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Abstract—Blind source separation (BSS) algorithms, such
as gradient convolution kernel compensation (gCKC), can
efficiently and accurately decompose high-density surface
electromyography (HD-sEMG) signals into constituent motor
unit (MU) action potential trains. Once the separation
matrix is blindly estimated on a signal interval, it is also
possible to apply the same matrix to subsequent signal
segments. Nonetheless, the trained separation matrices are
sub-optimal in noisy conditions and require that incoming
data undergo computationally expensive whitening. One
unexplored alternative is to instead use the paired HD-sEMG
signal and BSS output to train a model to predict MU
activations within a supervised learning framework. A gated
recurrent unit (GRU) network was trained to decompose
both simulated and experimental unwhitened HD-sEMG
signal using the output of the gCKC algorithm. The results
on the experimental data were validated by comparison with
the decomposition of concurrently recorded intramuscular
EMG signals. The GRU network outperformed gCKC at
low signal-to-noise ratios, proving superior performance in
generalising to new data. Using 12 seconds of experimental
data per recording, the GRU performed similarly to gCKC,
at rates of agreement of 92.5% (84.5% - 97.5%) and 94.9%
(88.8% - 100.0%) respectively for GRU and gCKC against
matched intramuscular sources.
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I. INTRODUCTION

RECENT advances in the non-invasive identifica-
tion of motor unit (MU) firings by processing

surface electromyographic (sEMG) signals are offering
new tools to neuroscientists[1][2], as well as the possi-
bility to establish accurate and intuitive human-machine
interfaces(HMI)[3][4]. These applications have been en-
abled by multivariate blind source separation algorithms
that exploit the spatio-temporal information of high den-
sity (HD) sEMG recordings[5][6]. These methods have
proved highly effective at decomposing sEMG signal into
relatively large numbers of MU spike trains[7].

At the core of the majority of contemporary HD-sEMG
decomposition algorithms is the numerical estimation of
spatio-temporal separation vectors, which extract innerva-
tion pulse trains (IPTs) when applied to the observations
(recorded signals). These are sparse time-series estimates
of MU activity with the same sampling rate as the HD-
sEMG signal, which can then be thresholded into MU
spike timestamps[8]. Fixed-point iteration[9] or gradient
descent[8] are used to update the separation vectors based
on a contrast function[10], which is empirically selected
to maximise the sparsity of the output IPTs[11]. This
procedure is effective even in the case of highly correlated
sources[11].

Convolution kernel compensation (CKC), an alterna-
tive approach developed by Holobar and Zazula[8][6],
approximates IPTs using a linear minimum mean square
error (LMMSE) estimator framework. The segments of
the signal likely to contain MU action potentals (MUAPs)
are identified by the thresholding of an activity index,
before being cross-correlated through the observation
matrix to find similar MUAPs. In gradient CKC (gCKC)
this cross-correlation vector is then optimised by gradient
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descent using similar contrast functions to those used
in the fast independent component analysis (fastICA)
algorithm[12]. More recent algorithms have combined
direct and indirect separation vector estimation, using
fastICA to generate a separation vector and then tuning it
by iteratively identifying maximally similar MUAPs[5].

Once identified, separation vectors can be applied to
new data segments to extract MUs with low compu-
tational cost for online applications[3]. This approach
is however limited by non-stationarity in the signal as
well as noise characteristics. Moreover, with these ap-
proaches, the vector of HD-sEMG signal at each time
instant must be extended with delayed signals to trans-
form the convolutive mixture to a linear instantaneous
mixture[5]. The observations are also spatially decorre-
lated by whitening transform prior to decomposition to
improve the convergence properties of the optimisation
routine[10]. These additional preprocessing steps reduce
computational complexity of gradient descent or fixed-
point algorithms, but complicate their online application
to newly recorded HD-sEMG signal, causing delays
of over 300ms, which may not be acceptable in HMI
applications[13][14]. Moreover, whitening is also likely
to increase the sensitivity of the system to noise[10]. To
date no attempt has been made to introduce a fundamen-
tally different approach to the data pipeline between the
offline training and online application phases of a real-
time HD-sEMG decomposition.

Rather than directly using the trained separation vectors
on new data, we hypothesised that a faster and more
stable approach is to train a supervised algorithm in
the offline phase, which can then decompose HD-sEMG
signal online. In this formulation, the IPT of each MU
from the decomposed training signal is treated as a class
of time-ordered labels, giving examples of successful
decomposition. The supervised algorithm then operates
on the unwhitened HD-sEMG signal, learning how to
denoise and separate the observation signals into indi-
vidual MU activations for thresholding. A further advan-
tage offered is the possibility to augment the training
data during learning, such as the addition of noise to
promote robustness. One candidate for such sequence-
to-sequence learning is the recurrent neural network
(RNN), a type of artificial neural network specifically
designed to take advantage of temporal dependencies
in ordered data such as time series[15]. Modern RNNs
such as gated recurrent units (GRU) and long short-
term memory (LSTM) are able to learn long and short-
term temporal dependencies without the optimisation
problems associated with earlier RNN designs[15][16].

These gated architectures have shown state-of-the-art
performance on sequence-to-sequence translation of time
series data[17][18]. GRU and LSTM networks have also
recently been applied in gesture classification tasks using
global sEMG inputs[19][20].

In this study, we outline a framework for the supervised
decomposition of HD-sEMG signal into IPTs by RNN,
specifically using a GRU network trained on the time
series output of the gCKC decomposition algorithm[6].
The algorithm was designed to maintain a strict sep-
aration of output classes, prioritising learned sources
over generalising to new MUs. The accuracy of this
decomposition method is demonstrated on both simu-
lated data and experimental HD-sEMG signals matched
with sources found by decomposition of simultaneously-
collected intramuscular EMG (iEMG).

II. THEORY AND ALGORITHMS

A. Gradient Convolution Kernel Compensation

The gCKC algorithm seeks to recover the underlying
MU activities in the HD-sEMG signal by inverting a
convolutional mixture of finite impulse response filters,
representing the temporal dispersion caused by volume
conduction effects and the different distances between
individual MU fibers and surface electrodes[21]. By
making assumptions of local stationarity and linear time
invariance, the finite impulse response filters become
length L templates, with one for each source-channel
combination. In this model, the vector of M observations
x at time point t is given by summing the L time-delayed
contributions of each source:

x
(
t
)

=

L−1∑
l=0

H
(
l
)
s
(
t− l

)
+ ω(t) (1)

where the vector of N sources s is a point process
driven by r underlying neural inputs ϕ, i.e. each source is
defined by sn =

∑
r δ
(
t−ϕr

)
where δ is the dirac delta

function. The mixing matrix H is size m×n, containing
a sample of MUAP templates for each observation m -
source n combination, whilst ω is a vector of additive
Gaussian noise.

By extending the source vector with L past values
the convolutive mixture model can be rewritten as an
instantaneous one:

x
(
t
)

= Hs̃
(
t− l

)
+ ω

(
t
)

(2)
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where s̃ is the length nL extended source vector, which
in block format is given as:

s̃ = [s̃1, s̃2, ..., s̃n] (3)

where each s̃n block is a sample of a single source and
its L− 1 past samples:

s̃n = [sn(t), sn(t− l), ..., sn(t− L)] (4)

To further condition this model for inversion the observa-
tion vector is generally extended in time by an extension
factor K:

x̃
(
t
)

= H̃s̃′
(
t− l

)
+ ω̃

(
t
)

(5)

where x̃ is the extended length mK observation vector,
s̃′ is the further extended length n(L+K) source vector
and ω̃ the extended length mK vector of additive noise.
Finally, in block format, the extended mixing matrix H̃
becomes:

H̃ =

 h̃11 · · · h̃1n

...
. . .

...
h̃m1 · · · h̃mn


where:
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Inversion of H̃ gives the separation vectors with which
the MU sources can be recovered. In the case of CKC-
based techniques, this is achieved indirectly using a linear
minimum mean square error estimator:

ŝj
(
t
)

= ĉTsj x̃C
−1
x̃x̃ x̃

(
t
)

(6)

where ŝj
(
t
)

is the IPT of the estimated jth source at time
t, ĉTˆsj x̃ is the transposed cross-correlation vector between
an activation of the jth source and the whitened extended
observation matrix and C−1

x̃x̃ is the inverted autocorrela-
tion matrix of the whitened extended observation matrix.
ĉŝj x̃ is initialised with the time point that maximises the

Mahalanobis distance calculated on the total HD-sEMG
input[6].

In the formulation of equation 6, ĉTŝj x̃C
−1
x̃x̃ is a blind

estimate of the jth column vector of the inverted extended
mixing matrix[8]. In gCKC, ĉŝj x̃, is then optimised
by gradient descent, with the updated cross-correlation
vector c◦ŝj x̃ found by:

c◦ŝj x̃ = cŝj x̃ − α
∑
t

∂f
(
ŝj
(
t
))

∂ŝj
(
t
) x̃

(
t
)

(7)

where α is the learning rate and f
(
.
)

is the differentiable
cost function, designed to increase the sparsity of the
inverted mixing matrix in a similar fashion to the contrast
functions used in the fixed point fastICA algorithm[11].
After optimisation of ĉŝj x̃ the estimated IPT can then
be converted to timestamps by a thresholding proce-
dure, parameterised by a two-class K-means clustering
algorithm[5].

B. Gated Recurrent Unit Networks

GRU networks were originally designed for statistical
machine translation, but were quickly adapted to other
ordered data such as time series[16]. This was in part due
to their reduced parameterisation relative to the successful
LSTM architecture, as well as better performance on
small datasets[22]. The architecture of a gated recurrent
unit is formulated as:

rt = σ(Wirxt + bir +Whrht−1 + bhr) (8)

zt = σ(Wizxt + biz +Whzht−1 + bhz) (9)

nt = tanh(Winxt+bin+rt⊗(Whnht−1+bhn)) (10)

ht = (1 − zt) ⊗ nt ⊗ ht−1 (11)

where xt and ht−1 are respectively the input vector at
time t and the hidden vector from the previous timestep.
rt, zt and nt are respectively the reset, update and new
gate vectors. The output of the unit ht is the new hidden
vector, which is also the new output vector. The gates
are parameterised by the weights W and biases b. σ and
tanh are the sigmoid and hyperbolic tangent activation
functions, whilst ⊗ is the Hadamard product. This is
displayed schematically in fig. 1.

The cell can then be repeated in time and depth in a
similar manner to a node in a simple feed-forward neural
network. Layers above the input layer use the hidden
output of the GRU layer below ht as their input xt. The
parameters of zt determine how temporal context is used
to modify the processing of xt, whilst the parameters
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Fig. 1: a shows the internal architecture of a gated recur-
rent unit. In b a single layer bidirectional gated recurrent
unit network is shown. At each timepoint the output from
both forward and backward cells are concatenated before
being passed to the next layer of the network.

of rt determine what temporal information is relevant to
future operations. If future observations are available, for
example if data is processed in blocks, a bidirectional
GRU architecture can be used (fig. 4).

To make class predictions, the weighted output of all cells
in the top GRU layer are summed before an activation
function is applied to make the final MU class predictions.
The choice of this activation function has a major effect
on network performance and convergence. In the context
of IPT prediction, a MU activation is effectively a point
process and is highly unlikely to co-occur with another
source[6]. This property can be exploited by the softmax
activation function:

Softmax(yi) =
exp(yj)∑

j(yj)
(12)

where each class prediction yi is normalised by the
summed exponents across all the classes. By constraining
the class predictions in this way the separability of the
output vector is maximised.

C. Decomposition Accuracy

A commonly used methodology to assess the accu-
racy of sEMG decomposition is the two-source val-

idation technique, where the outputs of two separate
decomposition methods operating on the same dataset
are compared[23]. The reasoning for this is that a false
MU activation is highly unlikely to be predicted by two
independent procedures. The rate of agreement (RoA)
between the rasterised IPT of the jth source estimates
of two decompositions is calculated by:

RoAj =
M12

j

M12
j + U1

j + U2
j

% (13)

where M12
j is the number of matched predicted activa-

tions whilst U1
j and U2

j are the number of unmatched
predicted activations from the first and second decompo-
sition algorithm respectively.

In simulated data the ground truth of MU activation
trains are known and are used as the second source for
evaluation. In real HD-sEMG data this is not available,
instead the second source is generally a decomposed
iEMG signal collected concurrently with the HD-sEMG
signal[23].

In the literature the thresholding level used to convert
the IPT train to time stamps for RoA assessment is
usually set by K-means clustering or by standard devi-
ations calculated on the training set. The accuracy of this
threshold selection has a major effect on decomposition
accuracy beyond that of the algorithm generating the
separation vectors. As the purpose of this study was
instead to assess a separation procedure for maximisation
of linear IPT separability, the thresholding level was set
by a simple iterative procedure to maximise the calculated
RoA for both the GRU and gCKC predictions.

III. MATERIALS AND METHODS

A. Simulated Data Generation and Decomposition

Synthetic MUAP templates as detected by a 24 × 8
channel HD-sEMG matrix sampling at 2,048Hz with in-
terelectrode distance 10mm were generated by simulation
of muscle fibre recruitment in a 50 MU muscle mod-
elled as a multilayered cylindrical volume conductor[24].
Four layers of thickness 7.5, 27.7, 2, and 1 mm were
simulated to describe the bone, muscle tissue, fat, and
skin layers respectively. The model included 101,276
individual muscle fibers (average semi-length 100 mm)
with innervation zones distributed in a 10 mm region
around half of the fiber length. The muscle was more
conductive in the longitudinal than in the transversal fiber
direction, at a conductivity ratio of 5:1. The conductivity
ratios skin/fat layers and fat/muscles were respectively 20
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Fig. 2: One second output of a single channel of the
simulated HD-sEMG signal, prior to the addition of
noise. The signal consists almost entirely of complex
superposition.

and 0.5[25]. Fibers were assigned to local MU pools to
give an exponential profile of unit size[26].

MU activations were generated as Poisson spike trains
with average interspike intervals randomly selected be-
tween 30 and 40ms, simulating a constant force, with ev-
ery MU active throughout the signal. Each MU spike train
was then convolved with a simulated MUAP template,
before summation to generate noiseless HD-sEMG sig-
nals. These simulation parameters resulted in HD-sEMG
signal which consisted primarily of complex MUAP
superpositions (fig. 2). Seven 1-min sequences of HD-
sEMG signal were generated, with the only difference
between them being the power of the additive normally-
distributed noise, giving signal-to-noise ratios (SNR) of
30, 25, 20, 15, 10, 5 and 0dB.

Each simulated dataset was divided into a 40s long
training set, a 10s long validation set and a 10s long
testing set. The DEMUSE software-package[8] was used
to decompose the training data into IPTs using gCKC,
with a cut-off pulse-to-noise ratio (PNR) of 30dB used as
a threshold for source acceptance[27]. In order to evaluate
the performance of a trained decomposition model on
noisier unseen data a second decomposition was also
performed using the separation vectors learned on the
30dB SNR dataset, which were then applied to the 25,
20, 15, 10, 5 and 0dB SNR datasets. For each of these
SNRs none of the output IPTs were excluded on the basis
of their calculated PNRs, meaning every dataset had the
same number of sources.

B. Experimental HD-sEMG Dataset

The performance of the GRU network was also anal-
ysed using a set of concurrently recorded HD-sEMG
and iEMG signals from the dominant tibialis anterior

10-500Hz Band Pass Filter

Whitening Transformation

Gradient CKC

Z-Score Standardisation

HD-sEMG with 
IPT Labels

Predicted and 
Target Output

Network
Update

Unwhitened HD-sEMG

IPT Classes

Bidirectional GRU Network

Softmax Output

Mean Square Error 

Gaussian Noise

Fig. 3: Algorithm pipeline during GRU network training.
The IPT labels are generated by the unsupervised gCKC
algorithm, which are then paired with the unwhitened and
unfiltered HD-sEMG signal for supervised training. The
HD-sEMG signal is augmented with Gaussian noise and
z-score standardised. The mean square error between the
softmax output and the IPT labels is then backpropagated
through the GRU network.

(TA) muscle of 12 men, a dataset previously used to
validate the CKC algorithm[28]. A monopolar 12 × 5
electrode array with an interelectrode spacing of 5mm
was placed over the main muscle innervation zone, with
columns orientated to run parallel with the muscle fibers.
The sEMG signal was band-pass filtered (10-500 Hz)
and then sampled at 2,048Hz. Simultaneously the signals
from a pair of wire electrodes inserted proximal to the
sEMG matrix were band-pass filtered (500-5,000Hz) and
sampled at 10,000Hz.

Muscles forces were recorded by load cells mounted in
isometric braces and sampled at 2048Hz. The maximum
voluntary contraction (MVC) force was calculated as the
the greatest force level expressed in three 5s maximal
contractions separated by 3mins of rest. Subjects were
then asked to perform two 20s non-consecutive isometric
contractions at 5%, 10%, 15% and 20% MVC, with
feedback provided by an oscilloscope. The first 12s of
each experimental sEMG recording were selected as a
training set, with the remaining 8s divided equally into



6

4s validation and test sets. The training set was then
decomposed by gCKC into IPTs using the DEMUSE
software package, with sources accepted if their cal-
culated PNR was over 30dB. The trained separation
vectors were then applied to the validation and test sets.
The iEMG signals were decomposed into sources using
EMGLAB[29]. Sources in the training set sEMG signal
were then matched with sources found in the iEMG to
a 5ms tolerance, with the decomposition of a particular
recording accepted if at least one source had a RoA of
70%. Recordings that did not meet this requirement were
discarded.

For each accepted sEMG recording the GRU was
trained on the 12s training set using the IPTs as labels.
Predictions were then made by the trained GRU network
on both the training set and unseen test set. The RoA was
then calculated between the predictions and the gCKC
output, again using a threshold that maximised this value.
Where a source had an iEMG match, the maximum RoA
was calculated between the iEMG-identified source and
both the GRU network and gCKC separation vectors for
both training and test sets.

To further test the robustness of the GRU to online
heteroscedastic changes, an additional dataset was created
by adding white Gaussian noise to the test set. Gaussian-
distributed noise was selected as it is a common con-
taminant of HD-sEMG signal and usually difficult to
eliminate[30]. Signal amplitude was defined as the mean
across all units in a recording of the maximum MU action
potential amplitude across all channels, as found by spike-
triggered averaging using the gCKC labels. Noise was
then added to the test set to give SNRs of 30, 20, 10
and 0dB. The trained gCKC separation matrix was then
applied to these test sets to give IPTs for comparison
against GRU performance.

C. Data Pipeline and Training

The hardware used for both training and predictions
was an Intel Core i7 7800X processor with a Geforce
RTX 2080 Ti GPU. A schematic of the data pipeline is
shown in fig. 3. The pytorch machine learning package
was used to build the GRU network, whilst scikit-learn
was used for data standardisation. Input HD-sEMG data
was first standardised by z-scoring based on the training
set means and standard deviations, before being passed to
the bidirectional GRU network. The output of the GRU
network was then passed to a linear node and softmaxed
to give class predictions. The width and depth of the
GRU network are hyperparameters and were optimised
by grid-search on the training and validation sets of the

30dB SNR simulated data. Optimal GRU architecture
was found to be an 80-cell wide network with two-
layers. The Adam optimisation algorithm at a learning
rate of 0.001, betas of 0.9 and 0.999 and epsilon of 10−8

was used for training. A 50% dropout probability on all
GRU cells was used to prevent the network overfitting
on the training set, with the additional theoretical advan-
tage of removing overdependence on particular channels,
improving robustness to electrode failure. A mean square
error loss function was used to generate the error signal
for backpropagation. Prior to training 10,000 windows
of HD-sEMG signal were randomly selected, each 400
samples wide, with a minibatch of 512 samples per
update used. Data augmentation was conducted during
training by adding normally distributed noise of zero-
mean and unit variance to each window, to encourage
both robustness and to provide additional regularisation.
Training was run based on an early-stopping framework,
selecting an iteration that maximised a z-score based
blind separability estimate ε̄ operating on the validation
set GRU output y:

ε̄ =
1

J

∑
J

εj (14)

where J is the total number of accepted MU sources and
εj is given by:

εj = (max0.25(yj) − µyj )/σyj (15)

where µyj and σyj are respectively the mean and standard
deviations of the jth class output and max0.25(.) is the
mean of the maximal 0.25% of samples in a predicted
IPT. This percentage is a training hyperparameter, with
0.25% found empirically to select for maximally sparse
outputs whilst retaining robustness to signal noise. The
same training and network hyperparameters were used
for all simulated and experimental datasets.

For each dataset the GRU was trained on the un-
whitened and unfiltered training HD-sEMG signal. In the
first simulated dataset, where the number of accepted MU
trains was set by the PNR of gCKC operating at that
SNR, the GRU was trained with both ground truth MU
activation labels and on the output gCKC IPT. In the
second simulated dataset, where the separation vectors
learned on the 30dB SNR signal were used, the GRU
was trained with both ground truth MU activation labels
and on the output gCKC IPT as before, but additionally
it was trained on the IPT output of the trained separation
matrix from the 30dB SNR decomposition. As with the
gCKC output, the GRU class predictions on the test set
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Fig. 4: Performance of the GRU and gCKC algorithms on unseen simulated data at different SNRs as measured by
RoA against the ground truth labels. In a only MU activation trains found by gCKC with a PNR of over 30dB were
accepted. In b the separation filters calculated on the 30dB SNR training data was applied to training data of all
SNRs. The GRU network was trained on ground truth labels, the 30dB SNR IPT train and the IPT generated from
the vectors operating on the lower SNR training data.

were converted to time stamps by an iterative method
of threshold parameter selection which maximised the
RoA. This thresholding procedure was also used for the
predictions made on the experimental data.

IV. RESULTS

A. Simulated HD-sEMG Signals

In the first simulation dataset, where only MU trains
found by the gCKC algorithm with PNRs above 30dB
were accepted, performance on the unseen test data was
close to 100% for the gCKC algorithm at all SNRs
investigated (fig. 4a). However, the number of accepted
MUs was much smaller in the low-SNR data (table
I). 11 MUs were identified in the 30dB SNR dataset,
but this dropped rapidly as SNR increased. The high
decomposition accuracy of the gCKC were mirrored by
both the GRU network trained on the ground truth and
the GRU network trained on the gCKC IPT.

More interesting results were obtained from the second
dataset, where the separation vectors calculated on the
11 MUs found by the gCKC in the 30dB SNR set were
applied to all other SNR levels (fig. 4b). The performance
of these separation vectors declined rapidly as the SNR
fell below 10dB. However, the GRU network trained on

the IPT output from the 30dB SNR set performed much
more robustly, closely matching the performance of the
GRU trained directly on the ground truth. Even at an
SNR of 0dB the GRU predictions retained a more than
95% RoA with the ground truth. Furthermore, when the
gCKC decompositions of low SNR signal were used to
train the GRU, the GRU went on to outperform the gCKC
predictions on the unseen test data. This implies that the
GRU is better able to generalise to new data than the
unsupervised algorithm being used to train it, indicating
that the GRU could learn the decomposition process even
from imperfect labeling of the training data, improving on
the performance of the gCKC algorithm used for labeling.

B. Experimental HD-sEMG Signals

Twenty-six experimental recordings met the accep-
tance criteria of containing at least one identified source
matched between the iEMG and sEMG signals to an RoA
of at least 70%. A total of 129 MUs were identified
across all accepted recordings, of which 31 were matched
with sources identified by iEMG decomposition. 22 of the
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TABLE I: Motor unit yield from gCKC decomposition at
different signal-to-noise ratios.

SNR (dB) Number of MUs

30 11
25 8
20 8
15 8
10 4
5 2
0 1

recordings had one match, whilst three had two matches
and a single recording three matches. When making a
prediction on test data, the calculation of one second
(2048× 60 samples) of observation matrix took on aver-
age 67ms. The median RoA (interquartile range) between
gCKC and the GRU network predictions on unseen test
data for all sources was 94.5% (80.0% - 100.0%), whilst
for the subset of these sources which were matched with

iEMG the median RoA between CKC and gCKC was
94.5% (87.5% - 99.1%) and for unmatched sources 94.7%
(77.0% - 100.0%). Mann-Whitney U testing showed no
significant difference in gCKC vs GRU RoA between
matched and unmatched units (p = 0.465).

The median RoA between gCKC and iEMG sources
(fig. 5) for the unseen test set was 94.9% (88.8% -
100.0%), whilst the median RoA between GRU-predicted
and iEMG sources was 92.5% (84.5% - 97.5%). For
individual recordings the gCKC predictions were slightly
better than those of the GRU when compared to iEMG,
with a median RoA difference of 2.4% (0.0% - 4.4%).
There was a significant correlation between the perfor-
mance of gCKC and GRU as measured by RoA against
the iEMG (fig. 6a), with a Spearman’s rho of 0.904 (p
< 0.001). A smaller correlation of 0.762 (p < 0.001)
was found for the RoA between GRU and gCKC and the
RoA between GRU and iEMG (fig. 6b). This suggests that
the main limiting factor on the performance of the GRU
network was the quality of the gCKC decomposition used
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Fig. 6: In a the RoA between matched GRU and iEMG sources is plotted against the RoA between the gCKC and
iEMG sources for each recording, divided into MVC levels. There is a highly significant positive correlation between
the two algorithms. In b the RoA between matched GRU and iEMG sources is plotted against the RoA between
GRU and gCKC. The smaller correlation implies that the major limiting factor on GRU performance is the quality
of the gCKC labels rather than the GRU network model.

for training.

When Gaussian noise was added to the test set both
gCKC and performed similarly at high SNRs (fig. 7).
As with the original test data, at an SNR of 30 dB the
gCKC slightly outperformed the GRU when compared to
matched iEMG sources, with the median RoA difference
of 2.1% (0.0% - 6.6%) significant on Wilcoxon signed-
rank test (p = 0.021). At 20dB there was no significant
difference (p = 0.944). However, as SNR fell further
the GRU predictions began to significantly outperform
gCKC, with the GRU RoA improving on the gCKC by a
median value of 9.9% (4.5% - 16.0%, p < 0.001). This
was also true at an SNR of 0dB, with a median difference
of 12.8% (5.9% - 17.3%, p < 0.001).

V. DISCUSSION

The development of algorithms that can accurately
decompose HD-sEMG signal into constituent MU acti-
vation trains provides invaluable tools for the study of
neural control of movement[23]. However, computation-
ally complex preprocessing operations and low robustness
to varying levels of signal noise can limit applications.
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Fig. 7: RoA of GRU and gCKC predicted activations
compared to matched iEMG sources for different levels of
added noise. Error bars show the interquartile range, with
significance calculated by Wilcoxon signed-rank test. The
GRU and gCKC perform similarly at low noise levels,
but as the SNR falls the GRU begins to significantly
outperform gCKC.
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In this study we demonstrate for the first time the
direct decomposition of unwhitened HD-sEMG signal
into constituent sources, using a supervised deep learning
framework. A GRU network trained using output MU
activation labels from the gCKC algorithm quickly de-
composed both simulated and experimental unseen HD-
sEMG signal into accurate IPTs, with processing latencies
of the experimental HD-sEMG signal well below 100ms
per second of data.

In simulations the trained GRU network proved ex-
tremely robust to the addition of noise in the unseen
test set, outperforming the learned separation matrix of
gCKC. This behaviour was also seen when noise was
added to the experimental data, with the difference in-
creasing as the signal became noisier. Heteroscedasticity
is a common issue in surface sEMG as the quality
of the contact between electrode and skin can degrade
with both movement and perspiration. The GRU also
outperformed gCKC when the training data had a low
SNR, the implication of which is that the network is not
necessarily limited by the performance of the unsuper-
vised algorithm being used to generate training data. A
potential explanation is that the network is better able to
generalise to new data than the original separation matrix,
an effect augmented by the addition of noise during the
training process. Also of interest is the relative amplitudes
of the spikes in the LMMSE IPT, which can be interpreted
as the confidence in an activation being present, weighting
the loss propagated through the GRU network during
training. This is an important result, as it suggests a role
for a deep learning framework in improving the accuracy
of the MU activation library used by gCKC to update the
separation matrix.

Two-source validation remains the gold-standard
method for validating HD-sEMG decomposition algo-
rithms on experimentally-collected sEMG signal[28].
When compared to independently collected and source-
separated iEMG the GRU network performed similarly
to gCKC on unseen test data. This was despite the
network only being trained on 12s of gCKC output,
and in the absence of computationally-expensive signal
whitening. A limiting factor on network performance was
the accuracy of the underlying gCKC decomposition used
to generate the MU activation labels used for training.
There was also a weaker correlation between GRU vs
gCKC RoA and GRU vs iEMG RoA, suggesting that,
unlike the simulation experiments, deviations in GRU
predictions from those of gCKC usually caused errors.
This is likely a function of the short length of the available
experimental HD-sEMG signal.

A further advantage of the proposed methodology is
that a GRU network is a fully differentiable function.
Within the context of a HMI, a second model is trained
to use the decomposed output to classify gestures or
joint position[19][20]. Providing the second model is also
differentiable, it becomes possible to backpropagate error
through the entirety of the conjoined decomposition and
classifier model, allowing efficient network updates to
be made. In this scenario the decomposition component
of the conjoined network is pre-trained with the output
of a blind source separation algorithm, meaning that
part of the network will already be an efficient feature
extractor prior to classifier training. Indeed, the flexibility
of the proposed system allows it to adapt as new data
is collected, potentially allowing further generalisation to
changes in signal such as the activation of new MUs.

The main shortcoming of this study is the short length
of the experimental recordings, likely to be the explana-
tory factor behind the small difference in performance
between the experimental and simulated validations. With
such a short length even the regularisation and aug-
mentation procedures during training were unable to
prevent a small amount of overfitting on the training data,
leading to a small gap in performance at high SNRs,
before the advantage gained from improved robustness
to noise dominates. The low number of matched sources
between the sEMG and iEMG signals is also explained
by the reduced length of the recordings; despite almost
identical decomposition procedures, more sources were
matched in the original study, which used the full 20s for
decomposition[28]. Planned future studies will be able to
make use of advances in multichannel iEMG to greatly
expand the number of matched sources[31].

VI. CONCLUSION

The accurate and rapid supervised decomposition of
simulated and experimental unwhitened HD-sEMG sig-
nals was demonstrated using a gated recurrent unit
network trained using the gradient convolution kernel
compensation algorithm as a label generator. In relatively
noise-free signal the two approaches performed similarly
in prediction-accuracy against the ground-truth in sim-
ulated data and against simultaneously-recorded iEMG
in experimental data, despite GRU network operating
directly on unfiltered and unwhitened sEMG signal. Dif-
ferences between the two methods emerged with low
signal-to-noise ratios. In simulated data the GRU network
outperformed gCKC on the unseen tests set when the
training data was very noisy, despite being trained on
the gCKC output. When additional noise was added to
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the test data the GRU was better able to generalise in
both the simulated and experimental datasets. Such a
supervised framework offers a potential route to adapting
the decomposition algorithm to online HMI applications,
as well as potentially being able to improve the accuracy
of offline decompositions.
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