorithms are reviewed. In 

Section III, we focus on the radar signal recognition problem 

for LPI radar and passive radar. In Section IV, automatic 

target recognition based on radar HRRP, micro-Doppler 

signature, and SAR images with DL-based algorithms is 

investigated. Moreover, two challenging problems for DL-

based radar signal processing, namely the lack of training 

data and the adversarial attacks, are also analyzed. In Section 

V, various DL-based jamming and clutter suppression 

algorithms are compared and analyzed. Some final remarks 

are offered in Section VI. 

II. DEEP LEARNING FOR RADAR WAVEFORM AND 
ARRAY DESIGN 

A. DL FOR SPECTRUM-SHARING 

With the ever-increasing demand for spectrum resource 
from wireless communications systems, technologies 
enabling spectrum-sharing between radar and 
communications systems have grabbed the attention of 
researchers from both fields. In [7]-[11], the DL-based 
algorithms have been employed to prevent mutual 

 
 

FIGURE 3. Techniques/Applications investigated in “deep learning for radar” (2016-2020)  
 

 
 

FIGURE 2. Structure of this review 
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interference between radar and communications systems 
that share the same frequency band. In [7], Smith et al. 
proposed a novel DNN structure made of the actor network, 
which performs actions based on the current environment 
state, and the critic network, which is responsible for 
judging if the actor’s behavior is appropriate. Deep 

deterministic policy gradient (DDPG)-based reinforcement 
learning strategy is adopted, and waveforms containing 
power spectrum notches are designed to constrain 
interferences from radar to communications systems. In [8]-
[9], Thornton et al. proposed a novel Double Deep 
Recurrent Q-Network, which combines the double Q-
learning algorithm and the long-short term memory 
(LSTM), so that radar learns to avoid sub-bands containing 
interference signals in a spectrum co-existence scenario. 
DL-based algorithms are also increasingly adopted to solve 
the problem of target-tracking in congested-spectrum 
environments. Specifically, researchers from the U.S. Army 
Combat Capabilities Development Command (DEVCOM) 
developed a DL-based strategy for radars to autonomously 
learn the behavior of interferences from co-existing 
communication systems so that clean spectrum is identified 
& radar waveforms are modified accordingly [10]. In [11], 
Kozy et al. models the problem of radar tracking in the 
presence of interference as a Markov Decision Process, and 
applies deep-Q learning to balance the signal-to-
interference-plus-noise ratio (SINR) and the bandwidth 
usage so that the mutual interferences between radar and 
the co-existing communications systems is minimized.  

B. DL FOR OPTIMIZED WAVEFORM SYNTHESIS 

DL-based algorithms are also increasingly adopted in the 
fields of radar waveform optimization under specific 
constraints, especially for MIMO radar. In order to separate 
the echo signals caused by the illuminating signals from 
different transmitting facilities of MIMO radar for further 
processing at the receiving end and achieve the waveform 
diversity gain, the waveforms from different transmitting 
antennas have to be near-orthogonal [12]. Hence the cross-
correlations between waveforms from different transmitting 
antennas are to be minimized. To minimize the auto-/cross-
correlation sidelobes while meeting the constraints of 
constant modulus, Hu et al. designed a deep residual neural 
network consists of 10 residual blocks, each of which is 
made of dual layers of 128 neurons [13]. Later, a deep 
residual network similar to the one in [13] was adopted in 
[14] to synthesize desired beampatterns while minimizing 
the cross-correlation sidelobes under the constraints of 
constant modulus. In [15], Zhong et al. proposed a feed-
forward neural network with ten hidden layers to maximize 
the SINR of MIMO radar under the constraints of constant 
modulus and low sidelobe levels. many research works are 
focused on the problem of the minimization of cross-
correlation sidelobe levels. In [16], the problem of multi-
target detection was considered assuming unknown target 
positions, where deep reinforcement learning based strategy 
was adopted for waveform synthesis to maximize the 
detection capabilities of MIMO radar. Finally, the 

waveform generation and selection problem for multi-
mission airborne weather radar was discussed in [17], where 
a feedforward neural network with varying number of hidden 
layers was designed to synthesize nonlinear frequency 
modulated waveforms (NFMW) with pre-determined 
bandwidth and pulse length. 

C. DL FOR ARRAY DESIGN 

DL-based algorithms have also been employed to realize 
cognitive selection and intelligent partition of antenna 
subarrays. For example, in [18], a CNN with multiple 
convolutional layers, pooling layers and fully connected 
layers (referred to as “Conv”, “POOL”, and “FC”, 
respectively, for simplicity in the rest of this work) was 
utilized for cognitive transmit/receive subarray selection 
based on the development of the surrounding environment. 
Moreover, DL-based algorithms could potentially boost the 
performance of subarray-based MIMO (Sub-MIMO) radar, 
which could be regarded as a hybrid of phased-array radar 
and MIMO radar. The essence of Sub-MIMO radar is to 
transmit correlated waveforms within the same subarray, 
which resembles the working mechanism of the 
conventional phased-array, while the waveforms from 
different subarrays designed to be orthogonal, so that they 
could be separated at the receiving end for waveform 
diversity gain [19]. It follows naturally that the partition of 
subarrays for Sub-MIMO radar plays a key role in deciding 
the balance between the coherent processing gain and the 
waveform diversity gain. In [20], a novel CNN was 
proposed for interleaved sparse array design for phased-
MIMO radar. Specifically, the parallel lightweight structure 
(i.e. PL module), which is based on the MobileNet-V2 
structure, was used to divide feature matrices into parallel 
branches. Meanwhile, the scale reduced convolution 
structure (i.e. SR-module) was used as an alternative to the 
conventional pooling layer for feature matrix dimension 
reduction. Simulation results show that compared with 
uniform antenna array partition, the proposed CNN 
provides transmit beampatterns with narrower mainlobe 
and lower sidelobes, more accurate direction of arrival 
(DOA) estimation, and higher output SINR. 

The structures of the DNNs proposed in [7]-[20] and 
their distinctive features are summarized in TABLE 1. 

III. DL FOR LPI OR PASSIVE RADAR WAVEFORM 
RECOGNITION 

 The DL-based radar waveform recognition is also gaining 

popularity in recent years. Various neural networks and 

algorithms have been developed, which include the deep 

convolutional neural networks (CNNs) [21]-[23], auto-

encoders [24]-[26], and recurrent neural networks (RNNs) 

[27]-[29]. These techniques could potentially 1) boost the 

possibility of intercepting and recognizing the signals 

transmitted from the low probability of interception (LPI) 

radar [30]-[31]; and 2) improve the direct-path signal 

estimation accuracy for passive radar applications [43]-[45]. 

However, as is pointed out in [46], [47], DL-based signal 
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classification algorithms are vulnerable to adversarial attacks, 

which are expected to be more powerful than classical 

jamming attacks. 

A. DL FOR LPI RADAR 

Most modern radar systems have been designed to emit 

LPI waveforms to avoid interception and detection by 

enemies. Therefore, automatic radar LPI waveform 

recognition has become a key counter-countermeasures 

technology. In literatures, dozens of DL-based waveform 

recognition techniques have been proposed within the past 

five years. Usually, the raw radar data are first pre-

processed with time-frequency analysis (TFA) techniques, 

such as Choi-William distribution (CWD) [30]-[35], 

Fourier-based Synchrosqueezing transform (FSST) [36], 

Wigner Ville distribution (WVD) [37], and short-time 

Fourier transform (STFT) [38]-[40], to obtain the time-

frequency images. After that, various DNN structures, 

mostly CNN, could be designed for feature extraction and 

waveform classification.  

In [30]-[35], the TFA technique (CWD) was used to 

generate time-frequency images in the pre-processing step. 

In [30], the sample averaging technique (SAT) was adopted 

for signal pre-processing to reduce the computational cost, 

after which a 9-layer CNN was proposed. In [31], a 7-layer 

CNN along with a novel tree structure-based process 

optimization tool (TPOT) classifier was designed. In [32], 

Ma et al. employed two different DNN structures to 

approach the waveform classification problem: a 11-layer 

CNN and a bidirectional LSTM, with the former exhibiting 

better performance. In [33], transfer learning was employed 

to counter the problem of limited training data. The 

network was pretrained with five different existing high-

performance CNN architectures: VGG16, ResNet50, 

Inception-ResNetV2, DenseNet, and MobileNetV2, with 

VGG-16 proved to offer the highest classification accuracy.  

Twelve different types of radar waveforms have been 

used to test the performance of various CNN structures 

proposed in [30]-[33], which include the linear frequency 

modulated (LFM) waveform, the BPSK, the Frank-coded 

waveform, the Costas-coded waveform, the P1-P4 phase-

coded waveforms, and the T1-T4 time-coded waveforms. 
Although the performances of different DNNs in [30]-[33] 

are noncomparable due to training/test data difference,  the 
classification accuracy offered by these DNNs for SNR = -4 
dB are all higher than 90%. In [34]- [35], the performances 
of DNNs were tested with less than 8 different types of 
waveforms. In [34], networks (Inception-v3 and ResNet-
152) pretrained with ImageNet were used to reduce the 
training cost. In [35], instantaneous autocorrelation function 
(IAF) was used for denoising via atomic norm as a pre-
processing step, following which a CNN structure was 
proposed for the classification of the LFM, the Costas-
coded, and the P2-P4 coded waveforms. 

Although the CWD is a widely adopted TFA technique, 

it also involves high computational complexity, which 

makes the researchers to seek computationally-effective 

alternatives. The FSST was used in [36] as a substitute for 

CWD in the pre-preprocessing step, following which a 

multi-resolution CNN with three different kernel sizes was 

proposed. In [37], the WVD was adopted, and a VGG16 
variant pretrained with ImageNet was used to reduce the 
training cost. Moreover, the STFT was adopted in [38]-[40] 
to obtain the time-frequency diagram of radar data. In [38], 
Ghadimi et al. proposed two CNN structures based the 
GoogLeNet and AlexNet, respectively, for the classification 
of LFM, P2-P4, and T1-T4 waveforms. In [39], Wei et al. 
proposed a novel squeeze-and-excitation network for 
feature extraction in time, frequency, and time-frequency 
domains, and the recognition results of all the domains are 
fused subsequently. In [40], a simple CNN with three 
convolution layers and one fully connected layer was used 
to classify of 20 different types of signals, which include 
frequency-modulated waveforms with various bandwidth 
and pulse width and phase-modulated waveforms. 

TABLE 1 DL-based radar waveform and array design 
 

Reference DNN structure Main features Application 

Smith et al. [7] 

Actor network (select actions based on 
environment state) + critic network (evaluate the 
actor’s performance) 

 Deep deterministic policy gradient reinforcement learning 
 Design waveforms containing power spectrum notches  

Spectrum 
sharing 

Thornton et al. 

[8]-[9] 

Double Deep Recurrent Q-Network (i.e. double 
Q-learning + LSTM) 

 Radar learns to avoid sub-bands containing interference signals in a 
spectrum sharing scenario 

Kozy et al. [11] Deep reinforcement learning 
 Cognitive radar learns and predicts the mutual interference between 

coexisting radar-communication systems while perform tracking task 

Hu et al. [13] 
Deep residual neural network (10 residual 
blocks, each consists of 2 layers of 128 neurons) 

 Generate waveform of any length for MIMO radar to satisfy the constraints 
of constant modulus and low auto- & cross-correlation sidelobes 

Waveform 
synthesis 

Zhang et al. [14] 
Deep residual neural network (5 residual blocks, 
each consists of 2 layers of 128 neurons) 

 Approximate a beampattern while minimizing cross-correlation sidelobe 
levels and satisfying the constraint of constant modulus 

Zhong et al. [15] 
Feed-forward neural network with ten hidden 
layers 

 MIMO radar waveform design to maximize the SINR under the constraints 
of constant modulus and low sidelobe levels  

Wang et al. [16] Deep reinforcement learning 
 Synthesize waveforms to maximize the detection capabilities of MIMO 

radar assuming that the number of targets and their positions are unknown 

Kurdzo et al. 

[17] 

Feed-forward neural network with the number of 
hidden layers varying between 1 and 15 

 Synthesize nonlinear frequency modulated waveforms with specified 
bandwidth and pulse length  

Elbir et al. [18] 
CNN (input layer + 3 × Conv + 2 × POOL + 2 × 
FC + output layer) 

 Cognitive transmit/receive subarray selection based on the environment 

Array design 

Cheng et al. [20] 
CNN (input + 3 × Conv + 3 SR-modules + 4 PL 
modules + 1 × POOL + 1 × FC + output) 

 Antenna array partitioning with CNN  
 Use PL-modules to divide feature matrices into parallel branches 
 Use SR-modules instead of pooling to reduce feature matrix dimension 
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Finally, it is worth mentioning that some research works 
on this topic didn’t employ TFA techniques for signal pre-
processing. For example, in [41], an adaptive 1D CNN with 
four hidden layers and two dense layers was proposed for 
the classification of continuous and pulsed waveforms 
(sinusoidal, LFM, bi-phase coded, frequency-stepped).  

The preprocessing procedures, the DNN structures, and 

the radar waveforms used for performance evaluation in 

[30]-[40] are summarized in TABLE 2. 

B. DL FOR PASSIVE RADAR 

Another potential application area for the DL-based 
automatic waveform recognition algorithms is passive radar. 
Passive radar utilizes the signals from illuminators of 
opportunities (IOs) (e.g. base stations of wireless 
communications systems) for target detection, imaging, and 
tracking, which could increase the radar coverage area 
while avoiding the high infrastructure cost and the 
spectrum-crowdedness caused by the construction of new 
dedicated radar transmitters. However, since the waveforms 
from the IOs are usually unknown to radar receivers, the 
performance of passive radar is usually much worse than 
the conventional active radar [42]. In [43]-[44], DL was 
used to realize simultaneous waveform estimation and 
image reconstruction for passive SAR composed of a 
ground-based IO at known position and an airborne 
receiver. A recurrent neural network (RNN) was designed, 
with which the scene reflectivity was recovered via forward 
propagation, while the waveform coefficients were 
reconstructed via backpropagation. Simulation results show 
that the proposed RNN could learn the characteristics of 
quadrature phase-shifted keying (QPSK) signals [43] and 
OFDM signals transmitted from DVB-T [44], and perform 

the SAR image reconstruction with low error. It was also 
shown that as the number of layers of the RNN increases, 
the image contrast improves at the cost of increased 
reconstruction error. In [45], Wang et al. developed a novel 
DNN consisting of a two-channel CNN and bi-directional 
LSTM, which is termed as TCNN-BL, for waveform 
recognition for cognitive passive radar, which could modify 
the sampling rate adaptively to suit the task at hand. 
Moreover, a parameter transfer approach was utilized to 
improve the network training efficiency. 

C. CHALLENGES 

According to [46], the DNNs are highly vulnerable to 
adversarial attacks. Depending on the information that is 
available to the attackers, adversarial attacks could be 
classified as white-box attack (the model structure and the 
parameters of the network are completely known a priori), 
grey-box attack (known model structure & unknown 
parameters), and black-box attack (unknown model 
structure & parameters). In most cases, the detailed 
information regarding DNNs is unknown to the attacker, 
who can only get access to the classification results of the 
network. Although black-box attack is more common and 
less devastating than the other two types of attacks, white-
box attack is often used in research works to evaluate the 
worst-case scenario. In [47], Sadeghi et al. showed that 
black-box attack can be designed to be approximately as 
effective as white-box attack, which could lead to dramatic 
performance degradation in DL-based radio signal 
classification. It is worth noting that most research works 
on the topic of signal/waveform misclassification caused by 
adversarial attacks target the wireless communication 
systems rather than radar. Nevertheless, the theory and 

TABLE 2 DL for radar waveform recognition 
 

Reference Pre-processing DNN structure Recognized radar waveforms 

Kong et al. [30] 
 SAT to reduce computational cost 
 TFA technique for CWD-TFI 

CNN: 2 × Conv, 2 × POOL, 2 × FC 

LFM, Costas, BPSK, Frank, P1-P4, T1-T4 
Wan et al. [31]  TFA technique for CWD-TFI 

CNN: 2 × Conv, 2 ×POOL, 2 × FC + TPOT 
classifier 

Ma et al. [32] 
 Short-time autocorrelation 

combined with TF analysis  
CNN (11 layers) + Bidirectional LSTM 

Lay et al. [33]  TFA technique for CWD-TFI 
Transfer learning (VGG16, ResNet50, 
InceptionResNet, DenseNet, MobileNet) 

Guo et al. [34] 
 TFA technique for CWD-TFI 
 Pretrained network with ImageNet 

Transfer learning (Inception-v3 & ResNet-152) LFM, Costas, BPSK, Frank, T1-T4 

Zhang et al. 

[35] 

 IAF denoising via atomic norm 
 CWD for denoising 
 Sparse TF reconstruction 

CNN: 3 × Conv, 3 × POOL, 2 × FC P2-P4, LFM, Costas 

Ni et al. [36]  TFA with FSST 
multi-resolution CNN (3 kernel sizes), feature 
fusion, classification fusion 

LFM, Costas, BPSK, Frank, P1-P4, T1-T4 

Pan et al. [37] 

 TFA technique (pseudo WVD) 
 Pretrained network with ImageNet 

(VGG16 variant) 

Adaptive layer (3 × Conv + batch norm) + 2D 
score layer+1D output 

LFM, Costas, BPSK, Frank, 

Ghadimi et al. 

[38] 

 Short Time Fourier Transform 
(STFT) 

CNN (Improved GoogLeNet & AlexNet) LFM, P1-P4, T1-T4 

Wei et al. [39] 
“squeeze (global information embedding 
layers)-and-excitation (2 × FC)”  

BASK, BFSK, BPSK, SW, LFM, NLFM 
(sin), NLFM (exp) 

Orduyilmaz et 

al. [40] 
CNN: 3 × Conv, 1 × FC  

20 classes, FM (sawtooth up/downchirp, 
sinusoidal, stepped up/down chirp, etc.), 
PM (Barker, Frank, P1-P4, T1-T4) 

Yildirim et al. 

[41] 
N/A 

Adaptive 1D CNN (4 hidden layers & 2 dense 
layers) 

CW (sinusoid, LFM-up, LFM-up/down, bi-
phase coded), pulsed (sinusoid, LFM-up, 
bi-phase coded, frequency-stepped) 
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mechanism of adversarial attacks for these two closely 
related fields are identical. To encounter the challenges 
posted by adversarial examples, various adversarial training 
and detection approaches have been developed. For 
example, in [48], the 1D CNN used as RF signal classifier 
was pre-trained with an autoencoder to migrate the 
deceiving effects of adversarial examples, which has the 

potential to be extended to the 2D image classification 
problem. In [49], two statistical tests were proposed for the 
detection of adversarial examples.  

IV. DL FOR ATR 

Machine learning (such as k-nearest neighbor and 
dictionary learning) has been employed for ATR long 

TABLE 3 Radar HRRP target recognition with deep networks 

 

Ref. Preprocessing DNN structure Main features Dataset 
Public-domain 

available? 

Feng et 
al. [54] 

Time-shift 
compensation, energy 
normalization & 
average processing for 
sensitivity elimination 

 Deep belief network (one 
Gaussian–Bernoulli RBM 
layer + two conventional 
RBM layers) 

 Stacked denoising 
autoencoder 

 Incorporate HRRP frame & 
average processing into one 
autoencoder 

 Robust to noisy observation 

HRRP data from 
Yak-42 (large jet), 
Cessna Citation S/II 
(small jet), and An-26 
(twin-engine 
turboprop) 

Yes 

Pan et al. 
[55] 

Deep belief network 
(stacked RBMs) + softmax 

 Use t-SNE to deal with 
imbalanced distribution among 
different targets & aspects 

Zhao et 
al. [56] 

Energy normalization to 
eliminate amplitude-
scaling sensitivity 

Semi-supervised multitask 
recognition: deep-u-blind 
denoising network 
(autoencoder - decoder) + 
recognition phase (AlexNet 
variant) 

 Feature maps of encoder are 
transferred to decoder through 
the fusion layers to avoid 
gradient vanishing 

Xu et al. 
[57][58] 

Dividing HRRP data 
into multiple 
overlapping sequential 
features 

Target-aware recurrent 
attentional network (input + 
encoder layer + attention 
mechanism) 

 Robust to time-shift sensitivity 
due to memory & attention 
mechanism 

Liao et al. 
[59] 

Time-shift 
compensation, energy 
normalization, 
embedding secondary-
label (i.e.  target aspect 
angle) in the model 

Concatenated neural 
network consisting of 3 
independent shallow neural 
sub-networks 

 Samples of target are divided 
into 4 sub-classes based on 
aspect angle to reduce target-
aspect sensitivity 

 Recognition results of multiple 
samples are fused 

HRRP data from 
civilian aircrafts 
(Airbus A319, A320, 
A321, Boeing B738) 

No 

Guo et al. 
[60] 

Energy normalization & 
average processing for 
sensitivity elimination 

Deep 1D residual-inception 
network (Conv + POOL + 
residual-inception block + 
inception-POOL + FC) 

 Multi-scale conv kernels to 
extract features with different 
precisions and possess weight-
sharing property 

 Novel loss function considering 
inter-class/intra-class distance 

Seven types of ship 
of different sizes 
(length from 89.3 m 
to 182.8 m) 

No 

Song et 
al. [61] 

Energy normalization, 
training data 
augmentation with 
shifting (translation) 

Multi-channel CNN (3 × 
Conv + 3 × POOL + 2 × FC) 

 Multi-channel input (real-
imaginary, amplitude-spectrum) 

 Use “deep features” generated 
by the final conv layer instead 
of handcrafted features  

Four classes of 
unspecified ground 
targets with different 
HRRP 

No 

Song et 
al. [62] 

Target section 
segmentation, padding 
& normalization for 
noise & clutter 
elimination in GAN 
training 

Deep convolutional 
generative adversarial 
network consisting of 
generator & discriminator 
made of 1D convolutional 
operators 

 GAN for HRRP generation  
 Unbalanced training samples 

(i.e. majority vs minority class) 
 2 novel 1D convolutional 

operators, SC & FSC, are used 

6 classes of vehicles 
(Sedan, Jeep, MPV, 
tractor, farm vehicle, 
box truck) 

No 

Lundén 
et al. [63] 

Energy normalization to 
eliminate amplitude-
scaling sensitivity 

CNN (2 × Conv + 2 × POOL 
+ 3 × FC) 

 Multistatic radar system 
 The HRRPs of targets are 

calculated with POFACETS & 
3D facet models of aircrafts 

8 fighters (F-16, F-
35, F-18, MQ-1, PAK 
FA T-50, JAS-39C, 
Eurofighter, Rafale) 

No 

Karabayır 
et al. [64] 

CNN (4 × Conv + 2 × POOL 
+ 1 × FC) 

 HRRPs are simulated based 
on target CAD models and then 
converted to 2D images 

 Simulation infrastructure from 
MatConvNet is used 

HRRPs simulated 
based on CAD 
models of 6 military & 
4 civilian ship targets 
assuming X-band 
maritime radar 

No 

Liu et al. 
[65] 

Frame maximum likelihood 
profile (FMLP)-trajectory 
similarity auto-encoder 
(stacked autoencoders) 

 FMLP is used to characterize 
all HRRP signals in a specific 
frame rather than centroid 
alignment used in [54] 

Three aircraft targets 
(D507, D715, D910) 

No 

Zhang et 
al. 
[66][67] 

Data alignment & 
normalization to reduce 
time-shift & amplitude 
sensitivity; data 
reshaping with coding 
module (raw fully 
polarimetric data coded 
into real matrix) 

Self-attention module (focus 
on specific range cells) + 2 
× Conv LSTM layers with 1 

× POOL between them + 
classification module (FC + 
softmax) 

 Polarimetric HRRP recognition 
 Collect scattering information 

from both spatial and 4 
polarimetric dimensions 

 Focus on discriminative range 
cells for learning capacity 
improvement 

10 vehicles (Camry, 
Civic, Jeep93, 
Jeep99, Maxima, 
Mazda MPV, 
Mitsubishi, Sentra, 
Avalon, Tacoma) 
[66]; 4 vehicles 
(truck, pick-up, 
sedan, minibus) [67] 

Yes 
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before the emergence of DL [50], [51]. After AlexNet (one 
of the most popular deep CNNs) won the ILSVRC’12 
contest [52], DL for radar ATR has become an intensively 
researched subject. Based on the amount of labeled data in 
the dataset used for training the network, DL could be 
classified as unsupervised learning, supervised learning, 
and semi-supervised learning (SSL), with SSL being a 
halfway between the other two. According to [53], in 
common cases, 1%-10% of the data used for SSL training 
are labeled, while the rest are unlabeled samples. Since 
most of the existing DL-based radar ATR methods are 
supervised, the recognition/classification accuracies of 
these methods are heavily limited by the amount of labeled 
training data. In this section, we provide a comprehensive 
review of DL-based ATR methods proposed in recent 
published research works, which includes i) ATR using the 
HRRP; ii) ATR using the micro-Doppler signatures; iii) 
ATR for SAR; and iv) major challenges for DL-based ATR. 

A. DL-BASED ATR USING HRR PROFILES 

In order to perform ATR using the HRRP, some 
preprocessing procedures are often required to eliminate the 
sensitivities of the DL-based algorithm to time-shift, 
amplitude-scaling, and aspect-angle. Commonly used 
sensitivity removal approaches include time-shift 
compensation, energy normalization, and average 
processing [54]-[56]. The DNN structures used for radar 
HRRP target recognition include the deep belief network 
[54], [55], recurrent attentional network [57], [58], 
concatenated neural network, CNNs [62]-[64], stacked 
auto-encoder (SAE) [65], and convolutional LSTM [66], 
[67].  

Some researchers used measured HRRP data for 
performance evaluation. For example, the HRRP data from 
Yak-42 (large jet), Cessna Citation S/II (small jet), and An-
26 (twin-engine turboprop) were used in [54]- [58]; the 
HRRP data from Airbus A319, A320, A321, and Boeing 
B738 were used in [59]; the HRRP data from seven types of 
ship of different sizes (length from 89.3 m to 182.8 m) were 
used in [60];  the HRRP data from various types of ground 
vehicles were used in [62], [66], [67]. Since most 
researchers only have access to a limited mount of HRRP 
measurement data associated with a handful of vehicles, 
many of them resort to simulated HRRP data generated by 
software based on the specific CAD models of vehicles for 
research purposes. For example, in [63], Lundén et al. 
generated HRRP data for 8 fighters (F-35, Eurofighter, etc.) 
with POFACETS & 3D facet models of aircrafts. In [64], 
the HRRP data for 6 military and 4 civilian ship targets are 
simulated based on CAD models assuming X-band 
maritime radar. Another feasible alternative is data 
augmentation with generative adversarial network (GAN). 
Specifically, in [62], GAN was adopted to address the 
problem of unbalanced training samples, i.e. the labeled 
training samples for some classes (majority classes) 
significantly outnumber the other classes (minority classes). 

The DNN structures of the DL-based ATR methods 
proposed in [54]-[65] along with their distinctive features 

are summarized in TABLE 3. The preprocessing procedures 
and the dataset used for performance evaluation have also 
been noted in the table. It is worth mentioning that some 
simulation results regarding target recognition using a 
supervised DL based on the HRRPs collected with MIMO 
radar have also been presented [68]. However, since the 
DNN used to obtain the results in [68] was not detailed, it is 
not included in TABLE 3.  

B. DL-BASED ATR USING MICRO-DOPPLER SIGNATURES 

DL-based target detection/classification based on micro-
Doppler signatures has been gaining ground rapidly in the 
field of automatic ground moving human/animal/vehicle 
target recognition [69]-[73] and drone classification [74]- 

[77]. In [69], MAFAT dataset, which contains the echo 
signals from humans and animals collected by different 
pulse-Doppler radars at different locations, terrains, and SNR, 
was used for the training of a six-layer CNN. To achieve 
higher classification accuracy, the data was further 
augmented via random frequency/time shifting, noise-adding, 
and vertical/horizontal image flipping. In [70], a CNN 

composed of 5 dense blocks (i.e. 3 × 3 Conv followed by 1 × 

1 Conv) and 5 transition blocks (i.e. 1 × 1 Conv followed by 

2 × 2 POOL) was proposed for human motion classification 

based on micro-Doppler signatures, the performance of 
which was tested with two datasets containing the echoes 
associated with six human motions (walking, running, 
crawling, forward jumping, creeping, and boxing) obtained 
via simulation and measurement, respectively. The major 
feature of the human motion recognition algorithm in [70] is 
that the proposed network is more robust to the varying target 
angle aspect than most classic CNN models, such as 
VGGNet, ResNet, and DenseNet. In [71]-[73], Hadhrami et 
al. investigated the problem of single-person/group/vehicle 
recognition based on micro-Doppler signatures with DL. Pre-
trained classic CNN models (such as VGG16, VGG19, and 
AlexNet) and transfer learning were adopted to improve the 
network training efficiency. The RadEch human/vehicle 
targets tracking data collected with Ku-band pulse-Doppler 
radar, which covered typical scenarios like single-
person/group walking/running and truck moving, was used to 
test the performance of the proposed network. Moreover, 

data augmentation (×16) with image vertical flipping and 

circular shifting was employed to compensate for the limited 
training data.  

In [74] and [75], pretrained classic CNN models (e.g. 
GoogLeNet) are used for drone classification. Specifically, in 
[74], the micro-Doppler signatures and the cadence-velocity 
diagrams obtained by 14 GHz frequency modulated 
continuous wave (FMCW) radar in indoor/outdoor 
experiments are merged as Doppler images, based on which 
drones with different number of motors are classified. In [75], 
both the pretrained GoogLeNet and the deep series CNN 
with 34 layers are employed for in-flight drone/bird 
classification. The RGB and the grayscale echo signal dataset 
collected by 24 GHz and 94 GHz FMCW radars are used to 
train the two networks, respectively. One distinctive feature 
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of the networks presented in [75] is that clutter and noises 
have been treated as two separate sub-classes. In [76] and 
[77], Mendis et al. proposed a deep belief network (DBN) 
formed by stacking the conventional RBM and the Gaussian 
Bernoulli RBM (GBRBM), which is similar to the one 
proposed in [54], to address the problem of micro drone 
detection and classification. The classification was based on 
the Doppler signatures of the targets of interest and their 
spectral correlation function (SCF) (i.e. Fourier transform 
of autocorrelation function) signature patterns. The 
performance of the proposed DBN was tested with the echo 
signals collected from three micro-drones (available at 
supermarkets at a price lower than $100) by S-band CW 
Doppler radar. The micro-Doppler signature based target 
detection and classification approaches proposed in [69]-[77] 
are summarized in TABLE 4. 

Finally, it is worth mentioning that a comprehensive 
review on the application of DL for UAV detection and 
classification was provided in [78]. Although [78] covers the 
general topic of drone detection with multi-types of sensors 
(which include electro-optical, thermal, sonar, radar, and 
radio frequency sensors) and does not focus specifically on 
drone classification using the Doppler signatures collected by 
radar, it still serves as a good reference work for readers who 
are interested in the topic of drone/birds detection and 
classification. 

C. DL-BASED ATR FOR SAR AND VIDEO SAR 

In 2020, Majumder, Blasch, and Garren published a book 
summarizing recently proposed DL-based approaches for 
radar ATR, where DL for single and multi-target 
classification in SAR imagery was considered [79]. 

Specifically, this book focused on the ATR performances of 
various DNNs evaluated with the popular MSTAR dataset, 
with MSTAR stands for the Moving and Stationary Target 
Acquisition and Recognition. The public release of the 
MSTAR dataset, which was collected by the Defense 
Advanced Research Projects Agency (DARPA) and the Air 
Force Research Laboratory (AFRL), consists of 20,000 
SAR image chips covering 10 targets types from the former 
Soviet Union. It should be noted that, although the MSTAR 
dataset has long been widely adopted in research works to 
evaluate the performance of traditional machine-learning 
based algorithms (e.g. SVM), by which a classification rate 
of 97%-100% had been reached, it has been shown in some 
papers that the ATR performance of the algorithms 
trained/tested merely on the MSTAR dataset usually 
degrade when trained/tested using other dataset (e.g. the 
QinetiQ dataset [80], [81]). Nevertheless, in this section, we 
will give a brief review of recently proposed DNNs for 
ATR employing the MSTAR dataset [82]-[92] and other 
SAR image datasets (e.g. TerraSAR-X). The limitation of 
the MSTAR dataset and the possible counter solutions will 
be covered later in Section IV-D. 

In [82], Chen et al. proposed an all-convolutional 
network (A-ConvNet) composed of 5 Conv and 3 × POOL. 
Since only sparse connected Conv were used and the FC 
was omitted, A-ConvNet is highly computational efficient. 
The performance of A-ConvNet was evaluated under both 
standard operating condition (SOC) and extended operating 
condition (EOC) (e.g. substantial variation in depression 
angle/target articulation), which has been widely adopted as 
the performance benchmark in research papers. In [83], a 
normal multiview deep CNN (DCNN) was proposed, which 

TABLE 4 DL-based target detection & classification using micro-Doppler signatures 
 

Reference Preprocessing DNN structure Main features Dataset 
Public-
domain 

available? 

Dadon et 
al. [69] 

STFT + FFT 
shift + abs (.) + 
log(.) + norm(.) 

CNN (2 × Conv + 2 × 
POOL + 2 × FC) 

 Data augmentation with 
random frequency/time 
shifts, noising, flipping 

MAFAT dataset (echo signals from 
humans & animals within coverage 
area of pulse-Doppler radar) 

Yes 

Yang et al. 
[70] 

STFT + average 
background 
subtraction 

CNN (5 dense blocks + 5 
transition blocks + output); 
dense block: 2 x Conv; 
transition block: 1 × Conv 
+1 × POOL 

 Insensitive to angle aspect 
(i.e. the target moves in 
arbitrary direction) 

Simulation & measurement dataset: 6 
human motions (walking, running, 

crawling, forward jumping, creeping, 
boxing) 

No 

Hadhrami 
et al. 
[71][72][73] 

Short-time 
Fourier 

Transform 
(STFT) 

Pretrained CNN (VGG16 
& VGG 19 [71][73]; 
AlexNet [72][73]) 

 Pre-trained CNN model & 
transfer learning 

 Data augmentation (16 x) 
with vertical flipping & 
circular shifting 

RadEch tracking data collected with 
Ku-band pulse-Doppler radar (one-
person walking/running/crawling; 
group walking/running, wheeled, 

truck, clutter) 

Yes 

Kim et al. 
[74] 

CNN - pretrained model 
(GoogLeNet) 

 Micro-Doppler signature & 
cadence-velocity diagram 
are merged as Doppler 
image 

Micro-Doppler signatures of drones 
with different number of motors 

measured by 14 GHz FMCW radar in 
indoor/outdoor experiments 

No 

Rahman et 
al. [75] 

2 networks: pretrained 
CNN (GoogLeNet) & deep 
series network (CNN with 
34 layers) 

 RGB & grayscale dataset 
are used for training 
GoogLeNet & the proposed 
series network, respectively 

 Clutter & noise are 
regarded as sub-classes 

Echo signals from inflight drones and 
birds collected by 24 GHz & 94 GHz 

FMCW radar 
No 

Mendis et 
al. [76][77] 

Cyclic 
autocorrelation 
function + FFT 

Deep belief network 
(Gaussian–Bernoulli RBM 
+ RBM layers, similar to 
[54]) 

 Spectral correlation function 
(SCF) pattern signature is 
used 

 Resilient to white Gaussian 
noise 

Echo signals collected from three 
micro unmanned aerial systems by 

S-band CW Doppler radar 
No 
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is a parallel network with multiple inputs (i.e. SAR images 
from different views) requiring only a limited amount of 
raw SAR images. The features learned from different views 
are fused progressively toward the last layer of the network, 
which leads to classification rates of 98% and 93% for SOC 
and EOC, respectively. In [84], Furukawa et al. proposed a 
CNN termed as verification support network (VersNet) 
composed of an encoder and a decoder. A main feature of 
the network is that the input SAR image could be of 
arbitrary size and consisting of multiple targets from 
different classes. In [85], Shang et al. added an information 
recorder, which is a variant of the memory module proposed 
in [89], along with a mapping matrix to the basic CNN. The 
resulting memory CNN (M-Net) uses spatial similarity 
information of recorded features to predict unknown sample 
labels. A two-step training process (i.e. parameter transfer) 
was employed to guarantee convergence of the results and 
to reduce the required of training time. The CNNs proposed 
in [86]-[88] are also worth brief mentioning. In [86], 
morphological operation was used to smooth edge, remove 
blurred pixel, amend cracks, and the large-margin softmax 
batch normalization was employed. In [87] and [88], the 
database was extended with affine transformation in range, 
and a couple of SVMs were used to replace the FC in CNN 
for final classification. 

ATR based on SAR image sequence obtained from, for 
example, single-radar observations along a circular orbit 
over time or joint observation from different angles by 
multiple airborne radars, has also been investigated in 
research works. Considering that the sub-images in the 
SAR image sequence obtained by the imaging radar over a 
period of time from the same target often exhibit 
conspicuous variations, a spatial-temporal ensemble 
convolutional network (STEC-Net) consisting of 4 
convolutional layers and 4 pooling layers was proposed in 
[90]. Dilated 3D convolution was used to extract spatial and 
temporal features simultaneously, which were progressively 
fused and represented as the ensemble feature tensors. To 
reduce the training time, compact connection was used 
rather than fully connected layer. In [91], Zhang et al. 
proposed a multi-aspect-aware bidirectional LSTM network 
(MA-BLSTM) consisting of the feature extraction blocks, 
the feature dimension reduction block, and 3-layer LSTM 
block. The feature extraction block utilizes the Gabor filter 
(orientation and rotation sensitive) in combination with the 
three-patch local binary pattern (TPLBP) operator (rotation 
invariant) to obtain global & local features, while 3-layer 
MLP was employed for feature dimension reduction. In 
[92], Bai et al. proposed a bidirectional LSTM network, the 
performance of which was evaluated for two cases: clutter-
present and clutter-free. Surprisingly, the presence of clutter 
lead to higher classification accuracy than the clutter-free 
case. All the DNNs proposed in [90]-[92] reported a target 
recognition accuracy higher than 99.9%, but the 
performance is expected to degrade in real-life application 
scenarios (note: “a machine trained in one environment 

cannot be expected to perform well when environmental 
conditions change”---J. Pearl [93]).  

According to [91] and [92], the LSTM network 
outperforms the hidden Markov models (HMMs), which 
has been widely adopted to model the multi-aspect SAR 
images until 2000s [94], in modeling the stochastic 
sequences, especially when the initial probability of states 
is unknown. However, the LSTM is notoriously time-
consuming to train (not to mention that the training time of 
MA-BLSTM increases by 5 times with the decrease of 
training data [91]). Moreover, auto-extracted features 
obtained with CNNs or other types of unsupervised neural 
networks are not necessarily better than the hand-crafted 
ones designed by human experts. Actually, many well-
established researchers hold doubts against the “black-box” 
process of “automatic” feature extraction, which makes a 
network extremely vulnerable to adversarial attacks (more 
details regarding this problem will be provided in Section 
IV-D).  

Except for the CNNs and the LSTM networks mentioned 
above, other DL-based networks such as the autoencoders 
and Capsule Networks (CapsNets) have also been 
investigated as feasible solutions to the ATR problem. In 
[95], Deng et al. proposed a network composed of stacked 
auto-encoders (SAE). To avoid overfitting, restriction based 
on Euclidean distance was implemented (i.e. samples from 
the same target at different aspect angles have shorter 
distance in feature space) and a dropout layer was added to 
the network. In [96] and [97], Geng et al. proposed a deep 
supervised & contractive neural network (DSCNN), which 
consists of 4 layers of supervised and contractive 
autoencoders. Multiscale patch-based feature extraction 
was performed with three filters: the gray-level gradient 
cooccurrence matrix (GLGCM) filter, the Gabor filter, and 
the histogram of oriented gradient (HOG) filter. The graph-
cut-based spatial regularization was applied to smooth the 
results. Moreover, unlike the other networks discussed in 
this subsection, which have all been trained and tested 
using the MSTAR dataset, the DSCNN was tested with 
three datasets, the TerraSAR-X, the Radarsat-2, and the 
ALOS-2 data. A comprehensive review of autoencoder and 
its variants for target recognition in SAR images could be 
found in [98]. In [99]-[102], various capsule networks 
(CapsNets) were proposed to address two problems in 
SAR-image based ATR: limited training data and 
depression angle variance. CapsNets are composed of 
capsules which are vectors of information about the input 
data, with the magnitude representing the probability of the 
presence of an entity and the direction representing the pose 
and position of the entity. Due to page limitation, this 
minority group of CapsNets based networks won’t be 
detailed here. The DNNs discussed in this section for ATR 
using SAR images are summarized in TABLE 5. 

Finally, note that DL could also be used for video-SAR 
moving target indication. Specifically, Ding et al. proposed 
a faster region-based CNN in [103], which is a variant of 
the algorithm proposed by Ren et al. in [104]. To reduce the 
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training burden, the features were extracted with pertained 
CNN models such as AlexNet, VGGNet, and ZFNet. The 
Density-based Spatial Clustering of Application with Noise 
(DBSCAN) algorithm was developed to reduce false alarms, 
and the Bi-LSTM was used to improve the detection 
probability. The performance of the proposed network was 
evaluated with both simulated video SAR data and real data 
released by Sandia National Laboratory, which was further 
augmented with rotation and cropping. 

D. MAJOR CHALLENGES FOR DL-BASED ATR 

In Section IV-C, we reviewed many DNNs trained and 
tested with the MSTAR dataset. In this subsection, we will 
look into two limiting factors which have been keeping the 
unanimous adoption of DNNs for radar ATR tasks on battle 
fields from becoming true: the limited amount of training 
data and the potential security risk posted by carefully 
crafted adversarial attacks. 

(1) Lack of training data 

Although classification rates of higher than 99% have 
been reported in many papers covering DNNs trained for 
radar ATR using the MSTAR dataset, the accuracies of 
these networks are expected to degrade dramatically when 
tested with SAR images taken at depression angles that are 
very different from the ones used to obtain the training 
dataset or other SAR image datasets, e.g. the QinetiQ 
dataset [80], [81]. As pointed out by J. Pearl, the neural 
networks usually cannot perform well if the environment 
they are tested in is different from the one they are trained 
with [93]. However, the DL-based approaches will simply 
lose all their glamor if we must train the network from the 
very beginning with large amount of qualified training data 
for every new classification task. What’s worse, unlike 
other ordinary image classification tasks (e.g. cat/dog 
classification), the SAR images used for radar ATR are 
usually very scarce, especially when the targets are military 

vehicles employed by other countries. Therefore, machine 
learning with small training data sets is key to the success 
of radar ATR using SAR images. In the following, we will 
examine various neural networks that are designed to meet 
this challenge. 

Since these networks have all been trained using the 
MSTAR dataset, the classification accuracies of these 
networks and the number of samples involved in the 
training process are comparable. Before we move on, we 
will first provide some details on the MSTAR dataset, so 
the readers could get a clear picture of what is happening. 
As was mentioned before, the MSTAR dataset consists of 
20,000 SAR image chips covering 10 targets types from the 
former Soviet Union (BMP2, BTR70, T72, BTR60, 2S1, 
BRDM2, D7, T62, ZIL131, ZSU23/4). These targets were 

measured over the full 360   azimuth angles and over 

multiple depression angles (15  , 17 , 30 , and 45 ), and 
the SAR images are 128 × 128 pixels in size and of 1 foot 
×1 foot resolution. In most of papers, to demonstrate the 
robustness of the proposed networks to the variation of 
angles, the SAR images used for training and testing 
usually correspond to two different depression angles (e.g. 

15 and 17  ). 
     Supervised learning: For comparison purpose, we first 
look at the application of traditional machine learning 
method to address this problem. The topic has been 
thoroughly reviewed in [105]. More recently, in [106], 
Clemente et al. utilized K-nearest neighbor for ATR against 
compound Gaussian noise, which was added to the MSTAR 
datasets manually. The features were represented by 
Krawtchouk moments, and the selection of testing/training 
samples were randomized in each Monte Carlo run. Using 
only 191 training samples, the network proposed in [106] 
reached an accuracy of 93.86%.  

Semi-supervised learning: Since the manual feature 
extraction usually induces high computational complexity 
while the auto feature extraction is a time-consuming 

TABLE 5 DL-based target classification using SAR images 
 

Reference Preprocessing DNN structure 
Chen et al. [82] N/A All-convolutional networks (A-ConvNets) without FC layers (5 × Conv + 3 × POOL) 

Pei et al. [83] 
SAR images are rotated & aligned to 
the same aspect angle 

Multiview DCNN (parallel network with multiple inputs): 4 × Conv + 3 × POOL + 1 × 
FC 

Furukawa et al. [84] 
Labeling images (10 target classes + 
target front/background class) 

VersNet: encoder (10 × Conv + 4 × POOL, VGG variant) + decoder (1 × 
transposed Conv) 

Shang et al. [85] N/A 
Memory CNN – M-Net: basic CNN (5 × Conv + 3 × POOL) + mapping matrix + 
information recorder (index + key + value + time, variant of memory module in [89]) 

Zhou et al. [86]  
Morphological operation to smooth 
edge, remove blurred pixel, amend 
cracks 

Large-margin softmax batch normalization (LM-BN), CNN (A-ConvNet in [82]) 

Wagner et al. [87][88] 
SAR images are rotated & aligned to 
the same aspect angle 

CNN (feature extraction + decision) + SVM (polynomial kernel & Gaussian radial 
basis functions) 

Xue et al. [90] 

Multi-aspect space-varying image 
sequence construction  

Spatial-temporal ensemble convolutional network (STEC-Net): 4 × Conv + 4 × 
POOL 

Zhang et al. [91] 
Multi-aspect-aware bidirectional LSTM network (MA-BLSTM): feature extraction + 
3-layer MLP + 3-layer LSTM block 

Bai et al. [92]  Bidirectional LSTM network (BCRN): 4 × Conv + 3 × POOL + 2 Bi-LSTM layers  

Deng et al. [95] N/A SAE with Euclidean distance constraint & dropout + linear SVM classifier 

Geng et al. [96][97] 
Multiscale patch-based feature 
extraction 

Deep supervised & contractive neural network (DSCNN): 4 layers of supervised & 
contractive autoencoders 

Guo et al. [99]; 
Schwegmann et al. 
[100], [101]; Shah [102] 

N/A Capsule network 
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process requiring a large amount of labeled training 
samples, some researchers resort to semi-supervised 
machine learning. In [107], Hou et al. introduced a semi-
supervised online dictionary learning algorithm, where the 
SAR images were modeled with complex Gaussian 
distribution (CGD). The dictionary was updated by adding 
samples to the training process in a progressive way, and 
the Bayesian inference was employed to learn the 
dictionary. In [108], Wang et al. used dual-networks and 
cross-training (i.e. the Siamese network) to improve the 
classification rate with limited training data. Specifically, 
the pseudo-labels generated by one network were used to 
fine-tune the other network, and an iterative categorical 
cross-entropy function was designed as the loss function of 
the dual-networks for contrastive learning. Although a high 
accuracy of 97.86% was obtained in [108] with only 400 
training samples, it is worth noting that the Siamese 
network is famous for its sensitivity to input variations and 
weak generalizability. Feature augmentation, i.e. 
combining complementary features extracted by optimally-
selected multi-level layers rather than utilizing the high-
level features only, is another solution to improve the 
accuracy with limited training samples. In [109], Zhang et 
al. proposed a CNN composed of 5 Conv layers, 5 pooling 
layers, and 2 FC layers. The features from the Conv layers 
were concatenated, and the AdaBoost rotation forest (RoF) 
was used to replace the original softmax layers. With 500 
training samples, the networks proposed in [109] reach a 
classification rate 96.3%. Note that other supervised 
classifiers, such as SVM and random forest, could also be 
used as substitutes for the softmax layers of a classic CNN 
to improve the accuracy. 

Unsupervised learning: One way to realize 
unsupervised learning with limited training data samples is 
to employ transfer learning. In [110],  Huang et al. 
proposed a DNN composed of stacked convolutional auto-
encoders, which was trained with unlabeled SAR images 
for the subsequent transfer learning rather than the 
commonly used ImageNet, which contains optical images 
that are far different from SAR images. In [111]-[118], data 
augmentation was performed to boost the training dataset in 
addition to transfer learning to further improve the 
classification accuracy. Specifically, in [111], Zhong et al. 
employed three classic CNNs, namely CaffeNet, VGG-F, 
and VGG-M, that have been pretrained with the ImageNet 
dataset. The data augmentation method used in [82] was 
adopted, and 2700 images for each class were obtained via 
randomly sampling 88 × 88 patches from the 128 × 128 
SAR image chips. With network pruning (a maximum of 
80% filters pruned) and recovery employed, the networks 
presented in [111] is 3.6 times faster than the A-ConvNets 
proposed in [82] at the cost of 1.42% decrease in accuracy. 
In [112], Ding et al. an all-in-one 6-layer CNN was 
proposed, and three types of data augmentation, namely 
posture synthesis, translation, and noise-adding were 
combined. With training samples augmented to 1000 per 
class, the network in [112] reached a test accuracy of 

93.16%. In [113], Yu et al. proposed a 13-layer CNN, with 
the input data preprocessed with Gabor filters. The center 
88 × 88 pixels of the SAR images were cropped to reduce 
the computational burden, and the training dataset was 
augmented with the approach proposed in [112]. By 
replacing 1%-15% pixels in target scene with randomly 
generated samples, the anti-noise performance of the 
proposed network was demonstrated. In [114], data 
augmentation was performed by first using improved Lee 
sigma filtering to remove speckles and then adding random 
noises. The proposed 9-layer CNN reached a high accuracy 
of 98.7% with 1900 training samples.  

In [115] and [116], Lewis and Scarnati pointed out that 
the synthetic SAR images obtained by simply manipulating 
the real SAR images as the ordinary optical images are of 
poor quality (despite of the resemblance between them in 
“appearance”), and using only the synthetic data in the 
training process could lead to dramatic performance 
degradation. For example, the SAR ATR CNN in [117] 
achieved only a 19.5% accuracy when trained with 
synthetic data and tested with real data. Therefore, in [115] 
and [116], 3D CAD models of targets were used to 
synthesize the Synthetic and Measured Paired and Labeled 
Experiment (SAMPLE) dataset. The input data was 
preprocessed with t-SNE for dimension reduction, and 
variance-based joint sparsity was employed for denoising. 
Moreover, the clutter was transferred from real to synthetic 
SAR images via task masks. With 50% real data from the 
MSTAR dataset and 50% synthesized data generated with 
the GAN, the modified DenseNet proposed in [115] 
reached an accuracy of 92%. In [118], dual parallel GAN 
(DPGAN) made of a generator with 4 convolution layers 
and 4 deconvolution layers and a discriminator with 4 
convolution layers was proposed. The raw images with 
opposite azimuth were merged together for shadow 
compensation. With 300 GAN-augmented training samples, 
the 5-layer CNN proposed in [118] reached a high accuracy 
of 99.3%.  

The networks proposed in [106]-[118] along with the 
number of MSTAR samples used for training and the 
corresponding accuracies are summarized in TABLE 6, 
where “AUG” represents training data augmentation. Since 
transfer learning plays a key role in improving the accuracy 
of DNNs with limited training data while reducing the 
training time, the readers are also referred to [119], in 
which how to apply transfer learning in SAR ATR were 
discussed in detail (note that it was concluded in [119] that 
simple “domain adaption based transfer learning” by 
applying a DNN model pretrained with natural optical 
images, e.g. ImageNet, directly to the problem of SAR 
image classification/recognition does not work well). 
Finally, although the MSTAR data set has been widely used 
for the training of SAR ATR DNNs [106]-[118], some 
researchers resort to a few SAR image datasets obtained by 
TerraSAR-X that have been made available to public, 
which include the landscape mapping dataset [120], the 
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ship detection dataset [121], [122], and the vehicle 
detection dataset [123].  

(2) Adversarial attacks 

According to literatures, one most intriguing feature of 
adversarial attacks is that by slightly changing some pixels 
of a picture (changes so trivial that humans can’t even 
notice), the DL-based image classification algorithm will be 
fooled to make unbelievable mistakes. For example, if we 
add a toaster sticker to a banana, it could be misclassified as 
toaster by a DL-based classifier [46]. Based on the 
adversary’s knowledge on the network to be attacked, 
adversarial attacks could be classified as white-box, grey-

box and black-box attack (see Section III-C for details). 
Moreover, an adversarial attack is said to be “targeted” if 
the adversarial examples have been designed to be 
misclassified as a specific type of target and “nontargeted” 
otherwise. The research in the field of adversarial attacks 
resembles a cat-and-mouse game: many algorithms are 
designed to misguide the existing DNNs into 
misclassification, while the others are developed to improve 
the robustness of the DNNs to adversarial examples via 
adversarial training, adversarial detection, gradient-masking, 
etc. In this subsection, we will give a brief introduction to 
several highly-cited adversarial attack algorithms proposed 
in recent years. Before we move on to introduce original 
research works on this topic, we will first provide some 
background information on commonly used attack methods 
that are readily available as Python toolboxes free for 
download [124]. 

The adversarial attacks widely adopted by DNN attackers 
generally belong to three categories: the gradient-based 

attacks, the score-based attacks, and the decision-based 

attacks.  
The gradient-based attacks utilize the input gradients to 

obtain perturbations that the model predictions for a 
specific class are most sensitive to. The fast gradient sign 

method (FGSM), the Basic Iterative Method (BIM), the 
iterative least-likely class method (ILCM), the Projected 

Gradient Descent (PGD) and the DeepFool are some of the 
most famous attack methods belong to this group [124]. 
The FGSM proposed by Goodfellow et al.  [126] utilizes 
the loss function with respect to the input to create an 

adversarial example that maximizes the loss so that it will 
be misclassified. The BIM, which is also referred to in 
literatures as the iterative fast gradient sign attack method 
(I-FGSM), and the ILCM were all proposed by Kurakin et 
al. in [127]. The BIM is a straightforward extension of the 
FGSM method, which seeks to maximize the cost of the 
true class along small steps in the gradient direction in an 
iterative manner. In contrast, the ILCM iteratively 
maximize the probability of specific false target class with 
lowest confidence score for clean image. The PGD-based 
attack method [128] is essentially the same as the BIM 
except that for PGD, the example is initialized at a random 

point in the ball of interest determined by the l  norm. The 

DeepFool method proposed by Moosavi-Dezfooli [129] 
first computes the minimum distance it takes to reach the 
class boundary assuming that the classifier is linear, then 
makes corresponding steps towards that direction. 

The score-based attacks do not require gradients of the 
model or other internal knowledge about the networks to be 
attacked, but need to know the probability that the input 
samples belong to a certain class, i.e. the probability labels. 
It is less popular than the gradient-based attacks. The 
single-pixel attack proposed by Narodytska and 
Kasiviswanathan [130] in 2017 is a typical score-based 
attack. It probes the weakness of a DNN by changing single 
pixels to while or black one at a time. In 2019, an 
alternative single-pixel based approach was proposed in 
[131], which relies on the differential evolution algorithm 
and achieved a high successful-misguiding rate by only 
modifying less than 5 image pixels. In contrast, the 
decision-based attacks rely only on the class decision made 
by the targeted networks and does not require any 
knowledge regarding gradients or probabilities. This last 
category of adversarial attacks includes the boundary attack 
[132], the noise attack, and the blur attack (for images only) 
[124].  

In the following, we will concentrate on the application 
of adversarial attacks in radar ATR. In [133], Huang et al. 
proposed four algorithms to misguide multi-layer 
perceptron (MLP) and CNN designed for radar ATR using 
HRRP. Two of them are fine-grained perturbations (i.e. the 
adversarial sample to be updated according to the input), 
while the other two are universal perturbations (i.e. image-

TABLE 6 Techniques for machine learning with small training dataset 
 

Reference Image size Neural network Training samples Accuracy 
Clemente et al. 
[106] 

128 x128 K-nearest neighbor (with Krawtchouk moments used as input) 191 93.86% 

Hou et al. [107] 64 x 64 Image modeling with CGD + Bayesian method for learning + 
dictionary update by adding samples 

720 94.52% 

Wang et al. [108] 128 x128 Dual-networks & cross-training (Siamese) 400 97.86% 

Zhang et al. [109] 128 x128 CNN (5 × Conv + 5 × POOL + 2 × FC + AdaBoost ensemble) 500 96.3% 

Huang et al. [110] 128 x128 SAE with 5 × Conv & 1 × FC 500 97.15%  

Zhong et al. [111] 88 x 88 Pretrained CaffeNet, VGG-F, VGG-M with ImageNet + transferred 
network with pruning filters & recovery 

2700/class AUG 98.39%  

Ding et al. [112] 128 x128 All-in-one CNN (3 × Conv + 2 × POOL + 1 × FC) 1000/class AUG 93.16% 

Yu et al. [113] 88 x 88 Preprocessing (multiscale Gabor filter) + CNN (9 × Conv + 4 × POOL) 550, AUG 92% 

Kwak et al. [114] 88 x 88 CNN (4 × Conv + 4 × POOL + 1 × FC) 1900, AUG 98.7%  

Lewis et al. [115]; 
Scarnati et al. [116] 

128 x128 CNN (DenseNet) 2732 (50% measured 
+50% synthesized, GAN) 

92% 

Zhu et al. [118] 128 x128 DPGAN + CNN (4 × Conv + 1 × POOL) 300/class, GAN 99.3% 
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agnostic). These algorithms and their main features are 
summarized in TABLE 7. Simulation results show that the 
proposed algorithms are highly aggressive when conducting 
both white and black attacks. In [134], Huang et al. 
considered the problem of adversarial attacks on radar ATR 
using SAR images. First, the I-FGSM was employed to 
generate adversarial examples for white-box and black-box 
nontargeted attacks on three classic CNN models: AlexNet, 
VGGNet, and ResNet. After that, the ILCM algorithm and 
the DBA algorithm were used to create adversarial 
examples for targeted white-box and black-box attack, 
respectively. The characteristics of these three algorithms 
are briefly introduced in TABLE 7. Simulation results show 
that using the adversarial examples generated with the I-
FGSM, the success rate of VGGNet and ResNet in target 
recognition dropped from 95% to 7% when black-box 
attack was conducted. In addition, under the targeted white-
box attack from ILCM, the confidence level of ResNet for 
the true class label decreased from 99% to 61.4%. 
Meanwhile, under the targeted black-box attack from 
decision-based attack, the confidence levels of AlexNet, 
VGGNet, and ResNet for the true class label were as low as 
22.4%, 15.9%, and 23.2%, respectively. In [135], Lewis et 
al. tested five white-box adversarial attacks to fool the DL-
based radar classifier: FGSM, DeepFool, NewtonFool, BIM, 
and PGD. In [136], the nontargeted black-box universal 
adversarial perturbation (UAP) was employed to fool the 
CNNs, for which the success rate in misguiding the 
network was higher than 80%.  

As was mentioned before, although the mainstream 
research in the field of adversarial examples aims to 
“attack”, a considerable number of researchers work on the 
“defence” side, i.e. to improve the robustness of the DNNs 
to adversarial examples via adversarial training, adversarial 
detection, gradient-masking, etc. For example, in [138], the 
competitive overcomplete output layer (COOL) was 
designed to replace the commonly used softmax layer for 

improved robustness of the CNN against the adversarial 
examples generated by DeepFool.  

V. DL FOR RADAR INTERFERENCE SUPPRESSION 

    Jamming and clutter are two types of interferences that 
limit the performance of modern radar systems. In this 
section, various DL-based jamming recognition and anti-
jamming algorithms are reviewed. The technical trends in 
using the DNNs to address the challenging problem of 
marine target detection in sea clutter are also discussed. 

A. JAMMING 

In [145]-[151], various DNNs were designed for jamming 
signal classification, with the majority of them being CNNs. 
The main features of these networks are summarized in 
TABLE 8, along with the types of jamming signals that have 
been used for network training and performance testing. 
Specifically, In [146] and [147], an improved Siamese-CNN 
(S-CNN) was proposed, which is composed of two 1-D 
CNNs for feature extraction from the real and the imaginary 
parts of the data, respectively. This network only needs 500 
training samples for each target class, and its performance 
were compared with various machine learning methods (e.g. 
the SVM). In [148] and [149], the 1-D jamming signals were 
transformed to 2-D time-frequency images via time 
frequency analysis so that they could be processed with CNN. 
In [149], a DNN based on the bilinear EfficientNet-B3 and 
the attention mechanism was proposed. The model 
parameters of EfficientNet-B3 obtained in the pretraining 
process using the ImageNet dataset were used as the initial 
weights of the proposed network. Note that EfficientNet-B3 
belongs to a large family of EfficientNet algorithms (named 
as EfficientNet-B0 to B7) [150]. Although the accuracy of 
EfficientNet-B3 is 4% lower than that of EfficientNet-B7, the 
amount of model parameters involved in the former is only 
1/5 of the latter, which indicates less training time. In [151], a 
VGG-16 variant was developed for barrage jamming 

TABLE 7 Adversarial attacks on ATR 
 

Reference Name 
Adversary’s 
knowledge 

Adversary’s 
specificity 

Main features 

Huang et al. [133] 

Algorithm-1 

White-box & 
black-box 

Nontargeted 
Fine-grained perturbation; Fast gradient sign method (FGSM) variant with 
scaling factor obtained via binary search; more effective than FGSM 

Algorithm-2 Targeted Fine-grained perturbation; multi-iteration method continuously updating 

Algorithm-3 Nontargeted Universal perturbation via the aggregation of fine-grained perturbations 

Algorithm-4 Targeted Universal perturbation by scaling one fine-grained perturbation 

Huang et al. [134] 

I-FGSM Nontargeted FGSM variant; in each iteration, the clipping function changes only 1 pixel 

ILCM White-box 
Targeted 

Iteratively maximize the probability of specific false target class with lowest 
confidence score for clean image 

Decision 
based attack 

Black-box 
Attack decisions; don’t need gradients; find the decision boundary between 
clear sample and samples of desired false class 

Lewis et al. [135] 

FGSM 

White-box 

Nontargeted  

Compute the gradient of loss function & seek the minimum step size to 
obtain adversarial sample 

DeepFool Compute minimum distance to class boundary assuming linear classifier  

NewtonFool 
Compute the minimum distance to a point x’ adjacent to x so that the 
probability of x’ belongs to true class of x approaches zero 

BIM Maximize the loss along small steps in the gradient direction 

PGD 
Maximize probability of some specific target class which is unlikely to be the 
true class for a given sample; multiple iterations 

Wang et al. [136] UAP Black-box 
Universal perturbation proposed in [137] is added to MSTAR images to fool 
CNNs; success rate higher than 80% 

Wagner et al.[138] DeepFool White-box 
Competitive Overcomplete Output Layer (COOL) used as the output layer to 
improve robustness against DeepFool 
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detection and classification for SAR, where the statistical 
characteristics of SAR echo signals was exploited. 
     Except for the works discussed above, using the DL-based 
approaches to perform target classification in the presence of 
jamming [152], to choose the optimum anti-jamming strategy 
for radar [153], [154], to analyze the probability of radar 
being jammed [155], and to adaptively select the best method 
to jam an enemy radar [157] have also been investigated. The 
DNN structures proposed in these works and their distinctive 
features are summarized in TABLE 8. Finally, a detailed 
discussion regarding the application of artificial intelligence 
in electronic warfare systems was presented in [158], which 
is also recommended for readers who are interested in the 
recent trends of DL-based jamming/anti-jamming techniques. 

B. CLUTTER 

Marine target detection is a much more challenging task 
for radar than ground moving target detection due to the 
highly nonhomogeneous and time-varying clutter incurred by 
the sea. An early attempt of using machine learning methods 
for target detection in the presence of sea clutter was made in 
[159], where k-Nearest-Neighbor and SVM were used for 
marine target/clutter classification using the data collected by 
the S-band NetRAD system jointly developed by the 
University College London and the University of Cape Town 
[160].  

With DL gaining popularity in recent years, many 
researchers resort to DNNs to further improve the detection 
performance of marine radars [161]-[164]. Specifically, in 
[161], Pan et al. used the Faster R-CNN proposed by Ren et 
al. in [104] for target detection using the sea clutter dataset 
collected with the X-band ground-based Fynmeet marine 

radar by the council for scientific and industrial research 
(CSIR). In [162], Chen et al. proposed a dual-channel 
convolutional neural network (DCCNN) made of LeNet 
and VGG16, for which the amplitude and the time-
frequency information were used as two inputs, and the 
features extracted from the two channels were fused at the 
FC layer. One distinctive characteristic of [162] is that 
softmax classifier with variable threshold and SVM 
classifier with controllable false alarm rates were designed. 
The performance of the proposed network was tested with 
two datasets, the Intelligent PIXel processing radar (IPIX) 
dataset collected by the fully coherent dual-pol X-band 
radar for floating target and the CSIR dataset for 
maneuvering marine target.  In [163], a fully convolutional 
network (FCC) with 20 layers were proposed for ship 
detection in SAR images collected by Gaofen-3 and 
TerraSAR-X. It is worth mentioning that pixel truncation 
was implemented as a preprocessing procedure assuming 
that the potential ship pixels are brighter than the clutter, 
which is not necessarily true. Finally, in [164], a DL-based 
empirical clutter model named as the multi-source input 
neural network (MSINN) was proposed to predict the sea 
clutter reflectively. This model was tested with the sea 
clutters collected by ground-based UHF band polarized radar 
and was proven to fit the measurement data better than the 
existing empirical sea clutter models. 

Although most research papers in this field focus on sea 
clutter, DNNs have also been designed to address other 
types of clutter. For example, in [165], Cifola et al. 
considered the problem of clutter/target recognition for 
drone signals polluted by wind turbine returns. A denoising 
adversarial autoencoder was designed, the performance of 

TABLE 8 DL for jamming recognition and suppression 
 

Reference Objective DNN structure Main features Type of jamming 

Mendoza et 

al. [145] 

Jamming signal 
classification 

12-layer neural network (NN) 
 Proved that NN using power spectrum samples 

outperforms the one using autocorrelation 
①; ⑤ (LFM & 
power-law FM);  

Shao et al. 

[146][147] 

Improved Siamese-CNN: two 1-D CNN 
(4 × Conv + 1 × FC) to extract features 
of real & imaginary data 

 Work with limited training samples (500/class) 
 Performance compared with various machine 

learning methods, e.g. SVM, 1D-CNN, etc. 

12 types  
(①--⑨; ②+⑨; ⑦+⑧; ③+⑥) 

Liu et al. 

[148] 
CNN (4 × Conv + 4 × POOL + 1 × FC) 

 Preprocessing: normalization, filtering, STFT, 
adaptive cropping of the time-frequency map 

 Jamming detection (OS-CFAR) & measurement  
②; ⑦; ⑩-⑯ 

Xiao et al. 

[149] 

Bilinear EfficientNet-B3 + attention 
mechanism + transfer learning 

 Preprocessing: time-frequency analysis 

 Attention mechanism + transfer learning 
②; ⑩; ⑪; ⑫; ⑭; ⑮; ⑳ 

Yu et al. 

[151] 
CNN (VGG16 variant, 13 layers)  Statistical characteristics of SAR echo is exploited Barrage (⑰-⑲) 

Wang et al. 

[152] 

Target 
classification 
with jamming 
present 

Stacked sparse autoencoder 
 Polluted-spectrum recovery via compressed sensing 
 Three types of airplanes are classified based on 

micro-Doppler effects 
① 

Li et al. 

[153][154] 

Anti-jamming 
strategy for 
radar 

Actor-critic style: MLP (3 × FC); CNN 
(2 × Conv + 1 × FC); LSTM (1 × LSTM 
+ 2 × FC) 

 Frequency agile radar employing deception sub-
pulses to mislead the jammer 

 Anti mainlobe jamming 

Barrage/spot 
jamming 

Ak et al. 

[155] 

Analyze 
probability of 
radar being 
jammed 

 Double deep-Q network (3 hidden 
layers) 

 LSTM: 32 hidden units 

 Reinforcement learning with knowledge-based 
random-access agent (KARAA) strategy and least 
aggregate reward agent (LARA) strategy 

Jammer channel 
hopping dynamics 
generated by 
Markov mechanism 

Hong et al. 

[156] 
Radar signal 
recognition & 
jamming 
prediction 

CNN  
 Radar signals with 6 types of RF modulation and 7 

types of PRI modulation are considered 
 Adaptive jamming methods selection for unknown 

radar signals 

Varies based on 
radar signal under 
consideration 

Pietro et al. 

[157] 

1. Deep neural network: 4 hidden layers 
2. LSTM: (2 × LSTM + 1 × FC) ① pure noise; ② interrupted sampling repeater jamming (ISRJ); ③ aiming; ④ blocking; ⑤ sweeping; ⑥ distance deception; ⑦ dense false targets; ⑧ 

smart noise; ⑨ chaff; ⑩ noise amplitude modulation jamming (AM); ⑪ noise frequency modulation jamming (FM); ⑫ noise convolution jamming (CN); ⑬ noise product jamming (CP); ⑭ smeared spectrum jamming (SMSP); ⑮ chopping and interleaving jamming (C&I); ⑯ comb spectral jamming 

(COMB); ⑰ single frequency; ⑱ narrowband barrage; ⑲wideband barrage; ⑳ rectangular wave convolution jamming; 
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which was tested with the micro-Doppler signatures of 
drones and wind-turbines measured with X-band CW radar. 
In [166], Lepetit et al. used U-Net, a CNN variant that was 
originally proposed for medical image segmentation, to 
remove clutter from precipitation echoes collected by 
weather radar. 150,000 images collected by the Trappes 
polarimetric ground weather radar in Météo-France were 
used for network training.  

The DNN structures presented in [161]-[166] and their 
main features are summarized in TABLE 9. Note that 
except for the works mentioned above, deep convolutional 
autoencoders were proposed for target detection in sea 
clutter in [167], [168], and a LSTM-based network was 
designed for sea clutter prediction in [169]. Since these 
networks were tested only with simulated data, they are 
expected to exhibit noticeable performance degradation in 
real-life detection scenarios.  

VI. CONCLUSION 

In this work, we consider the application of DL algorithms 
in radar signal processing. With the DL gaining popularity 
rapidly in recent years, DL for radar signal recognition, DL 
for ATR based on HRRP/Doppler signatures/SAR images, 
and DL for radar jamming recognition & clutter suppression 
have been explored thoroughly by many researchers. 
Although classification accuracies of 98%-100% have been 
reported in many research works on radar ATR with DL 
networks using the MSTAR dataset, it should be emphasized 
that there is a long way to go before the DL approaches 
become qualified substitutes for the classic radar ATR 
methods. Firstly, DL networks demand large amount of 
training data. Unlike the typical problem of image 
classification, for which large amounts of training data are 
available online, representative real-world HRRPs and SAR 
images that are labelled with accurately verified targets are 
simply not readily available for everyone at demand. Not to 
mention that a network trained under a specific environment 
doesn’t work the same way when the environment changes. 
Secondly, although some DL networks reach high accuracies 
with limited training data, most of them were tested with 
only the MSTAR dataset, which has also been used to prove 

the high -accuracy performance (above 97%) of traditional 
machine learning based ATR methods 20 years ago. 
Moreover, the ever-evolving adversarial attacks also post 
great security risk to the DNNs. This work provides a full 
picture of numerous potential research opportunities and 
grave challenges in applying the DL-based approaches to 
address the existing problems in radar signal processing, 
which serves as a good reference work for researchers 
interested in this field. 
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