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Deep Learning Backend for Single and Multisession

i-Vector Speaker Recognition
Omid Ghahabi and Javier Hernando

Abstract—The lack of labeled background data makes a big per-
formance gap between cosine and Probabilistic Linear Discrimi-
nant Analysis (PLDA) scoring baseline techniques for i-vectors in
speaker recognition. Although there are some unsupervised clus-
tering techniques to estimate the labels, they cannot accurately
predict the true labels and they also assume that there are sev-
eral samples from the same speaker in the background data that
could not be true in reality. In this paper, the authors make use
of Deep Learning (DL) to fill this performance gap given unla-
beled background data. To this goal, the authors have proposed
an impostor selection algorithm and a universal model adaptation
process in a hybrid system based on deep belief networks and deep
neural networks to discriminatively model each target speaker. In
order to have more insight into the behavior of DL techniques in
both single- and multisession speaker enrollment tasks, some ex-
periments have been carried out in this paper in both scenarios.
Experiments on National Institute of Standards and Technology
2014 i-vector challenge show that 46% of this performance gap,
in terms of minimum of the decision cost function, is filled by the
proposed DL-based system. Furthermore, the score combination
of the proposed DL-based system and PLDA with estimated labels
covers 79% of this gap.

Index Terms—Deep learning, deep neural network, deep belief
network, i-vector, speaker recognition.

I. INTRODUCTION

T
HE recent compact representation of speech utterances

known as i-vector [1] has become the state-of-the-art in

the text-independent speaker recognition. There are two com-

mon scoring techniques to decide if two i-vectors belong to a

same speaker namely cosine and Probabilistic Linear Discrimi-

nant Analysis (PLDA) [2], [3]. PLDA scoring leads to a superior

performance but with the cost of need to speaker-labeled back-

ground data. Moreover, it needs several samples for each back-

ground speaker spoken in different session conditions to work

efficiently. One of the recent challenges in speaker recognition,

which was organized by the National Institute of Standards and

Manuscript received June 15, 2016; revised October 27, 2016 and January 8,
2017; accepted January 16, 2017. Date of publication February 8, 2017; date of
current version March 1, 2017. This work was supported in part by the Spanish
Project DeepVoice (TEC2015-69266-P) and in part by the European project
CAMOMILE (PCIN-2013-067). The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Bin Ma.

The authors are with the TALP Research Center, Department of Sig-
nal Theory and Communications, Universitat Politecnica de Catalunya—
BarcelonaTech, Barcelona 08034, Spain (e-mail: omid.ghahabi@upc.edu;
javier.hernando@upc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2017.2661705

Technology (NIST), has been how to fill the performance gap

between these two common scoring techniques when no labeled

background data is available [4]. Although there are some un-

supervised automatic labeling techniques like those proposed

in [5], [6], they cannot appropriately estimate the true labels

and also they assume that there are several samples from a same

speaker in the background data which could not be true in real-

ity. PLDA with estimated labels performs reasonably well [5],

[6], but the results are still far from that of PLDA with actual

labels [7].

On the other hand, the success use of Deep Learning (DL)

in speech processing, specifically in speech recognition (e.g.,

[8]–[12]), has inspired the community to make use of DL

techniques in speaker recognition as well. Both generative ap-

proaches, like Restricted Boltzmann Machines (RBM) and Deep

Belief Networks (DBN), and discriminative ones, like Deep

Neural Networks (DNN), have been used for this purpose. A

possible use of DL techniques in speaker recognition is to com-

bine them with the state-of-the-art i-vector approach. Two kinds

of combination have been considered. DL techniques have been

used in the i-vector extraction process [13]–[17] or applied on

i-vectors as a backend [18]–[23].

DNNs have been used in the i-vector extraction algorithm for

two main goals. First, the Universal Background Model (UBM)

is replaced by a DNN, which is typically trained for acoustic

modeling in speech recognition [13], [14], [16], [24], [25]. Sec-

ond, conventional spectral features are replaced or appended

by so-called DNN bottleneck features [15], [16]. A significant

performance gain is reported in both cases but it is shown that

appending bottleneck features to spectral ones and using Gaus-

sian UBM as the acoustic model will lead to higher quality

i-vectors [15], [16].

Besides, after i-vector computation, DL techniques can be

used for different purposes. For example, different combina-

tions of RBMs have been proposed in [18], [19] to classify

i-vectors and in [20] to learn speaker and channel factor sub-

spaces in a PLDA simulation. RBMs in [26] and DNNs in [27]

are used to increase the discrimination power of i-vectors given

speaker-labeled background data. In [21]–[23] DBNs have been

integrated in an adaptation process to provide a better initial-

ization for DNNs in order to have discriminative target models.

There are also some attempts to extract compact representations

of speech signals given spectral features [28]–[30] and GMM

supervectors [31].

In this work, the authors make use of deep architectures for

backend i-vector classification in order to fill the performance
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gap between the cosine (unlabeled-based) and PLDA (labeled-

based) scoring baseline systems given unlabeled background

data. As in [21], [22], the authors take advantage of unsupervised

learning of DBNs to train a global model referred to as Universal

DBN (UDBN) and DNN supervised learning to model each

target speaker discriminatively. To provide a balanced training,

an impostor selection algorithm and to cope with few training

data, a UDBN-adaptation process is proposed.

Compared to [21], [22], deep architectures with different

number of layers are explored for both single and multi-session

speaker enrollment tasks. The parameters of the global model

are normalized before adaptation. Normalization is just scaling

down the parameters but it facilitates the training of the net-

works specifically where more than one hidden layer is used.

The top layer pre-training proposed in [21] is not used in this

work. The reason is that it emphasizes on the top layer connec-

tion weights and avoids the lower hidden layers to learn enough

from the input data. This fact is of more importance when more

hidden layers are used. In addition, new experiments based on

unsupervised labeling techniques for PLDA [6] are performed

in this paper as a potential baseline system when no labeled

background data is available.

The preliminary experiments are performed on NIST SRE

2006 [32] to show the effect of each contribution. Taking advan-

tage of the conclusions obtained on the preliminary experiments,

another set of experiments are carried out on the newer and more

challenging database NIST 2014 i-vector challenge [4]. Exper-

imental results performed on 2014 i-vector challenge show that

the proposed DL-based system fills 46% of the performance gap

between cosine and oracle PLDA scoring systems in terms of

minDCF which is similar to the PLDA scoring results obtained

with unsupervised estimated labels. The score combination of

the proposed DL-based system and PLDA with estimated labels

fills 79% of this gap.

The rest of the paper is organized as follows. Section II gives

a brief background overview about i-vectors, PLDA, and deep

learning techniques used in experiments. Section III presents

the proposed DL-based backend for i-vector classification.

Section IV describes the proposed impostor selection algorithms

in order to have a balanced training. Section V shows how we

will cope with the few amount of data for the training of each tar-

get model. Sections VI and VII discuss the experimental results

obtained on NIST SRE 2006 and NIST 2014 i-vector challenge,

respectively. Section VIII concludes the paper.

II. BACKGROUND

A. i-Vector and PLDA

It is shown that a Gaussian Mixtures Model (GMM) adapted

from a Universal Background Model (UBM) can represent

the feature vectors of a speech signal adequately [33]. If the

mean vectors of the adapted GMM are stacked to build the

supervector s, it can be further modeled as follows [1],

s = su + Tx (1)

where su is the speaker- and session-independent mean super-

vector typically from UBM, T is the total variability matrix,

Fig. 1. (a) DNN, (b) DBN, and (c) DBN training/DNN pre-training.

and x is a low rank vector of latent variables. The mean of

the posterior distribution of x is referred to as i-vector ω [1].

This posterior distribution is conditioned on the Baum-Welch

statistics of the given speech utterance. The T matrix is trained

using the Expectation-Maximization (EM) algorithm given the

centralized Baum-Welch statistics from background speech ut-

terances. In other words, one can say that an i-vector is a low rank

vector, typically between 400 and 600, representing a speech ut-

terance. More details can be found in [1].

Two main scoring techniques for i-vectors are cosine [1],

[34] and Probabilistic Linear Discriminant Analysis (PLDA)

[2], [3]. PLDA is a more efficient technique which performs

scoring along with session variability compensation. Since i-

vectors are of sufficiently low dimension, a modified version of

PLDA proposed in [3] is typically used. It assumes that each

i-vector can be decomposed as,

ω = m + Φβ + ǫ (2)

where m is a global offset, the columns of Φ are eigenvoices,

β is a latent vector having a standard normal prior, and the

residual vector ǫ is normally distributed with zero mean and

a full covariance matrix. The model parameters are estimated

from a large collection of speaker-labeled background data using

an EM algorithm as in [2]. Within and between class i-vector

covariance matrices, depending only on the model parameters,

are stored and used for scoring.

B. Deep Learning

Deep Learning (DL) refers to a branch of machine learning

techniques which attempts to learn high level features from

data. Since 2006 [35], [36], DL has become a new area of

research in many applications of machine learning and signal

processing. Various deep learning architectures have been used

in speech processing (e.g., [11], [12], [37]–[39]). Deep Neural

Networks (DNN), Deep Belief networks (DBN), and Restricted

Boltzmann Machines (RBM) are three main techniques we have

used in this work to discriminatively model each target speaker

given input i-vectors.

DNNs are feed-forward neural networks with multiple hid-

den layers (Fig. 1(a)). They are trained using discriminative

back-propagation algorithms given class labels of input vec-

tors. The training algorithm tries to minimize a loss function

between the class labels and the outputs. For classification tasks,
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cross-entropy is often used as the loss function and the soft-

max is commonly used as the activation function at the output

layer [40]. Typically, the parameters of DNNs are initialized

with small random numbers. Recently, it has been shown that

there are more efficient techniques for parameter initialization

[41]–[43]. One of those techniques consists in initializing DNN

with DBN parameters, which it is often referred to as unsu-

pervised pre-training or just hybrid DBN-DNN [9], [44]. It has

been empirically shown that this pre-training stage can set the

weights of the network closer to an optimum solution than ran-

dom initialization [41]–[43].

DBNs are generative models with multiple hidden layers of

stochastic units above a visible layer which represents a data

vector (Fig. 1(b)). The top two layers are undirected and the

other layers have top-down directed connections to generate

the data. There is an efficient greedy layer wised algorithm to

train DBN parameters [36]. In this case, DBN is divided in

two-layer sub-networks and each one is treated as an RBM

(Fig. 1(c)). When the first RBM built on visible units is trained,

its parameters are frozen and the outputs are given to the RBM

above as input vectors. This process is repeated until the top two

layers are reached.

RBMs are generative models constructed from two undirected

layers of stochastic hidden and visible units. RBM training is

based on maximum likelihood criterion using the stochastic

gradient descent algorithm [9], [36]. The gradient is estimated

by an approximated version of the Contrastive Divergence (CD)

algorithm which is called CD-1 [35], [36]. More theoretical and

practical details can be found in [35], [36], [45]. The whole

training algorithm is given in [31].

In all of these networks, it is possible to update the parame-

ters after processing each training example, but it is often more

efficient to divide the whole input data (batch) into smaller size

batches (minibatch) and to update the parameters by averag-

ing the gradients over each minibatch. The parameter updating

procedure is repeated when the whole available input data is

processed. Each iteration is called an epoch.

III. PROPOSED DEEP LEARNING BACKEND FOR I-VECTORS

The success use of i-vectors in speaker recognition and DL

techniques in speech processing applications has encouraged the

research community to combine those techniques for speaker

recognition. Two kinds of combination can be considered. DL

techniques can be used in the i-vector extraction process, or

applied as a backend.

In this work, DL technology is used as a backend in which a

two-class hybrid DBN-DNN is trained for each target speaker

to increase the discrimination between target i-vector/s and the

i-vectors of other speakers (non-targets/impostors) (Fig. 2). Pro-

posed networks are initialized with speaker-specific parameters

adapted from a global model, which is referred to as Univer-

sal Deep Belief Network (UDBN). Then the cross-entropy be-

tween the class labels and the outputs is minimized using the

back-propagation algorithm.

DNNs usually need a large number of input samples to be

trained efficiently. As a general rule, deeper networks require

Fig. 2. Proposed deep learning architecture for training of each speaker model.

more input data. In speaker recognition, target speakers can be

enrolled with only one sample (single session task) or multiple

samples (multi-session task). In both cases, the number of target

samples is very limited. A network trained with such limited data

is highly probable to be overfitted. On the other hand, the number

of target and impostor samples will be highly unbalanced, i.e.,

one or some few target samples against thousands of impostor

samples. Learning from such unbalanced data will result in

biased DNNs towards the majority class. In other words, DNNs

will have a much higher prediction accuracy over the majority

class.

Fig. 3 shows the block diagram of the proposed approach to

discriminatively model target speakers. Two main contributions

have been proposed in this work to tackle the above problems.

The balanced training block attempts to decrease the number of

impostor samples and, on the contrary, to increase the number

of target ones in a reasonable and effective way. The most in-

formative impostor samples for target speakers are first selected

by the proposed impostor selection algorithm. Afterwards, the

selected impostors are clustered and the cluster centroids are

considered as final impostor samples for each target speaker

model. Impostor centroids and target samples are then divided

equally into minibatches to provide balanced impostor and tar-

get data in each minibatch.

On the other hand, the DBN adaptation block is proposed

to compensate the lack of input data. As DBN training does

not need any labeled data, the whole background i-vectors are

used to build a UDBN. The parameters of the UDBN are then

adapted to the balanced data obtained for each target speaker. At

the end, given the target/impostor labels, the adapted DBN and

the balanced data, a DNN is discriminatively trained for each

target speaker. These two contributions are described in more

details in the following sections.

IV. BALANCED TRAINING

As speaker models in the proposed method will be finally dis-

criminative, they need both positive and negative data as inputs.

Nevertheless, the problem is that the amount of positive and

negative data are highly unbalanced in this case, which leads

to biasing towards the majority class. Some of the straightfor-

ward ways to deal with unbalanced data problem are explored

in [46]–[48] [49], [50]. A commonly used method is data sam-

pling. The data of the majority class is undersampled and, on

the contrary, the data of the minority class is oversampled. The

effectiveness of these techniques is highly dependent on the data

structure.
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Fig. 3. Block-diagram of the train/test phases of the proposed deep learning backend for i-vectors.

In the proposed approach shown in Fig. 3, the amount of

impostors is decreased in two steps, namely selection and clus-

tering. On the other hand, the amount of target samples is in-

creased by either replication or combination. After that, bal-

anced target and impostor samples are distributed equally among

minibatches.

A. Impostor Selection and Clustering

The objective is to decrease the large number of negative sam-

ples in a reasonable way. Our proposal has two main steps. First,

only those impostor i-vectors which are more informative for

the training dataset are selected. Informative impostor means, in

this case, the impostor which is not only representative to a given

target but also is statistically close to other targets in the dataset.

For some real applications, it could makes sense to select those

impostors who are globally close to all enrolled speakers. When

the target speakers are changed significantly, the selected im-

postors could be re-selected according to the new target dataset.

Second, as the number of selected impostor samples is still high

in comparison to the number of target ones, they are clustered

by the k-means algorithm using the cosine distance criterion.

The centroids of the clusters are then used as the final negative

samples.

The selection method is inspired from a data-driven back-

ground data selection technique proposed in [51]. In that

technique given all available impostor supervectors, a Sup-

port Vector Machine (SVM) classifier is trained for each target

speaker. The number of times each impostor is selected as a

support vector, in all training SVM models, is called impostor

support vector frequency [51]. Impostor examples with higher

frequencies are then selected as the refined impostor dataset.

However, SVM training for each target speaker would be com-

putationally costly. Moreover, as our final discriminative models

will be DNNs, it would not be worth to employ this technique

as such. Instead, we have proposed to use cosine similarity as

an efficient and a fast criterion for comparing i-vectors. We

compare each target i-vector with all impostor i-vectors in the

background data set. Those N impostors which are close to each

target i-vector are treated like support vectors in [51]. Then the

Fig. 4. Steps of the proposed impostor selection algorithm.

κ impostors with higher frequencies are selected as the most

informative impostors. The N and κ selected impostors are re-

ferred to as local and global selected impostors in this work. The

parameters N and κ are determined experimentally. The whole

algorithm is shown in Fig. 4 and can be summarized as follows,

1) Set impostor frequencies fm = 0 for impostor i-vectors

ωm , 1 ≤ m ≤ M
2) For each target i-vector νi , 1 ≤ i ≤ I

a) Compute cosine (νi ,ωm ), 1 ≤ m ≤ M
b) Select the N impostors with the highest scores

c) For the selected impostors fm ← fm + 1
3) Sort impostors in descending order based on their fm

4) Select the first κ impostors as the final ones.

where cosine (νi ,ωm ) is the cosine score between target i-

vector νi and the impostor i-vector ωm in the background

dataset, M and I are the number of impostor and target i-

vectors, respectively. Note, in the case of multi-session target

enrollment, the average of the available i-vectors per each target

speaker will be considered in the above algorithm. The final

selected impostors could be only local, global, or a pooling of

both of them. If local or pooling are used, the computational

cost would be higher as the k-means clustering should be run

for each target model independently.

We have proposed a similar algorithm in [23] in which the

selection process is only dependent on the background data. A
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Fig. 5. An example of proposed balanced training for DNNs in multi-session
speaker verification task. In each minibatch the same target i-vectors but different
impostors are shown to DNNs.

randomly selected subset from the background data is used in

the above algorithm rather than the target training database. In

order to make the process statistically more reliable, the whole

process is repeated several times and the impostor frequencies

are accumulated over all iterations. The full algorithm can be

found in [23]. It was shown that this algorithm performs sim-

ilar to the first algorithm which uses the training target set in

the selection process when the background database is large

enough [23].

B. Target Replication or Combination

In order to balance positive and negative samples, the number

of target samples is increased as many as the number of impostor

cluster centroids obtained in Section IV-A. In the single session

enrollment task, the i-vector of each target speaker is simply

replicated as many as the number of cluster centroids. Replicated

target i-vectors will not act exactly the same as each other in

the pre-training process of DNNs due to the sampling noise

created in RBM training [45]. Moreover, in both adaptation

and supervised learning stages the replicated versions make the

target and impostor classes having the same weights when the

network parameters are being updated. In multi-session task,

the available i-vectors of each target speaker can be combined,

i.e., the average of every n i-vectors is considered as a new target

i-vector.

Once the number of positive and negative samples are bal-

anced, they are distributed equally among minibatches. In other

words, each minibatch contains the same number of impostors

and targets. If target samples in the multi-session task are not

combined, the same target samples but different impostor ones

are shown to the network in each minibatch (Fig. 5). The op-

timum numbers of impostor clusters and minibatches will be

determined experimentally in Sections VI and VII.

V. UNIVERSAL DBN AND ADAPTATION

Unlike DNNs, which need labeled data for training, DBNs

do not necessarily need such labeled data as inputs. Hence,

they can be used for unsupervised training of a global model

referred to as Universal DBN (UDBN) [21]. UDBN is trained

by feeding background i-vectors from different speakers. The

training procedure is carried out layer by layer using RBMs as

described in Section II-B. As the input i-vectors are real-valued,

Fig. 6. Comparison of the adapted connection weights between the visible
and the first hidden units for two different speakers.

a Gaussian-Bernoulli RBM (GRBM) [9], [45] is used to train

the connection weights between the visible and the first hidden

layer units. The rest of the connection weights are trained with

Bernoulli-Bernoulli RBMs.

It is shown that pre-training techniques can initialize DNNs

better than simply random numbers [41]–[43]. However, when

a few input samples are available, just pre-training may not be

enough to achieve a good model. In this case, we have proposed

in [21] to adapt UDBN parameters to the balanced data obtained

for each target speaker. Adaptation is carried out by training a

DBN which is initialized by the parameters of the UDBN given

the balanced data of each target speaker. Adapted DBNs are then

used as an initialization for the final DNN target models. In or-

der to avoid overfitting, only a few iterations will be considered

for adaptation. It is supposed that UDBN can learn both speaker

and channel variabilities from the background data. Therefore,

UDBN will provide a more meaningful initial point for DBNs

than a simple random initialization. The study in [42] has shown

that pre-training is robust with respect to the random initializa-

tion seed. The use of UDBN parameters makes target models

almost independent from the random seeds.

In contrast to [21], [22], in this work we normalize the UDBN

parameters before adaptation. Normalization is carried out by

simply scaling down the maximum absolute value of connec-

tion weights to 0.01. In this way, connection weights will have

a dynamic range similar to that typically used for random ini-

tialization. Additionally, bias terms are multiplied by 0.01 to

be closer to zero. This is because the bias terms are usually set

to zero when the connection weights are randomly initialized.

UDBN parameter normalization facilitates the training of the

networks specifically where more than one hidden layer is used.

In this way, the same learning rates and the number of epochs

tuned for random initialized DNNs can also be used for adapted

DNNs in the supervised learning stage.

Fig. 6 shows the comparison of the adapted UDBN connection

weights, between the input layer and the first hidden layer, for
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two different speakers. As it can be seen in this figure, speaker-

specific initial points are set by the adaptation process for each

DNN target model. Given target/impostor labels, the minibatch

stochastic gradient descent back-propagation is then carried out

for fine-tuning. The softmax and the logistic sigmoid will be the

activation functions of the top label layer and the other hidden

layers, respectively.

We have proposed to compute the output scores in Log Pos-

terior Ratio (LPR) forms as,

Λ(target|ω) = log P (target|ω) − log P (non-target|ω) (3)

where P (target|ω) and P (non-target|ω) are, respectively, the

posterior probability of the target and non-target classes given

the test i-vector ω. LPR computation helps to Gaussianize the

true and false score distributions which can be useful for score

fusion.

In addition, to make the fine-tuning process more efficient a

momentum factor is used to smooth out the updates, and the

weight decay regularization is used to penalize large weights.

The top layer pre-training proposed in [21] is not used in this

work. The reason is that it gives the emphasis on the top layer

connection weights and avoids the lower layers, closer to the

input, to learn enough from the input data. This fact will be

more important when higher number of hidden layers are used.

VI. EXPERIMENTS ON NIST SRE 2006

NIST SRE 2006 [32] is used to show the effect of each pro-

posed contribution shown in Fig. 3 for both single and multi-

session speaker verification tasks. In these experiments, we have

built the whole system from scratch including Voice Activity

Detection (VAD) and feature and i-vector extraction. Taking

advantage of the conclusions of this section, the NIST 2014 i-

vector challenge database [4] is used in Section VII to compare

the performance of the proposed system with the most recent

state-of-the-art baseline systems.

A. Baseline and Database

The whole core test condition of SRE 2006 is used as a single

session task and 8 conversation side training condition is used

as the multi-session task. In both cases, training and test signals

have approximately two-minute total speech duration. There are

816 target models and 51,068 trials in the single session and 699

target models and 31,080 trials in the multi-session task. Speech

signals with the two-minute approximate duration from NIST

SRE 2004 and 2005 are used as the background data containing

6,063 speech signals from 1,070 distinct speakers.

Frequency Filtering (FF) features [52] are used in these exper-

iments. FFs, like Mel Frequency Cepstral Coefficient (MFCC),

are decorrelated version of log Filter Bank Energies (FBE) [52].

It has been shown that FF features achieve a performance equal

to or better than MFCCs [52]. Features are extracted every 10 ms

using a 30 ms Hamming window. The number of static FF

features is 16 and along with delta FF and delta log energy,

33-dimensional feature vectors are built. Before feature ex-

traction, speech signals are subject to an energy-based silence

removal process. The gender-independent UBM is represented

as a diagonal covariance, 512-component GMM. All the i-

vectors are 400-dimensional. The i-vector extraction process

is carried out using ALIZE open source software [53]. UBM, T

matrix, and PLDA parameters are trained using the same back-

ground data. PLDA baseline systems are gender-independent

with a 250-dimensional speaker space. For PLDA experiments,

i-vectors are length normalized. Performance is evaluated using

Detection Error Tradeoff (DET) curves, Equal Error Rate (EER),

and the minimum of the Decision Cost Function (minDCF) de-

fined as follows [32],

DCF (t) = 0.1 × PM (t) + 0.99 × PF A (t) (4)

where the miss rate PM is the relative number of target trials

decided incorrectly, the false alarm rate PF A is the relative

number of non-target trials decided incorrectly, and t is the

threshold for which DCF is computed.

B. Single Session Experiments

For DNN experiments, the size of hidden layers is set to

512. DNNs with up to three hidden layers are explored in all

experiments. We do not go further than three layers because

of few amount of data and increasing the computational

complexity without more significant gain. The number of

minibatches and the number of impostor centroids are set

experimentally to 3 and 12, respectively. Each minibatch will

include four impostor centroids and four replicated target

samples. It is worth noting that compared to speech recognition

in which the amount of training data is typically very high, the

size and the number of minibatches are much less in this appli-

cation. However, the gradient is still stable and training works

very well.

As a DNN baseline system, we train a DNN for each target

speaker using the whole impostor background data and ran-

dom initialization. In this case, the whole background i-vectors

are clustered using the k-means algorithm and the centroids

are considered as impostor samples. In this work, we use the

uniform distribution U (0, 0.01) for random initialization as the

experimental results showed that it achieves slightly better per-

formance than the normal distribution N (0, 0.01) used in the

prior work [21]. We tune the parameters of the networks and

keep them fixed in all other experiments. DNN-3L will stand

for a three hidden layer DNN.

The two parameters N and κ, the number of local and global

selected impostors in the proposed impostor selection method,

need to be determined experimentally. Fig. 7 illustrates the vari-

ability of EER in terms of these two parameters for one hidden

layer DNNs. The similar behavior can be observed for minDCF

curves. DNN examples shown in this figure are initialized ran-

domly. Based on this figure, for DNN-1L we set N and κ to

10 and 2,000, respectively. Similar curves are plotted for other

networks and N is set to 10 for all of them and κ is set to 300

and 500 for DNN-2L and DNN-3L, respectively.

Experimental results showed that the main improvement due

to the adaptation process comes from the adaptation of the con-

nection weights between the input layer and the first hidden

layer for all DNNs. The adaptation of the other layers has no
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Fig. 7. Determination of the parameters of the proposed impostor selection
algorithm for one hidden layer DNNs. N and κ are, respectively, the number of
local and global nearest impostor i-vectors to target i-vectors.

TABLE I
THE EFFECT OF EACH PROPOSED IDEA OF FIG. 3 ON THE PERFORMANCE OF

THE PROPOSED DNN SYSTEMS

Impostor Selection Adaptation EER (%) minDCF (×104 )

# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 8.55 7.76 7.59 381 353 351

� – 8.06 7.12 7.09 360 327 326

– � 7.43 7.47 7.45 339 343 339

� � 6.81 6.97 6.99 315 317 313

Fusion with cosine 6.83 6.88 6.64 308 309 299

Fusion with PLDA 4.98 5.03 4.76 253 248 230

Results are Obtained on the Core Test Condition of NIST SRE 2006. The Cosine and

PLDA Baseline Systems Achieve (EER=7.18%, minDCF=324) and (EER=4.78%,

minDCF=253), Respectively.

significant impact on the performance. In order to decrease the

probability of overfitting during the adaptation, a separate net-

work is adapted to each minibatch and then the parameters of

the obtained networks are averaged.

Table I summarizes the effect of each proposed contribu-

tion. Impostor selection improves the performance to a great

extent for all the networks. We have tried global, local, and the

pooling of global and local selected impostors before k-means

clustering and the best performance was obtained by using only

global selected impostors. The biggest improvement due to the

adaptation process is observed in DNNs with one hidden layer.

The best results are obtained using both impostor selection and

adaptation techniques which show an 8-20% and 10-17% rela-

tive improvements in terms of EER and minDCF, respectively,

compared to the baseline DNNs. The biggest relative improve-

ments are achieved on DNN-1L. The last two rows of the table

show the fusion of DNN systems with the cosine (EER=7.18%,

minDCF=0.0324) and PLDA (EER=4.78%, minDCF=0.0253)

baseline systems. Scores of each system are first mean and

variance normalized and then simply summed. The fusion of

the cosine baseline and DNN systems improves the results and

DNN-3L achieves the best results corresponding to an 8% rela-

tive improvement for both EER and minDCF in comparison to

the cosine scoring baseline system. Nevertheless, only DNN-3L

TABLE II
THE EFFECT OF EACH PROPOSED IDEA OF FIG. 3 ON THE PERFORMANCE OF

THE PROPOSED DNN SYSTEMS

Impostor Selection Adaptation EER (%) minDCF (×104 )

# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 4.58 4.58 4.38 208 213 217

� – 4.02 4.07 3.86 183 201 194

– � 4.24 4.30 4.20 202 207 202

� � 3.68 3.83 3.50 170 189 172

Fusion with cosine 3.61 3.77 3.45 161 169 162

Fusion with PLDA 2.46 2.62 2.36 111 121 112

Results are obtained on NIST SRE 2006, 8-Session Enrollment Task. The Cosine and

PLDA Baseline Systems Achieve (EER=4.2%, minDCF=191) and (EER=2.27%,

minDCF=105), Respectively.

scores can improve the PLDA results specifically for minDCF

by 9% relative improvement. We have also combined the scores

of DNNs with different number of hidden layers, but no gain is

observed.

C. Multi-Session Experiments

The same configuration used for the single session task is also

applied for the multi-session one. The number of minibatches

is set to 3. In each minibatch, all 8 target i-vectors accompany-

ing with 8 impostor cluster centroids are shown to the network.

Therefore, the size of each minibatch and the total number of

impostor clusters will be 16 and 24, respectively. As the com-

bination of the i-vectors of each target speaker did not help the

training of the networks, we replicated the target i-vectors in

every minibatch as it was shown in Fig. 5. We train the net-

works with the same parameters tuned for the single session

experiments.

Results are summarized in Table II. Around 12% relative

improvements are achieved in all DNNs employing impostor

selection technique proposed in this work. With the same pa-

rameters obtained for the single session task, we re-selected

the impostors for the new multi-session data set. The adapta-

tion process improves the performance up to 8%. As in the

single session task, adaptation is more effective for one-hidden-

layer DNNs. For all the networks, only the parameters of the

first hidden layer are adapted because no more improvement

was observed adapting the other layers. The best results are

obtained with DNN-3L when the two proposed techniques are

combined. It shows more than 20% relative improvements of

EER and minDCF in comparison to the baseline three-layer

DNNs.

The proposed three-hidden-layer DNNs show a performance

between the cosine (EER=4.2%, minDCF=0.0191) and PLDA

(EER=2.27%, minDCF=0.0105) baseline systems, with more

than 17% and 10% relative improvements in terms of EER and

minDCF, respectively, compared to the cosine scoring. Fusion

with the cosine baseline system improves the results in all cases,

but no improvement is observed by combination with PLDA

scores.
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VII. EXPERIMENTS ON NIST 2014 I-VECTOR CHALLENGE

The full database provided in the NIST 2014 speaker recog-

nition i-vector challenge [4] is used for the experiments in

this section. Rather than speech signals, i-vectors are given

directly by NIST in this challenge to train, test, and develop

the speaker recognition systems. This enables system compar-

ison more readily with consistency in the front-end and in the

amount and type of the background data [4]. For this challenge,

speaker recognition systems are evaluated in two phases: when

the speaker labels of the background data are not known and

when they are known to the systems. The cosine and PLDA

scoring techniques are used by NIST as the baseline systems

when unlabeled and labeled background data are available, re-

spectively. The goal of this evaluation is to see how other tech-

niques can fill the performance gap between these two baseline

systems when no labeled background data is available.

A. Baseline and Database

Conventional telephone speech recordings from NIST SRE

2004 to 2012 are used to compute i-vectors for this challenge [7].

Unlike NIST SRE 2006 experiments, in which the duration of

speech signals for each i-vector was approximately 2 minutes, in

this challenge i-vectors are extracted from speech utterances of

varying duration with a mean of 39.6 seconds. Three sets of 600-

dimensional i-vectors are provided: development, train, and test

consisting of 36,572, 6,530, and 9,634 i-vectors, respectively.

The number of target speaker models is 1,306 and for each

of them five i-vectors are available. Each target model will

be scored against all the test i-vectors and, therefore, the total

number of trials will be 12,582,004. Trials are divided by NIST

into two randomly selected subsets: a progress subset (40%),

and an evaluation subset (60%). The performance is evaluated

using a minDCF obtained by [4],

DCF (t) = PM (t) + 100 × PF A (t) (5)

Two main baseline systems are considered in this work when

the background i-vectors are not labeled: cosine and PLDA

with estimated labels. The PLDA with actual labels is also used

as an oracle system for comparison. In all of them, i-vectors

are whitened and length normalized prior to evaluation and the

average i-vector per each target speaker is used as a single

target model. Only for the cosine baseline system the average

i-vectors are again length normalized as it is shown that for

the PLDA systems re-normalization affects the performance

[7]. Both PLDA systems are gender-independent with a 400-

dimensional speaker space. In order to have the best PLDA

with actual labels, those background i-vectors extracted from

speech signals shorter than 30 seconds are discarded before

PLDA training [7]. For the PLDA with estimated labels, a two

stage unsupervised clustering technique is used to estimate the

speaker labels of the background data. The first stage of the

clustering algorithm is similar to the Mean Shift based algorithm

proposed in [54] and used successfully in this challenge in [6].

In the second stage, the closer clusters obtained in the first stage

are combined. In both stages, i-vectors are joined based on the

cosine similarity considering a threshold which is set to 0.29 in

our experiments as in [6]. At the end, only clusters contained no

less than 4 and no more than 50 i-vectors are selected. As in [6],

those i-vectors with less than 20 seconds of speech are discarded

before PLDA training in this case. It is possible to train a PLDA

with the estimated labels and repeat the two stage unsupervised

clustering algorithm with the PLDA similarity measurement,

but it would be time consuming and no significant gain will be

observed in practice. The experimental results for this baseline

system show a comparable performance to those reported in [6]

and [5].

B. Multi-Session Experiments

The same architecture as in SRE 2006 multi-session experi-

ments has been used for these experiments with some modifi-

cation. The size of hidden layers is set to 400. Each minibatch

consists of 5 impostor centroids and 5 target samples. The to-

tal number of impostor centroids is 15 for each target model.

Since DNN-1L and DNN-3L worked better than DNN-2L in

SRE 2006 experiments, we only implement these two networks

for the NIST i-vector challenge. DNN-1L and DNN-3L are

trained with the learning rates of 0.002 and 0.07 and with the

number of epochs of 30 and 300, respectively. Momentum and

weight decay are set, respectively, to 0.9 and 0.001 for all DNNs.

The whole unlabeled background i-vectors are used for UDBN

training. The learning rate and the number of epochs for UDBN

training are set to 0.02 and 200 for GRBM, and to 0.06 and 120

for the rest of RBMs, respectively. Momentum, weight decay,

and the minibatch size are set, respectively, to 0.9, 0.0002, and

100 for all RBMs. For DNN-3L we adapted only the first two

layers. The learning rate and the number of epochs of adaptation

are set, respectively, to 0.001 and 10 for the first layer and to

0.0001 and 20 for the second layer.

As it was discussed in Section IV-A, when the background

data set is big enough like in this challenge, the results will be

only slightly better if the training data set is used in the selection

algorithm. On the other hand, as a general rule of this challenge

the use of training data is not allowed for impostor selection.

Therefore, in order to have a fair comparison with the results of

other participating sites, we use only the background i-vectors

in the impostor selection algorithm (Section IV-A).

As in SRE 2006 experiments, we have tried global, local,

and the pooling of global and local selected impostors before

k-means clustering and the best performance was obtained by

pooling. For global impostor selection, κ and N are set to 4,500

and 100 for both DNN-1L and DNN-3L, respectively. The al-

gorithm is iterated 20 times. Afterwards, the global selected

impostors are pooled with 500 local impostors for each target

speaker before k-means clustering.

Table III compares the performance of the proposed DNN

systems with other baseline systems in terms of minDCF and

EER, and Figs. 8 and 9 compares them in all operating points in

terms of DET curves. Circles in the figures show the operating

points corresponding to minDCFs. It is worth noting that in

NIST 2014 i-vector challenge the performance of the systems

were evaluated only in terms of minDCF. However, we have

also included EERs in the table for better comparison. As it can
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TABLE III
COMPARISON OF THE PERFORMANCE OF THE PROPOSED DNN SYSTEM WITH

OTHER BASELINE SYSTEMS ON NIST 2014 I-VECTOR CHALLENGE

Unlabeled Background Data Progress Set Evaluation Set

EER (%) minDCF EER (%) minDCF

[1] cosine 4.78 0.386 4.46 0.378

[2] PLDA (Estimated Labels) 3.85 0.300 3.46 0.284

[3] Proposed DNN-1L 5.13 0.327 4.61 0.320

[4] Proposed DNN-3L 4.55 0.305 4.11 0.300

Fusion [2] & [4] 2.99 0.260 2.70 0.243

Labeled Background Data

[5] PLDA (Actual Labels) 2.23 0.226 2.01 0.207

Fusion [2] & [5] 2.04 0.220 1.85 0.204

Fusion [4] & [5] 2.13 0.221 2.00 0.196

Fusion [2] & [4] & [5] 1.88 0.204 1.74 0.190

Fig. 8. Comparison of the performance of the proposed DNN-3L system with
other baseline systems on the progress set of NIST 2014 i-vector challenge.

be seen in the table, the proposed DNN-3L performs better than

DNN-1L, as it was concluded from SRE 2006 experiments. The

proposed DNN-3L system achieves comparable performance to

PLDA with estimated labels in terms of minDCF (with 21%

relative improvement compared to cosine scoring), but lower

performance in terms of EER. In other words, as it is shown in

Figs. 8 and 9, the proposed DNN-3L system performs closer to

PLDA with actual labels than to cosine for lower False Alarm

(FA) probabilities. For higher FA probabilities, it is the other

way around. The proposed DNN and PLDA with actual labels

achieve the same performance for FA probability around 0.01,

and for lower than 0.01 the proposed DNN system outperform

the PLDA with actual labels. This can be seen as an advantage of

the proposed system since having better performance in lower

FA probabilities is more important for higher security purposes.

Fig. 9. Comparison of the performance of the proposed DNN-3L system with
other baseline systems on the evaluation set of NIST 2014 i-vector challenge.

The interesting point is that the combination of the DNN-3L

and PLDA with estimated labels in the score level improves the

results to a great extent in all operating points. The score fusion

is carried out using BOSARIS toolkit [55]. The combination

weights are trained on the progress trial set and used for the

evaluation set. The resulting relative improvement compared

to cosine baseline system is 36% in terms of minDCF on the

evaluation set. This improvement with no use of background

labels is considerable compared to 45% relative improvement

which can be obtained by PLDA with actual labels.

Although the use of speaker labels for the background data

has not been the goal of this work, it would be interesting to see

how the proposed DL-based backend and PLDA with estimated

labels can help the oracle PLDA system, which uses the actual

labels. As it can be seen in Table III, in both cases of DNN-3L

and PLDA with estimated labels, the combination with oracle

PLDA improves the results. This improvement is higher in terms

of EER for PLDA with estimated labels and higher in terms of

minDCF for DNN-3L systems. Nevertheless, the combination of

all three systems achieves the best performance, corresponding

to 8% and 13% relative improvement in terms of minDCF and

EER, respectively, compared to the PLDA with actual labels.

VIII. CONCLUSION

A hybrid architecture based on Deep Belief Networks (DBN)

and Deep Neural Networks (DNN) has been proposed in this

work to discriminatively model each target speaker for i-vector

speaker verification. The main objective has been to fill the per-

formance gap between the cosine and the oracle PLDA scoring

systems when no labeled background data is available. Two

main contributions have been proposed to make DNNs more
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efficient in this particular task. Firstly, the most informative im-

postor i-vectors have been selected and clustered to provide a

balanced training. Secondly, each DNN has been initialized with

the speaker specific parameters adapted from a global model,

which has been referred to as Universal DBN (UDBN). In order

to have more insight into the behavior of these techniques in

both single and multi-session speaker enrollment tasks, the ex-

periments have been carried out in both scenarios. Experiments

were performed on NIST SRE 2006, mainly for development,

and on NIST 2014 i-vector challenge, mainly for evaluation. It

was shown that the proposed hybrid system fills approximately

46% of the performance gap between the cosine and the ora-

cle PLDA scoring systems in terms of minDCF. Although the

proposed system still does not outperform the baseline PLDA

with estimated labels, their score fusion is highly effective and

covers 79% of this gap. The reason that the proposed system

still does not outperform the baseline PLDA system could be

that it does not explicitly compensate the session variability as

it is carried out in PLDA. Thus, it is expected that adding some

explicit session modeling to the proposed hybrid model could

improve the performance, but it has been beyond the scope of

this paper.
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