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Deep learning for real-time  
single-pixel video
Catherine F. Higham  1, Roderick Murray-Smith1, Miles J. Padgett2 & Matthew P. Edgar2

Single-pixel cameras capture images without the requirement for a multi-pixel sensor, enabling the 

use of state-of-the-art detector technologies and providing a potentially low-cost solution for sensing 

beyond the visible spectrum. One limitation of single-pixel cameras is the inherent trade-off between 
image resolution and frame rate, with current compressive (compressed) sensing techniques being 

unable to support real-time video. In this work we demonstrate the application of deep learning with 

convolutional auto-encoder networks to recover real-time 128 × 128 pixel video at 30 frames-per-
second from a single-pixel camera sampling at a compression ratio of 2%. In addition, by training the 
network on a large database of images we are able to optimise the first layer of the convolutional 
network, equivalent to optimising the basis used for scanning the image intensities. This work develops 

and implements a novel approach to solving the inverse problem for single-pixel cameras efficiently 
and represents a significant step towards real-time operation of computational imagers. By learning 
from examples in a particular context, our approach opens up the possibility of high resolution for task-

specific adaptation, with importance for applications in gas sensing, 3D imaging and metrology.

A single-pixel camera captures images by temporally measuring the unique spatial properties of a scene with a 
single detector, rather than using a multi-pixel sensor1–5. For this approach a lens is used to form an image of the 
scene onto a spatial light modulator (SLM), which scans a known basis and produces a vector of encoded intensi-
ties measured on a single-pixel detector. A computer algorithm is used to solve the inverse problem to reconstruct 
an image. �is technique enables a solution for applications when conventional imaging with a multi-pixel sensor 
is not possible or prohibitively expensive, such as at shortwave-infrared and terahertz wavelengths, as well as 
three-dimensional ranging.

It is important to recognise that there are two time-penalties associated with single-pixel imaging: the acqui-
sition time and the reconstruction time. �ese become important considerations when moving to higher image 
resolutions and when applications demand faster frame rates. �e acquisition time is determined by the num-
ber of unique measurements required and the rate at which this is achieved (the modulation rate of the SLM), 
whereas the reconstruction time is the computational overhead associated with the complexity of the image 
reconstruction problem and its implementation.

One of the challenges with single-pixel imaging is overcoming these time penalties. In recent years there has 
been a wealth of research on the development of various compressive (compressed) sensing strategies that allow 
for fewer measurements than the number of pixels by exploiting prior knowledge about the scene properties. 
However, reducing the acquisition time requires solving an under-determined problem via optimisation, which 
can lead to an increase in the reconstruction time. In many cases the reconstruction time exceeds the acquisition 
time which prevents real-time applications.

Deep neural networks are computational models which are concerned with learning representations of data 
with multiple levels of abstraction. �ey are proving very successful at discovering features in high-dimensional 
data arising in many areas of science6,7. Recently, there has been interest in using deep neural networks to recover 
structured signals (in particular, images) from their under-sampled random linear measurements8. Speci�cally, 
dimension reduction in high-dimensional data can be achieved by training a multilayer neural network called 
an auto-encoder9. Innovations such as convolutional layers10 have further improved context learning and 
super-resolution11. �us an auto-encoder can be considered as a promising alternative to compressive sensing. 
�is insight motivated the work presented here, which demonstrates the use of a deep convolutional auto-encoder 
network (DCAN) to provide a computationally-e�cient and data-e�cient pipeline for solving the inverse prob-
lems with better quality, and importantly, in real-time.
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In this work we demonstrate the application of deep learning with a deep convolutional auto-encoder to 
produce a novel algorithm capable of recovering real-time high-resolution (128 × 128 pixel) video at 30 fps from 
a single-pixel camera system employing, as a spatial light modulator, a high-speed digital micro-mirror device 
(DMD). �e customized deep learning framework includes a speci�cally adapted encoding layer equivalent to 
performing spatial �ltering with a chosen binary basis. We further utilise the recovery framework to optimise 
a highly-compressed measurement basis, which yields better quality images compared with other methods 
attempting real-time image reconstruction.

Results
Experimental set-up. �e single-pixel camera, illustrated in Fig. 1, consists of a lens to form an image at 
the focal plane where a high-speed DMD is located instead of a multi-pixel sensor. �e DMD (Vialux V7000 
module employing a Texas Instruments 4100) is used to sequentially scan through a series of binary patterns, 
each of which masks some areas of the image while re�ecting the light in other areas onto a single-pixel detec-
tor (�orlabs photomultiplier tube, model PMM01) via a beam steering mirror. �e intensities measured for 
the entire basis are digitised using an analogue-to-digital converter (National Instruments, model USB-6210) 
whereupon subsequent signal/image processing is performed by computer. In other words, for each binary mask 
displayed on the DMD, the measured intensity corresponds to the correlation it has with the scene.

Scanning strategies. �e Hadamard basis, which has been used extensively in similar computational imag-
ing schemes, is a set of orthonormal binary matrices with elements that take the value of +1 or −112,13. �is 
basis, which transmits and masks equal proportions of the image, has been shown to improve the signal-to-noise 
ratio for measurements made by the detector and consequently improves the overall reconstructed image quality. 
Furthermore a fast algorithmic transform implementation for the Hadamard basis14 enables a computationally 
e�cient reconstruction by reducing the number of operations for reconstructing an image of size N = n × n from 
N2 to N log2N. However to fully sample an image of this size requires the use of N patterns.

In this work we consider several strategies to substantially reduce the number of Hadamard patterns used for 
scanning the spatial properties of images: randomly ordered (rand), Russian-doll ordered (RH)15 and a novel opti-
mised ordering (OH). �e random ordering picks rows at random from the Hadamard basis for reshaping and 
displaying on the DMD. �e Russian-doll ordering is an arrangement such that at discrete increments complete 
sampling is obtained for di�erent spatial resolutions. �e optimised ordering is obtained by simulating the signals 
(correlation strength) from a diverse set of 20,000 training images16 and ordering according to their magnitudes 
in descending order. We also propose a novel non-orthonormal basis, which is generated and optimised by our 
deep learning approach.

Reconstruction algorithm and optimised binary basis using deep learning. We designed and 
trained a deep convolutional auto-encoder network (DCAN) to compress (encode) and decompress (decode) 
an image for single-pixel camera application. �e DCAN comprises a series of �lters and activations, referred to 
as layers, which map input features to output features. �e number and shape of the �lters and the type of map-
ping form the architecture of the auto-encoder, shown in Fig. 2. �e M �lters associated with the �rst encoding 
layer or bottleneck layer are designed to mimic the application-speci�c action of the DMD and are constrained 
during training to take binary values. A digital image �ltered by this binary layer produces a grayscale output in 
the same way that the patterns loaded on to the DMD �lter a scene to produce a light intensity signal. �e role of 
the subsequent decoding layers is to reconstruct the image from the compressed signal. �e layers of the DCAN 
include convolutional �lters which pass over the feature map(s) providing neighbouring pixel context to the 
reconstruction. �e number and shape of these �lters in terms of height, width and depth are chosen to improve 

Figure 1. �e experimental set-up used for real-time video with a single-pixel detector. A photograph of a 
single-pixel camera system developed by the Optics Group at the University of Glasgow. �e photograph was 
taken by Kevin Mitchell (a). On the right is a simpli�ed schematic of the inner components consisting of a lens, 
DMD, single-pixel detector, analogue to digital converter and computer (b). �e lens is used to form an image 
of the scene onto the DMD, which spatially modulates the light using a series of patterns derived by the method 
described in the text, and the re�ected light intensity is measured on single-pixel detector whereupon the signal 
is digitised by an analogue-to-digital converter for subsequent computer processing and image reconstruction.
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the resolution of the output and were informed by the super resolution work by Dong et al.11. �ree convolutional 
decoding layers are used, with �lter dimensions (9 × 9 × 1), (1 × 1 × 64) and (5 × 5 × 32) respectively. A relatively 
large kernel size of (9 × 9 × 1) in the �rst convolutional layer was found to provide slightly better results than 
(5 × 5 × 32) for a resolution size 128 × 128. �e �lter weights (parameters) were optimised by training the DCAN 
over a large database of images16 (further details in Methods).

�ere are two types of outputs from training the DCAN. First, a fully parametrised multi-layered mapping 
algorithm provides a novel inverse method to reconstruct an image from a series of spatially encoded measure-
ments. Second, the encoding layer, i.e. the binary sampling basis, can be optimised to yield best reconstruction 
performance. One approach is to learn just the reconstruction mapping using the novel optimised Hadamard 
ordering for the encoded measurements (DLOH). Another approach is to learn a binary sampling basis, optimised 
along with the reconstruction (DL). A random sample of deep learned binary patterns for two M values resulting 
from this latter, all encompassing, approach are provided in Fig. 3.

With our single-pixel camera the maximum modulation rate of the DMD is 22.7 kHz but to avoid unwanted 
noise resulting from micro-mirror relaxation we chose to operate the DMD at 20 kHz. Moreover, since our 
single-pixel detector is sensing the light from only one output port of the DMD, a�er each pattern we display the 
corresponding negative pattern, and take the di�erence of the two signals to obtain a di�erential measurement 
appropriate for a binary basis with values of +1 and −1. Motivated to achieve real-time video-rate image recon-
struction of 30 fps or 15 fps this allowed for a maximum of 333 or 666 patterns respectively. We experimentally 
performed sub-sampling of scenes to this degree using the aforementioned basis orderings whilst also applying 
three di�erent image reconstruction approaches, and compared the results quantitatively.

Image reconstruction. Compressive sensing and 1  minimisation17–19 provides a theoretical basis for recov-
ering an image from a set of under-sampled measurements by solving a convex optimization program and is 
commonly used in image reconstruction. Another method used for comparison was the fast Hadamard trans-
form12. �e �nal approach utilised the deep learned auto-encoder neural network. (See Methods for further 
details about image reconstruction).

Simulation. To understand the expected performance for each of the scanning and reconstruction strategies 
(l1rand, l1RD, l1OH, FHTRD, FHTOH, DLOH and DL) we simulated noisy signal data for one hundred images selected 
randomly from the 10,000 images from the image library which were not used for training. Gaussian noise, at 
an equivalent magnitude to the experimentally measured detector noise (see Fig. 7), was added to the clean sig-
nal. �ree di�erent metrics were chosen to quantitatively assess the reconstructions: peak-signal-to-noise ratio 
(PSNR), structural similarity index (SSIM) for a human perception perspective20 and standard deviation (SD). 
We also estimate the reconstruction rate for each method. Due to the excessive running time of the l1 method, we 
evaluate this method on 5 images instead of 100. Choosing to display 333 unique patterns yields a reconstruction 
frame rate of 30 Hz for image resolution sizes of 32 × 32 pixels (67% compression), 64 × 64 pixels (92% compres-
sion) and 128 × 128 pixels (98% compression). �e results are shown in Fig. 4 and Table 1.

Figure 2. �e deep convolutional auto-encoder network (DCAN) architecture. �e DCAN is a computational 
model, comprising encoding (measurement) and decoding (reconstruction) layers, whose objective is to 
reproduce an input image or scene as an output image. �ese layers are essentially mappings de�ned by �lters 
which pass or convolve over the feature maps with strides of one horizontally and vertically. �e input scene 
is measured or encoded by M binary �lters 128 × 128 (for 30 Hz or 15 Hz frame rates M = 333 or M = 666 
respectively) and reconstructed or decoded using a fully connected layer and a series of three convolutional 
blocks. A�er the fully connected layers is a normalisation layer and between the convolutional layers is a non-
linear activation layer, not shown here. �e DCAN is trained using a large library of images. During training 
the parameter values (�lter weights) are optimised using the stochastic gradient descent method with respect 
to minimising a standard cost function measuring the Euclidean distance between the predicted output and the 
desired output.
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From these simulations we observe that the deep learned approaches, DHOH and DL, perform best across all 
resolutions in terms of both PSNR and SSIM, with the 128 × 128 resolution (98% compression) having the largest 
di�erence, particularly for SSIM. Learning the binary sampling basis, DL, further enhances performance at the 
higher compression levels, resolutions 128 × 128 and 64 × 64. We also note that comparing the di�erent sampling 
bases with each reconstruction method, the optimised Hadamard ordering performs better than Russian-Doll 
ordering. �e presented FHT and l1 reconstructions use a di�erent image base in terms of number (100 for FHT 
and 5 for l1) but further investigation on the same image base con�rm the indication shown here that FHT per-
forms slightly better than l1 on the PSNR and SSIM metrics. Importantly, the reconstruction rates are orders of 
magnitude faster for FHT than l1 minimisation, and furthermore the deep learned reconstruction rate is comfort-
ably above the desired 30 fps. �us, in summary, we �nd that deep learning o�ers the best reconstruction quality, 
with an increase in the standard deviation at video rates.

Experimental results. To obtain experimental results a single large area photomultiplier (Model �orlabs 
PMM-01) was placed at an output port of the DMD as depicted in Fig. 1. To help remove noise on the measured 
signals due to �uctuations in ambient light levels, we choose to display each pattern and its inverse in succession, 
from which we obtain a series of di�erential intensities by subtracting one signal from the other. �e di�eren-
tial signals were fed forward through the learnt DCAN reconstruction algorithm producing an output image 
(128 × 128) for each frame of acquisition. We obtained experimental results for M = 333 and M = 666, yielding a 
real-time video rate at 30 Hz and 15 Hz respectively.

As we are interested in comparing di�erent approaches that can achieve real-time video rates, we limit our 
comparison to the Fast Hadamard Transform and our proposed DCAN reconstruction algorithm. In one exper-
iment, the scene under investigation consisted of a large area USAF test target (300 mm × 300 mm) in the back-
ground and a potted plant in the foreground. Performing a fast Hadamard transform with the complete basis 
(M = 16384) and averaging over 100 frames yields a reference for comparison purposes, see Fig. 5(a). Performing 
a Fast Hadamard Transform using only a subset of 666 Hadamard patterns (96% compression), the reconstruc-
tion exhibits resolution-limited features but with reasonable contrast, as shown in Fig. 5(b). �e reconstruction 
using the M = 666 optimised binary basis and the DCAN reconstruction algorithm is shown in Fig. 5(d), which 
results in more natural features and reduces the apparent noise. To verify that the deep learning method is doing 
more than simply smoothing over the data, we can apply a Gaussian smoothing Kernel (with 1 pixel standard 
deviation) to Fig. 5(b) which results in Fig. 5(c). We �nd that the DL reconstruction compares similarly to the 
other methods regrading horizontal and vertical features, since the optimised Hadamard order contains predom-
inantly low resolution patterns, however diagonal features and natural shapes appear to be recovered with better 
sharpness and contrast.

Undertaking a quantitative assessment on the experimental results using the PSNR and SSIM metrics with 
the reference image, we obtain superior results for the DL approach compared to the FTHOH without smoothing 
in terms of PSNR (24.0 and 17.0 respectively) and SSIM (0.66 and 0.54 respectively). Smoothing the FTHOH does 
improve the quantitative results (PSNR = 23.3 and SSIM = 0.66) but qualitatively, visual inspection suggests an 
over-smoothed appearance, see Fig. 5. �ese results validate the conclusion that the deep learning algorithm and 
optimised sampling basis outperform the other techniques investigated and importantly can be implemented in 
real-time on a standard computer processor (model Intel i7).

Figure 3. An illustrative selection of deep learned binary patterns. Four randomly chosen patterns, for the same 
resolution of image, arising when M, the number of patterns, is reduced to 666 (a), and when M = 333 (b). �ese 
pattern formations suggest that when there are fewer patterns available, the algorithm focuses on low-resolution 
bases.
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A sample of di�erent images reconstructed using the deep learning algorithm are shown in Fig. 6. It is impor-
tant to emphasise that the image classes in the training data did not include faces, hands or household objects 
such as mugs. Subsequent investigations could o�er better performance when the training data is task-speci�c.

Discussion
Here we propose and test a novel technique for optimising low dimension feature identi�cation with binary 
weights and reconstruction using a deep convolutional auto-encoder network. �e method deals simultaneously 
with feature identi�cation and reconstruction. It incorporates a new regularization approach that encourages 
binary weights, with the goal being to use the proven performance of continuous deep neural networks to learn 
bases in order to represent images e�ciently. �e alternative approach of compressive sensing is based on the 
assumption that a small collection of non-adaptive linear measurements of a compressible signal or image contain 
enough information for reconstruction and processing. At high levels of compression this may not be the case. We 
use deep learning to solve the inverse problem and reconstruct the image but also to learn an optimised measure-
ment basis appropriate to the scene. We can think of the optimised sampling basis used in this approach as having 
learned the features common in the training library, without being de�ned explicitly by the user. In addition the 
compressive sensing solution is iterative and computationally costly whereas the deep learning solution is fast 
and deterministic.

We implemented the learned binary basis for sampling on a single-pixel camera, and in conjunction with the 
DCAN reconstruction pipeline. We found that the use of deep learning improves the image reconstruction qual-
ity of single-pixel cameras employing compressive sensing for moderate resolutions between 32 × 32 pixels and 
128 × 128 pixels, and importantly this is achieved at video frame rates in excess of 30 Hz. Our objective was to �nd 
a balance between performance and rate of reconstruction to achieve high resolution in real-time. �e intention 
of this work was a proof-of-principle demonstration for deep learning applied to image reconstruction from a 
single-pixel camera. Increasing depth by adding more layers can improve accuracy but adds to the reconstruction 
time. Future work will look at ways of resolving this issue, such as mimicking deep layers with shallow layers, to 
improve both reconstruction performance and rate. Further improvements are expected through extending train-
ing to larger datasets and faster GPU units, and in context-speci�c bases trained on speci�c image collections. 

Figure 4. Quantitative assessment of the reconstruction performance. Four di�erent metrics have been used 
to assess the reconstruction performance (PSNR, peak signal-to-noise ratio (a), SSIM, structural similarity 
index (b), STD, standard deviation (c) and reconstruction rate (d)) using di�erent reconstruction methods: 
compressive sensing l1 minimisation using a pseudo-random basis (l1rand), a Russian-Doll ordered Hadamard 
basis (l1RD), an optimised order of the Hadamard basis (l1OH); by performing a Fast Hadamard Transform when 
using the Russian-Doll ordered Hadamard basis (FHTRD), the optimised order of the Hadamard basis (FHTOH); 
as well as the novel methods proposed here employing deep learning (DLOH and DL). In each case the three 
shaded bars depict di�erent reconstruction resolutions 128 × 128 �rst column, 64 × 64 second column and 
32 × 32 third column. In summary, we �nd that deep learning o�ers the best reconstruction quality, with an 
increase in the standard deviation at video rates.

resolution l1rand l1RD l1OH FHTRD FHTOH DLOH DL

number of images 5 5 5 100 100 100 100

128 × 128 6.4, 0.001 20.0, 0.389 20.3, 0.413 20.2, 0.442 20.8, 0.459 21.7, 0.551 22.7, 0.587

64 × 64 6.3, 0.003 20.8, 0.535 21.2, 0.557 21.0, 0.571 21.8, 0.594 22.8, 0.663 23.4, 0.691

32 × 32 6.6, 0.000 23.4, 0.790 24.2, 0.821 24.0, 0.813 25.3, 0.842 26.3, 0.869 25.2, 0.838

Table 1. Comparison of reconstruction performance for M = 333 patterns. In each cell the two values 
correspond to PSNR and SSIM respectively.
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�is work represents a signi�cant step towards real-time applications of computational imagers, and opens up 
possibilities for task-speci�c adaptation, with importance for applications such as gas sensing, 3D imaging and 
metrology.

Methods
Hadamard basis and the fast Hadamard transform. �e Hadamard basis is a set of n × n orthonormal 
binary matrices with n rows and n columns. �e inverse of each element, k, of the Hadamard basis, Hk, is its trans-
pose, ΤHk , so images can be reconstructed perfectly from a clean signal. For an n × n image, x, the signal element, 
obtained from applying one element or pattern from the Hadamard basis, is yk = Hkx, and xk can be recovered by 
applying the inverse Hadamard, x H yk k= Τ  to the full signal y. However, when the signal is corrupted with detec-
tor noise, ε, the reconstruction,  ε+H y( )k

T , is confounded by noise levels which can dominate signal elements 
with small absolute values. For a noisy signal, the inverse Hadamard transform disperses the noise over the recon-
structed image, improving the signal-to-noise-ratio (SNR). Even so, the SNR approximately halves with each 
four-fold increase in resolution, see Fig. 7, causing issues for high resolution images.

�e structure of the Hadamard basis and the fact that the Hadamard has binary values of ±1 means that each 
pixel of the image can be reconstructed using only addition or subtraction of the measured signals, see12 for fur-
ther explanation. Hence, the Hadamard transform for an N = n × n image can be computed in Nlog2N addition/
subtraction operations instead of order N2 �oating point operations required for a general matrix, using the fast 
Hadamard transform algorithm decribed in12, as well as avoiding storage of the Hadamard basis elements (a sub-
stantial memory requirement for images 128 × 128 and above).

Optimising the reduced Hadamard basis. Having established in the previous section that reconstruc-
tion is confounded by noisy signals with a low absolute value, we propose to exploit this observation to reduce the 
number of signals and to improve SNR by identifying and removing the basis elements most likely to have low 
absolute values. First we apply the Hadamard basis to a large number of 20,000 images16 to obtain simulated sig-
nals for each image, yi. We then order the basis elements in descending absolute value of their coe�cients in the 
sum of signals yi

i i
1
20,000∑ =
= . In this way we identify the signal elements or pattern number that contribute, on 

average, the most to the reconstructed images. We denote this order as the optimised Hadamard ordering 
(OH1…N). To reconstruct an image x H yk

r
k

r= Τ  from M signals, we take the �rst M signal elements from the opti-
mised Hadamard ordering and set all other signal elements to zero

Figure 5. Single-Pixel Camera Performance Results. Comparing the full Hadamard basis (M = 16834 patterns) 
(a), with the reduced optimised Hadamard basis (M = 666 patterns, 4% of total) (b), the reduced optimised 
Hadamard basis smoothed using a Gaussian �lter with 1 pixel standard deviation (M = 666 patterns) (c) and the 
deep learned basis (M = 666 patterns) (d). Note the improved sloping lines in DL compared to FHT.

Figure 6. A selection of single-pixel camera image frames. �ese images (pixel size 128 × 128) are sampled 
using the deep learned binary sampling basis (M = 666, 4% of number of pixels) and reconstructed using the 
deep learning reconstruction algorithm.
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Deep Learning for Single-Pixel Cameras. Deep learning is a set of tools that have become popular in a 
wide range of applications. �ere are many sophisticated so�ware packages in the public domain. We have used 
MATCONVNET running on a Tesla C2075 GPU unit to create a deep convolutional auto-encoder as justi�ed 
in21. �e objective of our network is to replicate an input scene as an output image with resolution size i × n. �e 
network is prede�ned in terms of number of layers, type of layers, the size and number of associated �lters. �e 
resolution of the output image, in terms of size, is dependent on the dimensions of the encoding �lters and �rst 
decoding �lters. In terms of quality, there are several factors: the number of encoding �lters but also the structure 
of the DCAN. �e layers, described below, are designed with this objective in mind. Code for the DCAN is pro-
vided in the supplementary �le. �e parameters of the network are optimised by training with a large dataset and 
minimising a Euclidean loss function using stochastic gradient descent22. We base our DCAN super resolution 
decoding architecture on11 but the encoding architecture is adapted to mimic the measurement of light intensity 
by the DMD. As illustrated and described in Fig. 2, the DCAN can be visualised as a series of �lters comprising 
encoding and decoding layers, which map input features to output features. �e encoding layers collectively 
encode the image and the decoding layers collectively decode the signal. �e resolution of the output image, 
in terms of size, is dependent on the dimensions of the encoding �lters (DMD patterns) and its corresponding 
decoding �lter. In terms of quality, there are several factors: the number of encoding �lters (DMD patterns) and 
also the structure of the DCAN.

Encoding Layer. �e �rst layer comprises M �lters (patterns) with height and width dimensions n × n that 
sequentially sample the scene and map to a feature vector of length M. In order for the learnt weights of this 
dense mapping to be suitable for the DMD, these weights are gradually regularised to take the binary values −1, 
1. In this work, we propose M �lters (patterns) of 333 and 666 which, in terms of signal acquisition, would allow 
video rate reconstruction at 30 Hz and 15 Hz respectively. For the �lter resolutions we consider 32 × 32, 64 × 64 
and 128 × 128.

Decoding Layers. �e �rst decoding layer is a fully connected layer that takes the M dimension feature vector 
as its input and outputs a feature vector with n × n resolution. For training the DCAN using the image library, 
we added Gaussian noise which simulates the level of experimental noise and is also found to help regularise the 
solution. Inserted a�er the encoding and �rst decoding layer is a batch normalising layer23 which we �nd speeds 
up training. For the subsequent decoding layers, we add the following, with the aim of improving the resolution 
inspired by11: a convolutional layer with weight dimensions [9,9,1,64]; a recti�ed linear unit layer (RELU); a 

Figure 7. Signal-to-noise ratios at di�erent resolutions. At 16 × 16 (SNR = 27.5) top le�, at 32 × 32 (SNR = 14.2) 
top right, at 64 × 64 (SNR = 6.7) bottom le� and at 128 × 128 (SNR = 3.4) bottom right.
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convolutional layer with weight dimensions [1,1,64,32]; RELU; a convolutional layer with weight dimensions 
[5,5,32.1] and a �nal RELU. �e RELU layers add a piecewise linear non-linearity which avoids the ‘disappearing 
gradient’ problem when di�erentiated24. �e cost function is least squares Euclidean distance. In the examples 
shown in this paper, we are working with image output resolutions of 32 × 32, 64 × 64 and 128 × 128.

Data and training. �e STL-10 dataset16 is an image recognition dataset (100,000 images comprising 10 
classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck) for developing unsupervised feature learn-
ing, deep learning, self-taught learning algorithms. We use the same dataset for all our deep learning at di�erent 
resolution experiments but resize the images from 96 × 96 to 32 × 32, 64 × 64 and 128 × 128. In our tests, images 
are further converted to gray-scale to match the measurement basis of the single-pixel camera. We set aside 
10,000 images for validation and testing and train on the remaining 90,000 images.

Creating the DCAN and training was carried out using MATCONVNET25 running on a Tesla C2075 GPU 
unit.

Using deep learning to derive optimal binary basis. To drive the weights towards binary values, we 
propose and test the following scheme, denoted Ω −{ 1,1}. �e idea is to encourage the weights of the bottleneck layer 
towards {−1, 1}, where −1 represents ‘o� ’ and 1 represents ‘on’ on the DMD. �e negative values are obtained 
post sensing by subtracting the measurement from the inverse mask. �e proposed expression for this binary 
weight regularization scheme is

∑∑∑Ω = + −− ( ) ( )w w1 1 ,
(2)l

L

j

n

i

k

ij
l

ij
l

{ 1,1}

2 2

where wij, l, j and i denote the weight, the bottleneck layer and the weights’ width and height positions respectively.
We found that regularising the weights of the bottleneck layer to take binary values and control a noisy signal 

too quickly locked the potential of the decoding layers. We therefore propose training in two stages. First, the 
DCAN is trained without noise and binary regularisation to obtain an ideal decoder. Second, the parameters 
associated with the decoder layers are �xed and the encoding layers are retrained with noise and a low binary 
regularization (10:90 weighting with the cost function). Another advantage of this approach is that we obtain an 
ideal decoder that could be reused with an application-speci�c encoding layer.

Single-pixel camera. �e single-pixel camera is an optical computer that sequentially measures the inner 
products between an N × N pixel sampled version x of the incident light-�eld from the scene under view and a set 
of M ≤ N2 two-dimensional N × N binary masks or patterns, collectively called the measurement basis.

An image of the scene is formed on to a DMD consisting of an array of 1024 × 768 mirrors2. Each mirror 
or subset of mirrors corresponds to a particular pixel in x and the mask, and can be independently orientated 
either towards another biconvex lens (corresponding to a one at that pixel in the basis) or away from that lens 
(corresponding to a zero at that pixel in the basis). �e re�ected light is collected by the second lens and focused 
onto a single photon detector (the single pixel) that integrates the product between x and each basis to compute 
the measurement y as its output voltage. �is voltage is then digitized by an A/D converter, see Fig. 1. A meas-
urement basis that uses ±1 can be employed by taking a di�erential measurement between each mask and its 
inverse. �is approach is advantageous to signal-to-noise ratio5. Measurement bases such as Walsh-Hadamard 
and Fourier enable e�cient reconstruction through fast algorithmic transform implementations but used in full 
require M = N2 masks or patterns. In order to obtain high resolution images at video rate we require M ≪ N2.

Compressive sensing. Recovering an image, x, from a set of under-sampled measurements, y, is formulated 
as an inverse problem y = Φx where Φ is a linear measurement basis. Compressive sensing seeks to solve the lin-
ear inverse problem in the case where x has a sparse representation, and is based on the assumption that a small 
collection of non-adaptive linear measurements of a compressible signal or image contain enough information 
for reconstruction and processing17–19.
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