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ABSTRACT: 

This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-

net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study 

includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-

8s model achieved  75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net 

model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s.  

1. INTRODUCTION

Weed controlling is one of the main problems that farmers must 

deal with. Weeds profoundly affect farm productivity by invading 

crops and smother pastures and significantly decrease the quality 

of the harvested crops (Milberg et al., 2004). Herbicides are 

widely used globally to enhance food production; however, it can 

cause harm to the environment and the ecosystem (Horrigan et 

al., 2002).  In the traditional weeds control approaches, the 

herbicide is applied over the whole field, even for the area without 

weeds where no treatment is required. Precision agriculture 

techniques should regularly monitor crop growth to maximize 

yield while minimizing the use of resources such as chemicals and 

reducing the side effects of herbicides on the environment 

(Duckett et al., 2018). Thus, accurate weeds detection and 

mapping, and their local treatment are essential steps to improve 

weed and crop control in modern agriculture. 

Recently, unmanned aerial systems (UAVs) have become suitable 

platforms for acquiring data for crop and weeds monitoring. 

UAVs can acquire high-resolution imagery at a low cost, and less 

dependence on weather conditions (Hashemi-Beni et al., 2018, 

Gebrehiwot et al., 2019, Vinh et al., 2019). 

Several methods have been proposed for weed recognition over 

the last decades. Vegetation index, such as the normalized 

difference vegetation index (NDVI) is one of the methods to 

segment weeds in an agricultural field (Dyrmann et al., 2014). 

The main challenge of this approach is dealing with overlapping 

plants to separate weeds and crops. Texture-based models have 

shown great performance in detecting and discriminating plants 

from images with overlapping leave (Pahikkala et al., 2015). 

Machine learning-based approaches have gained attention for 

detecting weeds and crops (Murawwat et al., 2018). Murawwat, 

et al. (2018) use a support vector machine (SVM) classifier to 

classify carrot crops and weeds. They used 72 samples for 

training and eight samples for testing and achieved more than 

50% of classification accuracy. The challenge of the traditional 

ML approach such as SVM or RF classifiers is that feature 

extraction is not automatic and handcrafted features generation is 

a time-consuming stage. Some studies prove that unlike 

conventional machine learning methods, deep learning can 

efficiently deal with the limitations of handcrafted features for 

classifying weed and crops by extracting the features directly 

from the input data (Lee et al., 2015).  Recently, there has been 

considerable progress in the classification of remote sensing data 

using deep learning for different applications including 

agricultural tasks. Some studies used a convolutional neural 

network (CNN) in agricultural applications such as weed and crop 

classification (Mortensen et al., 2016, Potena et al., 2016, Di 

Cicco et al., 2017). Mortensen et al. (2016) used the VGG-16 

CNN model to classify weeds using mixed crops of an oil radish 

plot with barely, weed, stump, grass, and background soil images. 

Potena et al. (2016) presented a perception system for weed crop 

classification that uses shallow and deeper CNNs. The shallow 

CNN is used to detect vegetation, while the deeper one is used to 

classify weeds and crops. Di et al. (2017) used a SegNet to 

procedurally generate large synthetic training datasets 

randomizing the key features of the target environment (i.e., crop 

and weed species, type of soil, light conditions). Hashemi-Beni, 

et al. (2020) applied the u-net model to detect and discriminate 

crop and weeds using a small dataset. They applied data 

augmentation techniques such as random cropping, random 

rotation, and reflection to improve the classification results.  

This research provides a comparison of the U-Net and FCN-8s 

models for segmenting weeds from Crop/Weed Field Image 

Dataset (CWFID), which was introduced in Haug et al. (2014). 

2. DATASET AND ANNOTATION

The CWFID (Haug et al., 2014) was used to train and test the U-

Net classifier in this study. The CWFID dataset comprises field 

images in top-down view that were collected with an autonomous 

field robot Bonirob in an organic carrot farm in 2013. The 

CWFID includes 60 images with a size of 1296 x 966 pixels. All 

data acquisition was carried out during field tests, and images 

were acquired while the crop was in the growth stage and one or 

more true leaves were present. These images were labeled with a 

vegetation segmentation mask and crop/weed labeled image (In 

total: 162 and 332 crop and weed plants, respectively). A sample 

image of this dataset is shown in Figure 1. The CWFID was 

downloaded from https://github.com/cwfid. 
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Figure 1. Sample training image. (a) training image; (b) labeled 

image, (c) the image relabeled using MATLAB tool. 

Figure 1 shows one sample example of the training and its 

corresponding labeled image. The black, green, and red colors 

represent soil, crops, and weeds, respectively.  

3. METHODS AND DATA PROCESSING

3.1 Network Architecture 

3.1.1  U-net Architecture: The U-Net is a type of CNN 

architecture proposed by Ronneberger et al. (2015) for 

biomedical image segmentation. The U-Net architecture is based 

on the fully convolutional network, and it was modified to give 

accurate classification results with fewer training data. As shown 

in Figure 2, the architecture of U-Net looks like a letter ‘U’ that 

justifies its name.  

Figure 2. U-Net architecture (Ronneberger et al., 2015) 

The U-Net architecture has two structures: a shrinking path (left 

side) and an expanding path (right side). The shrinking path (also 

called the encoder) used to extract and capture the context in the 

image and the expanding path combines the feature maps. Then, 

more precise predictions of the pixel points on the edge can be 

obtained. The encoder is just a traditional stack of convolutional 

and max-pooling layers. The expanding structure (or decoder) is 

used to enable precise localization using transposed convolutions. 

Thus, it is an end-to-end fully convolutional network that only 

contains convolutional layers and does not contain any dense 

layer because of which it can accept the image of any size.  

3.1.2    FCN-8s architecture: The FCN was proposed by Long 

et al. (2015) to train an end-to-end for semantic segmentation. In 

this model, VGG16 fully connected based classification layers 

were replaced by convolutional layers to maintain the 2-D 

structure of images. VGG-16 is a CNN architecture proposed by 

Simonyan et al. (2014) to investigate the effect of the 

convolutional network depth on its accuracy in the large-scale 

image recognition setting. As shown in Figure 3, because of the 

gradual upsampling of the scoring layer and merging of features 

from earlier layers, a fine label map is obtained using the FCN-

8s. For this study, a fully convolutional neural network (FCN) 

with a stride of 8 (FCN-8s) model was fine-tuned. The FCN-8s is 

composed of locally connected layers, such as convolution, 

pooling, and upsampling, without having any dense layer. This 

allows reducing the number of parameters and computation time. 

Given that all connections are local, FCN-8s can work on any 

image size.  

Figure 3. FCN-8s architecture (Skovsen et al., 2017) 

3.2 Training U-Net and FCN-8s 

In this study, the U-net and FCN-8s models fine-tuned and trained 

using Stochastic Gradient Descent (SGD) with a learning rate of 

0.001, and a maximum epoch of 16. A 10-fold cross-validation 

method was used to estimate the ability of the U-net and FCN 

models on unseen data. For this purpose, we randomly partitioned 

the training images into 10 equal parts. At each run, the union of 

9 parts was put together to form a training set, and the remaining 

1-part used as a test set to estimate the classification errors. The

above steps are repeated ten times, using a different fold as the

testing set each time. Finally, the mean error from all folds was

used to estimate the potential of the U-net and FCN-8s models. It

took approximately 8 hours to cross-validating U-Net and FCN-

8s using a single GPU (NVIDIA Quadro M4000).

4. RESULTS AND DISCUSSION

In this study, a confusion matrix was used to analyze the 

classification results of the U-net and FCN-8s models. The 

qualitative classification results of U-Net and FCN-8s are shown 

in Figure 4, and the detailed results on how the U-Net and FCN-

8s models performed for each class (for soil, weeds, and crops 

classes) are described in Table 1 and Table 2, via the confusion 

matrices. The U-Net and FCN-8s models achieved an overall 

accuracy of 75.2% and 72.1%, respectively for separating weeds 

from crops.  

(a1)  (a2)  (a3) 

(b1)  (b2)  (b3) 

(c1)  (c2)  (c3) 

(d1)  (d2)  (d3) 

Figure 4. Classification results of U-Net and FCN-8s. (a1-a3) 

sampe test images; (b1-b3) Ground truth, and (c1-c3) U-net 

classification results; (d1-d3) FCN-8s results 
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Table 2. Confusion matrix of FCN-8s Classification( unit-

percentage) 

Table 1 and Table 2 show the correspondence between the 

predicted and the validation values. The cells of a confusion 

matrix represent the percentage of correct and incorrect 

predictions for all the possible correlations. The cell in the ith row 

and jth column means the percentage of the ith class samples, 

which classified into the jth class. The diagonal cell of the matrix 

contains the number of correctly identified pixels for each 

class. As the tables demonstrate, the U-Net model achieved the 

classification accuracy of 99.3% for soil, 60.48% for crops, and 

66.72% for weeds, whereas FCN-8s an accuracy of 99.59% for 

soil, 47.86% for crops, and 75.1% for weeds.  The U-net model 

achieved better overall accuracy (75.2%) compared to FCN-8s 

(72.1%). However, FCN-8s showed better performance on 

extracting weeds ( 75.1%) compared to U-net (66.72%). The 

results also show that about 33% and 24% of weeds in U-net and 

FCN-8s, respectively were misclassified as crops. This is because 

weeds and crops have a similar spectral response, which makes it 

hard to separate them using U-Net and FCN-8s  classifiers solely 

from optical imagery. 

5. CONCLUSION

Mapping the location of the weeds and locally treat those areas 

are essential to improve weed control capacity. This study 

compared the performance of two well-known deep learning-

based methods to distinguish crops from weeds using high-

resolution imagery. The U-Net and FCN-8s models were fine-

tuned to classify the CWFID into three classes (soil, crops, and 

weeds). The fine-tuning and transfer learning technique allowed 

us to overcome the problem of small dataset size. The U-Net and 

FCN-8s models achieved an overall accuracy of 75.2% and 

72.1%, respectively for classifying the CWFID dataset into three 

classes using 60 training images. In future research, we will 

incorporate crop geometry constrains to the model to improve 

classification accuracy.  
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