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1. Introduction

Magnetic resonance imaging (MRI) produces cross-sectional images with high spatial resolution using strong 

nuclear magnetic resonances, gradient fields, and hydrogen atoms inside the human body (Lauterbur 1973, Seo 

et al 2014). MRI does not use damaging ionizing radiation like x-rays, but the scan takes a long time (Sodicson 

et al 1997, Haacke et al 1999) and involves confining the subject in an uncomfortable narrow bow. Shortening 

the MRI scan time might help increase patient satisfaction, reduce motion artifacts from patient movement, 

and reduce the medical cost. The MRI scan time is roughly proportional to the number of time-consuming 

phase-encoding steps in k-space. Many efforts have been made to expedite MRI scans by skipping the phase-

encoding lines in k-space while eliminating aliasing, a serious consequence of the Nyquist criterion violation 

(Nyquist 1928) that is caused by skipping. Compressed sensing MRI and Parallel MRI are some of the techniques 

used to deal with these aliasing artifacts. Compressed sensing MRI uses prior information on MR images of the 

unmeasured k-space data to eliminate or reduce aliasing artifacts. Parallel MRI installs multiple receiver coils and 

uses space-dependent properties of receiver coils to reduce aliasing artifacts (Sodicson et al 1997, Pruessmann 

et al 1999, Larkman et al 2001). This paper focuses solely on single-channel MRI for simplicity; hence, parallel 

MRI is not discussed.

In undersampled MRI, we attempt to find an optimal reconstruction function f : x �→ y, which maps highly 

undersampled k-space data (x) to an image (y) close to the MR image corresponding to fully sampled data. 

Undersampled MRI consists of two parts, subsampling and reconstruction, as shown in figure 1.

Compressive sensing (CS) MRI can be viewed as a sub-Nyquist sampling method in which the image sparsity 

is enforced to compensate for undersampled data (Donoho 2004, 2006, Candes et al 2006, Lustig et al 2007). CS-

MRI can be described roughly as a model-fitting method to reconstruct the MR image y by adding a regulariza-

tion term that enforces the sparsity-inducing prior on y. It aims to reconstruct an image given by

y = argmin
y

‖x − S ◦F(y)‖2
ℓ2
+ λ‖T (y)‖ℓ1

, (1)

where F  denotes the Fourier transform, S  is a subsampling, T (y) represents a transformation capturing  

the sparsity pattern of y, ◦ is the symbol of composition, and λ is the regularization parameter controlling 
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the trade-off between the residual norm and regularity. Here, the term ‖x − S ◦F(y)‖ℓ2
 forces the residual 

x − S ◦F(y) to be small, whereas ‖T (y)‖ℓ1
 enforces the sparsity of T (y). In CS-MRI, a priori knowledge of 

MR images is converted to a sparsity of T (y) with a suitable choice of T . The most widely used CS method 

is total variation denoising (i.e. ‖∇y‖ℓ1
), which enforces piecewise constant images by uniformly penalizing 

image gradients. Although CS-MRI with random sampling has attracted a large amount of attention over the 

past decade, it has some limitations in the preservation of fine-scale details and noise-like textures that hold 

diagnostically important information in MR images.

In contrast to the regularized least-squares approaches (1), our deep learning approach is a completely 

reversed paradigm. It aims to learn a function f : x �→ y  using many training data {(x(i), y
(i)) : i = 1, · · · , N}. 

Roughly speaking, f is achieved by

f = argmin
f∈Unet

1

N

N∑

i=1

‖f (x(i))− y
(i)‖2, (2)

where Unet  is a deep convolutional neural network with some domain(or prior) knowledge determined by 

a training dataset that consists of pairs of fully sampled MR image and folded images. A U-net can provide a 

low-dimensional latent representation and preserve high-resolution features through concatenation in the 

upsampling process (Ronnerberger et al 2015). This reconstruction function f can be viewed as the inverse 

mapping of the forward model S ◦ F  subject to the constraint of MR images, which are assumed to exist in 

a low dimensional manifold. In the conventional regularized least-squares framework (1), it is very difficult to 

incorporate the very complicated MR image manifold into the regularization term. However, in the deep learning 

framework, the manifold constraint learned from the training set acts as highly nonlinear compressed sensing to 

obtain an useful reconstruction f (x) by leveraging complex prior knowledge on y.

There are several recent machine learning based methods for undersampled MRI (Hammernik et al 2017, 

Kwon et al 2017, Lee et al 2017) that were developed around the same time as our method. Hammernik et al 

developed an efficient trainable formulation for an accelerated Parallel Imaging(PI)-based method of learning 

variational framework to reconstruct MR images from accelerated multicoil MR data. The method is designed 

to learn a complete reconstruction procedure for multichannel MR data in the regularized least-squares frame-

work. Their aim is to learn a set of parameters associated with the gradient of the regularization in the gradient 

decent scheme. Kwon et al applied the multilayer perceptron algorithm to reconstruct MR images from subsam-

pled multicoil data. They reconstruct the image by using information from multiple receiver coils with different 

spatial sensitivities. In their method, the acceleration factor cannot be larger than the number of coils. Finally, Lee 

et al used a residual learning method to estimate aliasing artifacts from distorted images of undersampled data.

In this paper, a subsampling strategy for deep learning is explained using a separability condition in order to 

produce MR images with a quality that is as high as regular MR image reconstructed from fully sampled k-space 

data. The subsampling strategy is to preserve the information in xfull as much as possible, while maximizing the 

skipping rate. To be precise, we use uniform subsampling in the phase encoding direction so that the Fourier 

transform contains all detailed features in a folded image, according to the Poisson summation formula.

Figure 1. General strategy for undersampled MRI reconstruction problem. The inverse Fourier transform of a fully sampled 
k-space data xfull produces a reconstructed MRI image y. The goal is to find a subsampling function S  and learn an undersampled 

MRI reconstruction f from the training dataset. Here, y
S
= |F−1| ◦ P(x) is an aliased image caused by the violation of the Nyquist 

criterion. We use the U-net to find the function g that provides the mapping from the aliased image y
S
 to an anti-aliased image y.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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We include a few low-frequency sampling to learn the overall structure of MR images and to deal with anom-

aly location uncertainty in the uniform sampling. The experiments show the high performance of the proposed 

method.

2. Method

Let y ∈ C
N×N  be the MR image to be reconstructed, where N2 is the number of pixels and C is the set of complex 

numbers. In 2D Fourier imaging with Cartesian k-space sampling, the MR image y can be reconstructed from 

the corresponding k-space data xfull ∈ C
N×N : For n, m = 1 − N/2, · · · , 0, · · · , N/2,

y(n, m) =

N/2∑

a=1−N/2

N/2∑

b=1−N/2

xfull(a, b) e
2iπ(an+bm)/N

, (3)

where xfull(a, b) is the MR-signal received at k-space position (2πa/N, 2πb/N). The frequency-encoding is along 

the a-axis and the phase-encoding is along b-axis in the k-space as per our convention.

In undersampled MRI, we violate the Nyquist criterion and skip phase-encoding lines during the MRI acqui-

sition to speed up the time-consuming phase encoding. However, sub-Nyquist k-space data yields aliasing arti-

facts in the image space. For example, suppose we skip two phase-encoding lines to obtain an acceleration factor 

of 2. Then, the k-space data with zero padding is given by
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 (4)

According to the Poisson summation formula, the discrete Fourier transform of the above uniformly sub-

sampled data with factor 2 produces the following two-folded image (Seo et al 2012):

y
2-fold

(n, m) = y(n, m) + y(n, m + N/2). (5)

If the deep learning approach is able to find an unfolding map y
2-fold

�→ y , in this way we could accelerate the 

data acquisition speed. However, it is impossible to get this unfolding map even with sophisticated manifold learn-

ing for MR images. In the left panel of figure 2, we consider two different MR images y1 and y2 with small anomalies 

at the bottom (n, m) and top (n, m + N/2), respectively. Here, the corresponding k-space data F(y
1
) and F(y

2
) 

are different. However, the corresponding uniformly subsampled k-space data with factor 2 P ◦ S ◦ F(y
1
) and 

P ◦ S ◦ F(y
2
) are completely identical because F−1 ◦ P ◦ S ◦ F(y

1
) = F−1 ◦ P ◦ S ◦ F(y

2
). Here, S  

and P  are the sampling and zero-padding operator, respectively, so that P ◦ S(xfull) is the subsampled k-space 

data with zero-padding given in (4). It is not possible to identify whether the anomaly is at the top or bottom. 

Deep learning cannot solve this unsolvable problem. We now explain our undersampling strategy for deep learn-

ing.

Remark 2.1. Given the undersampled data x, let y
♭
 be the minimum norm solution, that is,

y
♭
= argmin

y s.t. S ◦ Fy=x

‖y‖ℓ2 .

This y
♭
 is F−1(P(x)), the inverse Fourier transform of the data x padded by zeros. This is because 

‖P(x)‖ℓ2 � ‖x
′‖ℓ2 for all x

′  satisfying S(x′) = x and the Fourier transform map is an isometry with respect 

to the ℓ2 norm. Unfortunately, this minimum norm solution y
♭
 is undesirable in most cases. See appendix A.

2.1. Subsampling strategy

Let {(x( j), y
( j))}M

j=1
 be a training set of undersampled and ground-truth MR images.The vectors x( j) and y( j) are 

in the space CN×N . Figure 1 shows a schematic diagram of our undersampled reconstruction method, where the 

corresponding inverse problem is to solve the underdetermined linear system

S ◦ F(y) = x. (6)

Given undersampled data x, there are infinitely many solutions y of (6) in CN×N . It is impossible to invert the 

ill-conditioned system S ◦ F : C
N×N → RS ◦ F , where RS ◦ F  is the range space of operator S ◦ F  and 

its dimension is much lower than N2. We use the fact that the MR images of humans exist in a much lower-

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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dimensional manifold M embedded in the space CN×N . With this constraint M which is unknown, there is the 

possibility that there exists a practically meaningful inverse f in the sense that

f (S ◦ F(y)) = y for y ∈ M. (7)

In the left of figure 2, we consider the case that S  is the uniform subsampling of factor 2. With this choice 

of S , two different images y
1
�= y

2
 produce identical |F−1| ◦ P ◦ S ◦ F(y

1
) = |F−1| ◦ P ◦ S ◦ F(y

2
). This 

means the uniform subsampling of factor 2 is inappropriate for learning f satisfying (7). Here, y
1
 is the standard 

Logan phantom image and y
2
 is a modified image of y

1
 obtained by moving three small anomalies to their sym-

metric positions with respect to the middle horizontal line. In contrast, if we add a few low frequencies to the uni-

form subsampling of factor 2, as shown in the image on the right of figure 2, the situation is dramatically changed 

and separability (8) may be achieved.

y1 �= y2 implies |F−1| ◦ P ◦ S ◦ F(y1) �= |F−1| ◦ P ◦S ◦ F(y2). (8)

In figure 3, we demonstrate the separability condition again using the patient data. Figure 3(a) is the ground 

truth, where the tumor is at the bottom. Figures 3(b) and (d) are the reconstructed images using a uniform sub-

sampling of factors 2 and 4, respectively; the tumors apear found at both the top and bottom, and the uniform 

subsampling of factor 2 and 4 are not separable. However, in the reconstructed images in figures 3(c) and (e) 

using the uniform subsampling of factosr 2 and 4 with added low frequencies, the tumors are clearly located 

at the bottom and separability (8) may be achieved. This crucial observation is validated by various numerical 

simulations as shown in figure 5.

In the subsampling strategy, we use a uniform subsampling of factor 4 (25% k-space data—64 lines of a total 

256 lines) with a few low frequencies(about 4% k-space data—12 lines of a total 256 lines). Owing to the Poisson 

summation formula, the uniformly subsampled data with factor 4 provides the detailed structure of the folded 

image of y as

y
4-fold

(n, m) =

3∑

j=0

y(n, m +
jN

4
). (9)

However, the folded image may not contain the location information of small anomalies. We fix the anomaly 

location uncertainty by adding a few amount of low frequency k-space data. (See appendix B for details.)

2.2. Image reconstruction function

In this subsection, we describe the image reconstruction function f, which is schematically illustrated in figure 4. 

When we have an undersampled data x as an input of f, about 70% of x are not measured and not recorded. 

The first step of f is to fill in zeros for the unmeasured region of x to obtain P(x). After the zero padding has 

been added, we take the inverse Fourier transform of P(x), take its absolute value, and obtain the folded image 

y
S
. We input this folded image y

S
 into the trained U-net and obtain the U-net output image ỹ. We apply the 

Fourier transform to ỹ, which yields the k-space data F(ỹ). The U-net recovers the zero-padded part of the  

k-space information. However, during this recovery, the unpadded parts of the data are distorted. We manually 

Figure 2. Feasibility of deep learning methods. Learning f requires separability: y1 �= y2 implies |F−1| ◦ P ◦S ◦ F(y1) �=  

|F−1| ◦ P ◦S ◦ F(y
2
). The figure on the left shows why uniform subsampling does not satisfy the separability condition. We 

consider two different MR images with small anomalies at position (n, m) and (n, m + N/2), respectively. The corresponding k-
space data are different, but the corresponding uniformly subsampled k-space data with factor 2 are completely identical. It is hence 
not possible to identify whether the anomaly is at the top or bottom. In contrast, the figure on the right shows why separability can be 
achieved by adding low frequency data. Additional low frequency lines in the yellow box provides the location information of small 
anomalies.

Phys. Med. Biol. 63 (2018) 135007 (15pp)



5

C M Hyun et al

fix this unwanted distortion by placing the original x values in their corresponding positions in the k-space data 

F(ỹ). We call this k-space correction as fcor and set x̂ = fcor(F(ỹ)). Because the original input data is preserved, 

we expect to obtain a more satisfactory reconstruction image and, indeed, our experiments show that the k-space 

correction is very effective. Finally, we apply the inverse Fourier transform to x̂, take the absolute value and obtain 

our reconstruction image |F−1(x̂)|. In summary, our image reconstruction function f : x �→ y  is given by

f = |F−1| ◦ fcor ◦ F ◦ fd ◦ |F−1| ◦ P , (10)

where fd is the trained U-net and fcor indicates the k-space correction. Here, fd should be determined by the 

following training process.

To train and test the U-net fd, we generate the training and test sets as follows. Given ground-truth MR 

images {y
( j)}N

j=1
, we take the Fourier transform of each y

( j), apply our subsampling strategy S , which yields 

x
( j). This provides a dataset {(x( j), y

( j))}N
j=1

 of subsampled k-space data and ground-truth MR images. The 

dataset is divided into two subsets : a training set {(x( j), y
( j))}M

j=1
 and test set {(x( j), y

( j))}N
j=M+1

. The input x( j) 

of the image reconstruction function f is an undersampled k-space data and the output y( j) is the ground truth 

image. Using the zero-padding operator, inverse Fourier transform, and absolute value, we obtain folded images 

y
( j)
S

. Our training goal is then to recover the ground-truth images y
( j) from the folded images y

( j)
S

. Note that 

{y
( j)
S

, y
( j)}M

j=1
 is a set of pairs for training fd.

The architecture of our U-net is illustrated in figure 4. The first half of the network is the contracting path and 

the last half is the expansive path. The size of the input and output images is 256  ×  256. In the contracting path, 

we first apply the 3  ×  3 convolutions with zero-padding so that the image size does not decrease after convolu-

tion. The convolution layers improve the performance of machine learning systems by extracting useful features, 

sharing parameters, and introducing sparse interactions and equivariant representations (Bengio et al 2015). 

After each convolution, we use a rectified linear unit(ReLU) as an activation function to solve the vanishing gra-

dient problem (Glorot et al 2011). Then, we apply the 2  ×  2 max pooling with a stride of 2. The max pooling helps 

to make the representation approximately invariant to small translations of the input (Bengio et al 2015). In the 

expansive path, we use the average unpooling instead of max-pooling to restore the size of the output. In order 

to localize more precisely, the upsampled output is concatenated with the correspondingly feature from the con-

tracting path. At the last layer a 1  ×  1 convolution is used to combine each the 64 features into one large feature 

(Ronnerberger et al 2015).

The input of the net is y( j)
S

, the weights are W, the net, as a function of weights W, is fnet(·, W), and the output 

is denoted as fnet(y
( j)
S

, W). To train the net, we use the ℓ2 loss and find the optimal weight set W0 with

Figure 3. MR images of human brain with a tumor at the bottom. Images (a)–(e) are reconstructed from (f) full sampling,  
(g) uniform subsampling of factor 2, (h) uniform subsampling of factor 2 with added some low frequencies, (i) uniform 
subsampling of factor 4, and (j) uniform subsampling of factor 4 with added low frequencies , respectively. In (b) and (d), tumor-like 
lesions are found at both the top and bottom; one is a copy of the other. Hence, a location uncertainty exists in the uniform sampling. 
However, in the reconstructed image (c) and (e) using the uniform subsampling of factor 2 and 4 with added low frequencies, the 
tumors are clearly located at the bottom. The location uncertainty can hence be addressed by adding a few low frequencies in k-
space.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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W0 = argmin
W

1

M

M∑

j=1

‖fnet(y
( j)
S

, W)− y
( j)‖2

ℓ2 . (11)

Once the optimal weight W0 is found, we stop the training and denote the trained U-net as fd = fnet(·, W0).

In our experiment, the ground-truth MR image y was normalized to be in the range [0, 1] and the undersam-

pled data x was subsampled to 29% k-space data as described in section 2. We trained our model using a training 

set of 1400 images from 30 patients. The MR images were obtained using a T2-weighted turbo spin-echo pulse 

sequence (repetition time  =  4408 ms, echo time  =  100 ms, echo spacing  =  10.8 ms) (Loizou et al 2011). To train 

our deep neural network, all weights were initialized by a zero-centered normal distribution with standard devia-

tion 0.01 without a bias term. The loss function was minimized using the RMSPropOptimize with learning rate 

0.001, weight decay 0.9, mini-batch size 32, and 2000 epochs. RMSProp, which is an adaptive gradient method, 

was proposed by Tieleman and Hinton to overcome difficulties in the optimization process in practical machine 

learning implementations (Tieleman et al 2012). Training was implemented using TensorFlow (Google 2015) on 

an Intel(R) Core(TM) i7-6850K, 3.60GHz CPU and four NVIDIA GTX-1080, 8GB GPU system. The network 

required approximately six hours for training.

3. Result

Figure 5 shows the performance of the proposed method for five different brain images in the test set. The first, 

second and third columns show the ground-truth, aliased and corrected images, respectively. The aliased images 

Figure 4. The proposed method consists of two major components : deep learning using U-net and k-space correction. As a 
preprecessing, we first fill in zeros for the unmeasured region of the undersampled data to get the zero-padded data. Then, we take 
the inverse Fourier transform, take its absolute value, and obtain the folded image. After the preprocess, we put this folded image into 
the trained U-net and produce the U-net output. The U-net recovers the zero-padded part of the k-space data. We take the Fourier 
transform and replace the unpadded parts by the original k-space data to preserve the original measured data. Finally, we obtain the 
final output image by applying the inverse Fourier transform and absolute value.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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are folded four times. The proposed method suppresses these artifacts, but provides surprisingly sharp and 

natural-looking images.

Figure 6 displays the impact of k-space correction. The four images in the first row are the ground truth  

(figure 6(a)), input (figure 6(b)) and output (figure 6(c)) of the U-net, and the final output after the k-space 

correction (figure 6(d)). In the second row, we subtract the ground truth from images in the first row. Images 

figure 6(c) before and figure 6(d) after k-space correction are visually indistinguishable. However, figures 6(g) 

and (h) displays the impact of k-space correction. The U-net almost completely removes the folding artifacts. 

However, one can still see a few folding artifacts. Hence, The k-space correction removes the remaining folding 

artifacts.

All our qualitative observations are supported by the quantitative evaluation. After we trained our model 

by using 1400 images from 30 patients, we used a test set of 400 images from 8 other patients, and measure and 

report their mean-squared error (MSE) and structural similarity index (SSIM) in table 1.

The results for these metrics support the effectiveness of both the U-net and k-space correction. In particular, 

the effectiveness of k-space correction is demonstrated.

4. Discussion and conclusion

Deep learning techniques exhibit surprisingly good performances in various challenging fields, and our case 

is not an exception. In this study, it generates the reconstruction function f using the U-net, providing a better 

performance than the existing methods.

Figure 5. Numerical simulation results of five different brain MR images. The first, second and third columns show the ground-
truth, aliased and corrected images, respectively. The proposed method significantly reduces the undersampling artifacts while 
preserving morphological information.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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Our inverse problem of undersampled MRI reconstruction is ill-posed in the sense that there are fewer 

equations than unknowns. The underdetermined system in section 3 has 256 × 256 unknowns and 76 × 256 

equations. The dimension of the set {y ∈ R
256×256

: S ◦ F(y) = 0} is (256 − 76)× 256, and therefore it 

is impossible to have an explicit reconstruction formula for solving (6), without imposing the strong con-

straint of a solution manifold. For the uniqueness, the Hausdorff dimension of the solution manifold must 

be less than the number of equations (i.e. 76 × 256). Unfortunately, it is extremely hard to find a mathemati-

cal expression for the complex structure of MR images in terms of 76 × 256 parameters, because of its highly 

nonlinearity characteristic. The deep learning approach is a feasible way to capture MRI image structure as 

dimensionality reduction.

We learned the kind of subsampling strategy necessary to perform an optimal image reconstruction function 

after extensive effort. Initially, we used a regular subsampling with factor 4, but realized that it could not satisfy 

the separability condition. Because of wrap around artifact (a portion of the image is folded over onto some other 

portion of the image), it is impossible to specify the locations of small objects. We added low frequencies hoping 

to satisfy separability and this turned out to guarantee separability in a practical sense.

Once the data set satisfies the separability condition, we have many deep learning tools to recover the images 

from the folded images. We chose to use the U-net. The optimal choices may depend on the input image size, the 

number of training data, computer capacity, etc. It seems that the determination of optimal choice is difficult. 

Therefore, we empirically choose the number of layers, the number of convolution filters, and the filters’ size. The 

trained U-net successfully unfolded and recovered the images from the folded images. The U-net removes most 

of the folding artifacts; however, one can still see them. Hence, The k-space correction is used to further reduce 

them.

The experiments show that our learned function f appears to have highly expressive representation capturing 

anatomical geometry as well as small anomalies. We tested the flexibility of the proposed method. We applied the 

proposed method to CT images that were never trained. It worked well for different types of images that were 

Figure 6. Simulation result using the proposed method : (a) ground-truth image, (b) aliased image, (c) output from the trained 
network, (d) k-space corrected image, figures (e)–(h) depict the difference image with respect to the image in (a).

Table 1. Quantitative evaluation results in terms of MSE and SSIM using the test set of 400 images. MSE is computed using 
1

400×2562

∑400

i=1

∑256

n=1

∑256

m=1
(y

(i)
proposed(n, m)− y

(i)(n, m))2, where y(i) is normalized to the range [0, 1]. See Wang et al (2004) for definition of 

SSIM. As MSE approaches 0 or SSIM approaches 1, outputs are closer to labels.

Aliased U-net U-net with k-space correction

MSE 0.0043 ± 0.0016 0.0012 ± 0.0006 0.0004 ± 0.0002

SSIM 0.6516 ± 0.0815 0.8782 ± 0.0411 0.9039 ± 0.0431

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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never trained. Our future research direction is to provide a more rigorous and detailed theoretical analysis to 

understanding why our method performs well. The proposed method can be extended to multi-channel com-

plex data for parallel imaging, with suitable modifications to the sampling pattern and learning network. This is 

our ongoing research topic. In practice, owing to the large size of input data available for deep learning, we may 

face ‘out of memory’ problem. Indeed, we experienced out of memory problem when using input images of size 

512 × 512, with a four GPU (NVIDIA GTX-1080, 8GB) system. This memory limitation problem was the pri-

mary reason to use 256 × 256 images, which were obtained by resizing 512 × 512 images. It is possible to develop 

more efficient and effective learning procedures for out of memory problem.
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Appendix A. Minimum-norm solution of the underdetermined system

The minimum-norm solution of the underdetermined system S ◦Fy = x  in Remark 2.1 is the solution of 

following optimization problem: Minimize ‖y‖ℓ2 subject to the constraint S ◦Fy = x . This underdetermined 

system has infinitely many solutions. For example, the following images are solutions of S ◦Fy = x  where x is 

an undersampled data with a reduction factor of 3.37.

The first image is the minimum-norm solution, i.e.

This minimum-norm solution is improperly chosen; it does not look like a head MRI images. Then, can we deal 

with the complicated constraint problem: Solve S ◦Fy = x  subject to the constraint that y looks like a head 

MRI image? It seems to be very difficult to express this constraint in classical logic formalisms.

Appendix B. Performance of the proposed method with different reduction factors

We tested the proposed method with different reduction factors from R  =  3.37 to R  =  5.81. We performed two 

experiments by varying two factors ρ and L, where ρ denotes the uniform subsampling rate along the phase 

encoding direction (vertical direction) and L denotes the number of low frequency phase encoding lines to be 

added in our subsampling strategy.

In figure B1, we fix L  =  12 and vary ρ from ρ = 4 to ρ = 8. The proposed method provides the good recon-

struction image, even if ρ is large (ρ = 8). See the last row in figure B1.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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In figure B2, we fix ρ = 4 and vary L from L  =  0 to L  =  12. In the case when the L  =  0, the separability condi-

tion is violated and the proposed method fails (as shown in the first row of figure B2). When L  =  1, our network 

starts to learn unfolding, dramatically. The proposed method with L  =  12 provides excellent reconstruction 

capability.

Figure B1. In this experiment, we fix L  =  12 and vary ρ : ρ = 1, 4, 5, 6, 8.

Phys. Med. Biol. 63 (2018) 135007 (15pp)
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Appendix C. The reconstruction process

This appendix presents the reconstruction process intuitively using a simplified version of the U-net See figure 

C1, C2 and C3 for the detailed reconstruction process.

Figure B2. In this experiment, we fix ρ = 4 and vary L : L = 0, 1, 6, 8, 12.
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Figure C1. Reconstruction process (part 1).
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Figure C2. Reconstruction process (part 2).
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