
Deep Learning for Understanding
Satellite Imagery: An Experimental
Survey
Sharada Prasanna Mohanty 1*, Jakub Czakon 2, Kamil A. Kaczmarek 2,3, Andrzej Pyskir 4,

Piotr Tarasiewicz 4, Saket Kunwar 5, Janick Rohrbach 6, Dave Luo 7, Manjunath Prasad 8,

Sascha Fleer 8, Jan Philip Göpfert 8, Akshat Tandon 8, Guillaume Mollard 1, Nikhil Rayaprolu 9*,

Marcel Salathe 1* and Malte Schilling 8

1Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2neptune.ml, Warsaw, Poland, 3Warsaw University of

Technology, Warsaw, Poland, 4deepsense.ai, Warsaw, Poland, 5Centre for Natural Resources Management, Analysis, Training

and Policy Research (NARMA), Kathmandu, Nepal, 6Zurich University of Applied Sciences, Zürich, Switzerland, 7Anthropocene

Labs, New York, NY, United States, 8Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld,

Germany, 9International Institute of Information Technology Hyderabad, Hyderabad, India

Translating satellite imagery into maps requires intensive effort and time, especially leading

to inaccurate maps of the affected regions during disaster and conflict. The combination of

availability of recent datasets and advances in computer vision made through deep

learning paved the way toward automated satellite image translation. To facilitate

research in this direction, we introduce the Satellite Imagery Competition using a

modified SpaceNet dataset. Participants had to come up with different segmentation

models to detect positions of buildings on satellite images. In this work, we present five

approaches based on improvements of U-Net and Mask R-Convolutional Neuronal

Networks models, coupled with unique training adaptations using boosting algorithms,

morphological filter, Conditional Random Fields and custom losses. The good results—as

high as AP � 0.937 and AR � 0.959—from these models demonstrate the feasibility of

Deep Learning in automated satellite image annotation.
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1. INTRODUCTION

Despite substantial advances in global human well-being, the world continues to experience
humanitarian crizes and natural disasters. Long-term and reignited conflicts affect people in
many parts of the world, but often, accurate maps of the affected regions either do not exist or
are outdated by disaster or conflict. Satellite imagery is readily available to humanitarian
organizations, but translating images into maps is an intensive effort. Today, maps are produced
by specialized organizations or in volunteer events such as mapathons, where imagery is annotated
with roads, buildings, farms, rivers etc. In this work, we explore how machine learning can help pave
the way for automated analysis of satellite imagery to generate relevant and real-time maps.

Applications of the state-of-the-art results in deep learning have been increasingly accessible to
various different domains over the last few years (LeCun et al., 2015), the main reasons being the
advent of end-to-end approaches in deep learning (LeCun et al., 2015), and the access to vast
amounts of openly available data and high performance compute. The same does however not hold
true for the research community interested in satellite imagery and remote sensing. While access to
high-performance compute infrastructure has not been an inhibiting factor, access to high-resolution
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imagery still stays a major inhibiting factor to high quality AI/ML
research in satellite imagery and remote sensing.

This work builds on top of a recently released open dataset,
SpaceNet (v1) (Spacenet on aws, 2018), which in partnership with
Digital Globe, released rawmultiband satellite imagery of (as high
as) 30 cm resolution for numerous cities like Vegas, Paris,
Shanghai, Khartoum, along with the corresponding
annotations of buildings and roads. In this work, we focus on
the problem of instance segmentation on a simplified version of
the SpaceNet dataset, in order to detect buildings in different
urban settings on high resolution satellite imagery. A large-scale
competition was organized by the challenge platform crowdAI,
which released a simplified version (details in Section 3) of the
SpaceNet dataset, and attracted 55 participants and 719
submissions. In general, different architectures for image
segmentation have been proposed in the past. Mask
R-Convolutional Neuronal Networks (CNN) and U-Net type
of architectures are currently seen as state-of-the-art for such
problems. This has been further substantiated by the success of
such architectures in this competition and as well for the
application in satellite imagery. The top contestants all fall
into these two basic categories and both show that they
compete on a similar high level. Five different adaptations of
U-Net and Mask-RCNN based approaches were applied in
context of this problem and showed top performance in the
segmentation challenge. The different improvements and results
for these five approaches are outlined in this paper. The next
section will review related work with a particular focus on the
development of U-Net and Mask-RCNN types of architectures.
This will be followed by a brief description of the used dataset and
the applied evaluation metrics. Afterwards, the different methods
will be explained and presented together with accompanying
results and we will analyze the effect of the depth of the U-Net
structure on results. A brief section will provide a comparison of
the approaches followed by the conclusion.

2. RELATED WORK

Semantic segmentation deals with the task of assigning each pixel
in a given image to one of potentially multiple classes. It deals
with recognizing which objects are shown and where exactly these
are presented in the image. As such, it is a challenging task that
requires, on the one hand, to take into account the overall context
of the image and for each pixel that of the surrounding area. On
the other hand, it is required to label each pixel individually
focusing on a very fine level of detail. While approaches to
semantic segmentation have been around for a long time (see
review on more traditional approaches in Thoma (2016), or for
example, He et al. (2004), Shotton et al. (2009)), the recent success
of DeepNeural Networks in image related tasks (Krizhevsky et al.,
2012) has translated as well to the area of semantic segmentation.
Deep Neural Networks and in particular Convolutional Neuronal
Networks have revolutionized the area of image classification
during the last decade and are now the dominant approach for
image classification leading to deeper and deeper architectures
(He et al., 2016). This became possible through algorithmic

advances—as using rectified-linear units that avoid vanishing
of the gradient during training (Krizhevsky et al., 2012)—, as well
as implementing convolutional and pooling layers that had
originally been proposed long before (Fukushima, 1980). Such
approaches deal with the question of what is shown in a given
image. Using convolutional filters—that only focus on small
portions of the image and are moved over the whole
image—allows to learn subsequently more and more abstract
structures and invariances in images. Learning becomes efficient
through weight sharing and the whole network can be trained in
an end-to-end fashion. Together with pooling layers, the focus
and receptive field of each deeper layer successively broadens
until a very coarse latent space summarizes input from large
portions of the image and can be used for classification. This step-
by-step abstraction helps to resolve invariances as translations of
objects and supports classification. A drawback, however, is that
this abstraction looses resolution and fine details of structure as
needed in semantic segmentation.

While classification addresses what is shown in an image,
semantic segmentation in addition deals with where exactly
something is shown in the image. None-the-less, the
introduction of Deep Learning techniques into semantic
segmentation improved dramatically segmentation accuracy
and therefore became the predominant approach in this area
as well. This further promoted the area and the increasingly better
results lead to broad application of approaches in commercial
products.

In the following, we will review prominent developments on
semantic segmentation using Deep Neural Networks. In
particular, the focus will be on U-Net like approaches
employing forms of convolutions together with deconvolution
or upsampling as well as Mask R-CNN because in the described
challenge these kinds of approaches showed to be the best
performing ones. For a broader overview: There are different
surveys and reviews on the current state of semantic
segmentation. Lateef and Ruichek (2019) provide a systematic
and exhaustive review of different categories of approaches
employing Deep Learning techniques and presenting available
benchmarks and datasets as well as evaluation criteria. Hao et al.
(2020) put a different focus on the degree of supervision during
training. More traditional approaches are summarized in Thoma
(2016) and recent advances are briefly addressed in Atif et al.
(2019) and Minaee et al. (2020).

A crucial first architecture was given by the Fully Convolution
Network (FCN) (Long et al., 2015) that can be applied to images
of any dimension. In general, it is using a convolutional network
architecture for the first layers: blocks of convolution and max
pooling layers are applied in sequence until the image is
downsized to 1/32th of the original dimensions. While in
classification afterward fully-connected layers would be utilized
on this latent space, in FCNs class predictions are made on this
level of detail for the different small clusters. Afterwards, the
assigned labels are scaled up to its original size using a sequence of
up sampling and deconvolutional layers. While the down stream
is collecting contextual information in larger areas and for a
coarse resolution, the up stream is tasked with reconstructing
more detailed spatial information. This architecture lead to nice
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improvements on the PASCAL VOC dataset in 2012 and has in
particular the advantage that it can be trained in an end-to-end
fashion without requiring selection of features or tuning of these.
Architectures of such a type employing convolutional layers are
today the standard approach for semantic segmentation tasks
(Lateef and Ruichek, 2019).

One disadvantage, that was found in the early approaches
using DNNs for semantic segmentation, is that detailed structure
tends to get lost and fine structures in images appear washed-out.
FCN addressed this, on the one hand, by not using a very deep
architecture, which would otherwise lead to overly large receptive
fields, and, on the other hand, for the last steps they already
introduced skip connections. Skip connections provide
information from earlier layers in the processing sequence that
operate on a more fine grained resolution. The outputs of these
previous layers are used as an additional input to the later stage
that is not only getting information from the directly preceding
layer, but as well as the rerouted information from an earlier layer
through the skip connections. The weights of these connections
are adapted during training as well. This idea of skip connections
has been further refined in U-Net type architectures and has in
general be found to be quite effective (e.g., see Chen et al., 2018)
which used short cut connections that enhanced the results).
U-Net (Ronneberger et al., 2015) is an improvement of FCN and
constituted of a symmetric arrangement of a contractive and an
expansive path. Following a general trend toward smaller
convolutional filters, the contractive path consists of a
sequence of two 3 × 3 convolutions that is followed by a two-
by-two max pooling layer. The expansive path is symmetric, but
up-convolutions replace the max pooling layers. Importantly,
corresponding layers of both paths are connected by skip
connections (see Figure 5). These provide detailed
information for the upscaling layer that has the same
resolution as required for the output of that layer in the
expansive path. U-Net provides a simple architecture that has
become very popular as it can be implemented quite efficiently
and the introduction of local information on every level of detail
lead to much improved results. Many further architectures were
built following a general U-Net or encoder-decoder like structure.
For example, exchanging the different blocks of processing
(convolutions and pooling layers) with refined and further
improved blocks. Drozdzal et al. (2016) introduced residual
blocks that added further skip connections inside each block
as residual connections. This, in general, allows for deeper
networks and better training which showed in their results as
well. As a further step, Jégou et al. (2017) applied two dense blocks
in each of the streams that both consist of multiple stacked
layers—of convolutions—that are connected by residual
connections and the information from all the layers inside that
block is aggregated through skip-like connections at the output of
a block. As a result, the output of each block contains low level as
well as high level features at different resolution. This provided
further state-of-the-art results.

In general, downsampling in the down stream—the
concatenation of convolutions and pooling operation—aims at
increasing the receptive field and taking more context into
account as required for classification. But this increase comes

with a reduced spatial resolution. As an alternative, dilated
convolutions (Yu and Koltun, 2015) as well increase the
receptive field without reducing spatial resolution. In dilated
(or atrous) convolutions, a convolutional filter is build, but in
this case the subsequent entries of the filter are not applied to
subsequent entries in the input, but only every l-th entry of the
input is processed with l being the dilation factor that represents
space between entries in a filter. This increases the size of the
receptive field dramatically (over multiple layers it increases
exponentially) and still can be implemented reasonably
efficient as sparse convolutions. As a result, such layers allow
to derive contextual information at multiple scales without losing
resolution (Yu and Koltun, 2015). Already the initial approach
showed state-of-the-art performance. As one disadvantage,
dilated convolutions tend to produce gridding artifacts that
stem from the systematic structure of the constructed filters.
Further improvements used spatial pyramid pooling modules, as
for example in DeepLab (Chen et al., 2018a) or DeepLabv3+ in
which this is complemented by a simple decoder module (Chen
et al., 2018b). As an alternative, recently, FastFCN was developed
(Wu et al., 2019). As processing dilated convolutions requires
quite some memory and time, this approach started from FCN
including recent improvements, but ultimately replaced dilated
convolutions in the expansive path by Joint Pyramid Upsampling.
This showed to be more efficient and still produced good results.

While one advantage of the earlier proposed deep
architectures was the possibility to train these in an end-to-
end fashion, other approaches used additional pre- and post-
processing. DeepLab (Chen et al., 2018a) applied Conditional
Random Fields (CRF) (Krähenbühl and Koltun, 2012) in a post-
processing step which in their case produced better outlines of
objects in semantic segmentation. CRFs had been applied in the
past as a post-processing step that takes contextual information
nicely into account and leads to more coherent labels. CRFs have
been tested in one approach in the here described challenge, but it
was found that such an explicit step can become unnecessary and
appeared not helpful when sufficient detail was already trained
into the Deep Neural Network (which is in agreement with other
findings). Others have successfully integrated CRFs (Zheng et al.,
2015) into training of the whole system as these tend to produce
quite good results close to object boundaries.

Regional proposal based methods follow a different type of
approach that has shown success in the past as well as in the
results presented in this paper. Faster R-CNN (Ren et al., 2015)
and Mask R-CNN (He et al., 2017) are examples of this type of
architecture. These kind of approaches consist of multiple stages.
First, regions of the input image are identified and bounding
boxes for possible objects are proposed. In Faster R-CNN (Ren
et al., 2015) a region proposal network was introduced as a form
of a fully convolutional network. Secondly, features are extracted
for each of these bounding boxes. In Faster R-CNN this was
realized quite efficiently as both stages can share features that are
detected using convolutional layers. In Mask R-CNN a third step
is applied, in which—in the same way as in a FCN—the extracted
features are not used for classification for the object in that
bounding box, but instead are used for detailed pixel-wise
prediction of class labels.
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For a more detailed overview see Lateef and Ruichek (2019)
and Minaee et al. (2020).

3. DATASET

The dataset used in this work was derived from the SpaceNet
dataset (Spacenet on aws, 2018). It provides a good dataset for
comparing learning approaches on remote sensing data (for a
comparable dataset see Castillo-Navarro et al. (2019)). Instead
of considering all the channels in the multiband imagery from
the SpaceNet dataset, we only focus on the RGB channels (for an
example of an approach exploiting as well spectral information
see Ben Hamida et al. (2017)). The decision to exclude
information from non-RGB channels helps create an
alternate version of the SpaceNet dataset, which makes the
problem easy and accessible to researchers in Deep Learning,
who may or may not be very familiar with the tools used by the
Remote Sensing community to manipulate the multiband
imagery, and are usually more familiar with simple RGB
images which are extensively utilized in Deep Learning
research. Moreover, when considering only the RGB
channels, the problem becomes a direct parallel of very
popular instance segmentation tasks commonly studied in
Deep Learning research. At the same time, given the
flexibility of most of the approaches in Deep Learning, if we
demonstrate that we can get good results using just the RGB
channels, extending the same approach to a multi channel signal
provides us with better results. The dataset consists of a training
set of 280,741 images, validation set of 60,317 images and test set
of 60,697 images.a (See Fig. 1)

4. EVALUATION METRICS

The evaluation was principally based on the Intersection of Union
(IoU) between the predicted mask and the ground truth.

For a known ground truth mask A, a predicted mask B, we first
compute IoU (Intersection Over Union):

IoU(A,B) �
A∩B

A∪B

IoU measures the overall overlap between the true region and the
proposed region.

Then we consider a True detection, when there is at least half
an overlap (or IoU ≥ 0.5).

We can then define the following parameters (TP - true
positive prediction, FP - false positive, FN - false negative):

• Precision (IoU ≥ 0.5)

PIoU ≥ 0.5 �
TPIoU ≥ 0.5

TPIoU ≥ 0.5 + FPIoU ≥ 0.5

• Recall (IoU ≥ 0.5)

RIoU ≥ 0.5 �
TPIoU ≥ 0.5

TPIoU ≥ 0.5 + FNIoU ≥ 0.5

The final scoring parameters

APIoU ≥ 0.5

(average precision) and

ARIoU ≥ 0.5

(average recall) are computed by averaging over all the precision
and recall values for all known annotations in the ground truth.

5. INSTANCE SEGMENTATION USING
CUSTOMIZED U-NET

As a first approach, we propose a two stage solution. The first stage is
a neural network stage based on a U-Net (Ronneberger et al., 2015)
followed by a post-processing stage using gradient boosting (Ke
et al., 2017). Figure 2 presents the entire U-Net based pipeline,
which takes raw RGB images along with some previously calculated
meta-data as input, and predicts the instance segmentation masks.

(1) CustomizedU-Net basedNeural Network: Inspired by Iglovikov
et al. 2018, we experimented with U-Net with Resnet34,
Resnet101 (He et al., 2016) and Resnet152 as an encoder,
and the best results were obtained in the case of Resnet101.

(2) Loss Design: From the initial experiments, we quickly
recognized the importance of closely placed buildings, and
the tendency of the initial networks to group closely placed
buildings as a single instance. The models also struggled with
small instances (buildings with a small area in the image), but
are equally important for the final evaluation metric (as the
metric treats all instances equally when computing the
Average Precision and Recall). There were many such
cases, where an instance annotation was represented by
barely a few pixels, as these were annotations from a
building which was overflowing from the adjacent tile, and
had only a small part of the building visible (and annotated) in
the current tile. In order to be robust to these issues, we have
designed a custom loss function by introducing two weighting
factors (see Figure 3 for the visualization of weighting factors).
The first factor puts a higher weight on pixels that are close to
other buildings, and second factor puts a higher weight to
pixels that belong to small objects. Equation 1 represents the
loss function used in this approach.

Let:

• x predictions from U-Net,
• y be ground truth,
• Lossce be Cross Entropy Loss,
• Lossdice be Dice Loss,
• Wce be weight assigned to Cross Entropy Loss,
• Wdice be weight assigned to Dice Loss,

aThe individual training, validation and test sets are available at: https://www.
aicrowd.com/challenges/mapping-challenge/dataset_files
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• Wd be distance (to the two closest instances) weights,
• Ws be size weights.

Then W � Wd ·Ws is pixel weight and loss function has following

definition:

Loss(x, y) � W ·Wce · Lossce +Wdice · Lossdice (1)

It is the sum of two losses, Cross Entropy Loss and Dice Loss, each
weighted by real number picked form R

[0,1]. The Cross Entropy
Loss component is additionally weighted with the pixel weight
(computed as a dot product of both the distance weight and the
size weight) to penalize mis-classifications on pixels belonging to
the small objects and closely located instances. This lets us jointly
optimize the models ability to distinguish between two closely
located buildings, and also the model’s ability to segment out
smaller instances. Figure 3 shows a visualization of the individual
pixel weight components used in the custom loss function. These
custom adaptations to the Loss Functions significantly improved
the performance of our model.

(3) Training Scheme: The following multi-stage training scheme
along with pre-trained models (as available in PyTorchb) as
starting points is used for better results (for both Average

Precision and Average Recall):

(1) Initialize the model with pre-trained weights,
(2) Train on a 50,000 tile subset from the training set with

learning rate � 10− 4 and dice weight � 0.5,
(3) Train on the full dataset with learning rate � 10− 4 and

dice weight � 0.5,
(4) Train with a (reduced) learning rate � 10− 5 and dice

weight � 0.5,
(5) Train with 10 fold increase in the dice weight (5.0) to

make the final predictions smoother.

(4) Pre Processing

• For each pixel: compute distances to the two closest
instances are calculated to create the distance map that
is used for weighing the loss function.

• Size mask for each image is produced, that encoding the
information about object size.

• small masks on the edges of the image were dropped.
(5) Post Processing:

• Test time augmentation: Made predictions on image
rotations (90–180–270°) and flips (up-down, left-right)
and use the geometric mean of the predictions as the
final result.

• Second level model. We finally used Gradient Boosting
to train a separate model using Light-GBM on the first
stage output for computing the final prediction masks.

Our final performance on the held-out test set was an
APIoU ≥ 0.5 of 0.938, and a ARIoU ≥ 0.5 of 0.946. Figure 4, shows
examples of some predictions made by the trained model.

6. FAST LEARNINGS FOR FAST MAPPING
USING U-NET

In this section, we approach the problem by reframing it as a
binary semantic segmentation task. To summarize, we
preprocessed ground truth labels into binary masks, trained
with a 1-cycle learning rate schedule on a U-Net (Ronneberger
et al., 2015) inspired architecture with an ImageNet-pretrained
ResNeXt50 (Xie et al., 2016) encoder, and post-processed the
probability maps into polygonized building footprint instances.

We recognized upfront that the main evaluation metric being
average precision at 0.5 IoU meant that “good enough”
predictions of masks that overlap each true building by greater
than 50% wasmore important than obtaining the highest possible
pixel-wise accuracy. We also kept in mind that buildings are at
different scales and the smallest or portions of buildings like those
cut off at the borders of an image chip would be most challenging
to perform well on. These considerations factored into our
decision to use a U-Net architecture with a custom loss
function that works well at multiple scales and balances pixel-
wise with global IoU cost optimization.

In addition to the overall objectives, we also had the goal of
refining our model development process to work best with fast,
lightweight models and rapid experimentation on small datasets.

FIGURE 1 | Sample images from the Mapping Challenge Dataset showing the top-down view of satellite imagery.

bopen source framework, available here: https://pytorch.org/
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These criteria are equally important to on-the-field planet-
monitoring work where models need to be versatile in
production and robust to highly diverse datasets and use cases.

We learned quickly that experiments on the full dataset would
take 1 day per experiment due to the large size of the training (260k
images) and test set (60k images). Therefore, our experimentation
process emphasized doing many rapid and comparable iterations
using downsized and small samples of the full dataset to minimize
training time per experiment. We used a smaller sample set of the
data (6k train, 1.5k val, 1.8k test) and confirmed that training and
local evaluation on this sample set correlated well with
performance on the full train and test sets. Using this smaller
sample reduced training time from 2–3 h/epoch to 3–5 min/epoch.
While the 40× speed-up helped significantly, a single experiment
could still take 1.5 h or more (training to 30 epochs).

Further reducing time per experiment at the expense of lower
accuracy, we downsized images to 64×64, 128×128, and 256×256
and benchmarked performance at each size (i.e., number of
epochs to reach a certain loss/metric, best score at end of
training, epochs to converge). With downsized, smaller
samples and their corresponding benchmarks, we could test
new ideas as quickly as 7 min per experiment (64×64 images
trained for 30 epochs) and consistently compare new
experimental results against each other. The most promising
experimental settings were then benchmarked on the full
training data and evaluated against the held out test set. We
also visually inspected predictions against ground truth regularly
and made qualitative notes about common failure cases.

For experimentation, we used one remote GPU instance
(Nvidia Quadro P6000 with 24 GB of GPU memory), PyTorch
0.3 with the Fast.ai library, and Anaconda Jupyter notebooks to
run experiments and document results.

6.1. Pre Processing
Pre Processing training data consisted of reflect-padding images to
320×320 which helped increase the visible area of buildings cut off at
the sides and corners of each tile. Polygon ground truth labels were
converted to binary pixel masks without any other modifications.
The data was augmented with random vertical/horizontal flips, 90 ±
4° rotations, and slight image brightness and contrast changes.

Seen in Figure 5, the model architecture used is U-Net
inspired with an ImageNet-pretrained ResNeXt50 encoder
(weights from the PyTorch/Fast.ai library). Key characteristics
include extracting features at the end of each pretrained ResNeXt
block, convolutions within the cross-connections at each feature
map size (160, 80, 40, 20, 10) which halves the number of
channels, and upsampling using Transpose2D (deconvolution).

6.2. Training
The loss function is an equally weighted combination of binary
cross-entropy loss and soft dice loss which empirically produced
better results than either loss alone.

We trained the model with 1-cycle learning rate and cyclical
learning rate schedules which was first introduced in Leslie
Smith’s research on faster neural network training with very

FIGURE 2 | Schematic overview of the U-Net pipeline used in the first

approach (Section 5). Nodes denote computational steps, arrows denote

data flow. Please refer to Table 1 for description of each node.
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high learning rates (Leslie and Topin, 2017). In recent practical
experience, 1-cycle learning was successfully employed by the
Fast.ai team in Stanford’

™
s DAWNBench competition (Stanford

DAWNBench, 2018) to achieve the fastest and cheapest methods
in training CIFAR-10 and ImageNet classification models to
performance benchmarks (Howard, 2018). 1-cycle training
functionality is implemented directly in Fast.ai library and its
experimental usage is well documented by the team (Gugger,
2017b).

With a batch size of 32 and an optimizer of Stochastic
Gradient Descent with momentum, we first warmed up the
model by training the un-pretrained decoder layers for 1
epoch at a learning rate of 6. Then we unfreezed all
weights and started 1-cycle training for 20 epochs as seen
in Figure 6 with a learning rate of 0.15, linearly increased it to
6 by 45% through training, linearly decreased it back to 0.15
by 90% through training, and decayed the learning rate to
0.0015 in the last 10% of training. Momentum was scaled

FIGURE 3 | Each row represents a randomly sampled tile from the dataset. The 1st column shows the input RGB image. The 2nd column shows the ground truth

mask. The 3rd column visualizes the pixel-wise weight computed from the (inverse of) distance of a pixel to the two nearest buildings; high values corresponds to pixels

between nearby buildings. The 4th column visualizes the pixel-wize weight computed from the (inverse of) size of an instance; high values denote small buildings (the

smaller the building the darker the color). Note, that the background is fixed to black for both the weight component visualizations.

TABLE 1 | Experiment results for the U-Net adaptation using Fast Learnings for Fast Mapping (Section 6).

No. of

epochs

Training time

(h)

Accuracy Dice score Average precision Average recall

1 cycle only 20 38 99.22 98.25 91.74 92.19

1 cycle and cyclical learning rate × 2 40 76 99.36 98.56 91.76 92.86
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inversely to learning rate changes over the same schedule.
Figures 7 and 8

After 20 epochs with this 1-cycle learning schedule, we trained
for two more 10-epoch cycles with a cyclical learning rate
schedule (lr � 0.05 to 1 back to 0.05 over each cycle).

Other key model training techniques employed (available out-
of-box through Fast.ai library) include gradient clipping to
minimize risk of gradient explosion, a learning rate finder
utility to select the highest possible learning rate without
divergence up front (Smith, 2017; Gugger, 2017a) and
discriminative fine-tuning (Howard and Ruder, 2018) to train
earlier layers at smaller learning rates than later layers.

6.3. Post Processing
For inference, we performed 8× test-time augmentation (every
possible flip and 90° rotation) and took the geometric mean of
all eight outputs to create the probability map. We used a
probability threshold to create binary masks, labeled each

separated mask as building footprint instances, and
converted to polygon submission format. We filtered out
very small areas (less than 15 pixel2) during polygonizing to
reduce false positives. We calculated the confidence score of
each building instance as the average pixel-wise probability
value over the area of each instance.

As reported inTable 2, our final performance on the held-out test
set was anAPIoU ≥ 0.5 of 0.918, and aARIoU ≥ 0.5 of 0.929, with amodel
trained for 40 epochs total: 1-cycle for 20 epochs, 2 × 10 epochs with
cyclical learning rate. After just 1-cycle training for 20 epochs, our
average precision/recall was already close to best at 0.917 and 0.922.
It is worth considering if the extra 20 epochs is worth the
performance gain or if a single 1-cycle schedule should be used
for 40 epochs instead to achieve even better results.

Toward our external objective to develop fast, lightweight
models that achieve top-5 performance, our model training
time was 1.6 days (1.9 h/epoch × 20 epochs) and an additional
1.6 days for the extra 20 epochs that may not have been necessary.

FIGURE 4 | Each row represents a randomly sampled tile from the validation set; the 1st column shows the input RGB image; the 2nd column shows themodel’™s

prediction; and the 3rd column is constructed as the model’™s prediction superimposed on the input image; finally the 4th column shows the ground truth

superimposed on the input image.
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Inference took 0.5 h per test time augmentation run to go through
full held out test set.

7. INSTANCE SEGMENTATION USING
DEEPER U-NETS

0U-Net, as also referenced in Section 5, is an encoder-decoder
network for semantic segmentation, which has its origins in
medical image segmentation. The model generates a mask for
the whole image. This mask then needs to be split into individual
sub-masks for the separate buildings.

The model architecture used in this approach, is shown in
Figure 9. The left half of the network (encoder) is similar to a
CNN, tasked with coming up with a low dimensional dense
representation of the input, and the right side (decoder) then
up-samples the learned feature representations to the same
shape as the input. The shortcut connections let information
flow from the encoder to the decoder and help the network
keeping spatial information. As the work of Li et al. (2017) has
impressively shown, U-Nets benefit greatly from a deeper
model architecture. It allows the model to make much more
detailed segmentations. Particularly near the object borders
the predictions of a deeper U-Net tend to be more accurate. We
used a deep U-Net architecture which was first proposed by
Giannakopoulos (2017).

The inputs are zero padded to a size of 512 × 512 in order to
have an image size where 2 × 2 Max Pooling can be performed
multiple times without having to deal with odd image sizes.
Symmetric padding would have been another option instead of

zero padding. The training images are crops of a larger satellite
image. As mentioned in the previous sections, the smallest, and
the most difficult objects to predict are the ones which are
overflowing objects from an adjacent tile. A symmetric
padding would increase the area of those buildings.

For the loss function, dice-loss is combined with binary cross
entropy.

L � BinaryCrossEntropy + DiceLoss

� −∑
i�1

n

ytruei · log(ypredi) + 1 −
2
∣∣∣∣∣ypred∩ytrue

∣∣∣∣∣∣∣∣∣∣ypred
∣∣∣∣∣ +

∣∣∣∣∣ytrue
∣∣∣∣∣

(2)

The model was trained from scratch for 215 epochs using
RMSprop with a learning rate of 0.0001. The training took
roughly 5.5 h per epoch on a single Nvidia TITAN Xp GPU.
Because of the long training duration, no image augmentation
was used. Interestingly the model did not start to overfit, even
though no dropout is used. This is likely due to the large
training size. The learning curves are displayed in Figure 10.
Notice that the IoU shown in this figure, is calculated on the
pixel level and therefore, not the same as IoU in the overall
evaluation metric.

The model produces a probability estimate for every pixel for
being an object of interest (building). A threshold of 0.5 was used,
and pixel probabilities greater than 0.5 would classify a pixel as a
building. The produced masks were already well separated and
were easily transformed to single building masks by giving groups
of pixels connected with other groups of pixels a different label.
After this step masks with less than 25 pixels were deleted. This
removes little artifacts that should not be counted as buildings. A

FIGURE 5 | Architecture sketch for the U-Net inspired model using a ResNeXt50 encoder as described in Section 6.
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good drop off pixel threshold was empirically computed by
looking at the distribution of the areas of the small objects in
the dataset. Then we calculate the bounding boxes for every
building mask. The building masks and the bounding boxes
finally form the final predictions.

Our final performance on the held-out test set was an
APIoU ≥ 0.5 of 0.930, and a ARIoU ≥ 0.5 of 0.956.

Figure 11 shows a prediction using the Deeper U-Nets, for a
sample image from the validation set.

The generated masks are very accurate and it is expected,
that the model would also perform well on other categories
such as roads, trees, crops, rivers and lakes. This could make
todays Mapathons, where volunteers draw maps from satellite
images, completely obsolete. Instead of days or even weeks,
maps could be generated in just a few hours from satellite
imagery or drone footage. This is crucial for emergency
preparedness actors who go to remote areas where no maps
exist. Up-to-date maps help them to work efficiently in a crisis
situation such as an earthquake.

As the work of Li et al. (2017) has impressively shown, U-Nets
benefit greatly from a deeper model architecture. It allows the
model to make much more detailed segmentations. Particularly
near the object borders the predictions of a deeper U-Net tend to
be more accurate.

8. COMPARING AN ADAPTED U-NET
ARCHITECTURE FOR VARYING DEPTHS

In this section, we are analyzing and comparing a U-Net like
structure (Ronneberger et al., 2015) for different depths. The
architecture was derived originally from a convolutional
AutoEncoder structure as used for reconstructing images (see,
for an example the keras tutorial Chollet (2015)). This
AutoEncoder-type architecture was modified for semantic
segmentation: the provided ground truth annotations of the
buildings were used as targets for training in order to
accomplish the detection of buildings. Furthermore, skip-
connections were introduced as found in U-Net that connect
encoding and decoding blocks on the same level. These
connections help to recover spatial information and in our
experiments this provided better reconstruction of details in
images compared to post-processing, for example, using
conditional random fields (Krähenbühl and Koltun, 2012).
This architecture differs from U-Net, first, with respect to the
sequence inside the decoding blocks. Following the AutoEncoder
approach, the decoder block mimics exactly the encoder block

FIGURE 6 | The 1-cycle schedule for learning rate and momentum over

training time (as described in Section 6).

FIGURE 7 | Learning curves from experiments for the U-Net adaptation

using Fast Learnings for Fast Mapping (as described in Section 6).
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and consists of a single convolution followed by upsampling
(max-pooling is used in the encoder block). Second, we used a
single convolution of size 5 × 5. This architecture was used for
different depth (stacked blocks of encoders and decoders).

In the first part, we speak about the applied pre- and post-
processing of the data-set. Secondly, we introduce our designed
network architecture in Section 8.3 and explain our training
procedure. In Section 8.5, results are presented that compare
variations of our architecture. The results are then summarized
and discussed in Section 10.

8.1. Pre-processing
We normalize each input image individually by subtracting its
mean and dividing by its standard deviation.

For early tests we resized the images down from 300 × 300
pixels to 128 × 128 pixels, in order to avoid long training times.
For our final models, we ultimately used the full resolution so as
not to lose any detail.

8.2. Post-processing
For each of the 300 × 300 pixels in an input image, the networks
yields a pseudo-probability between 0 and 1, where low values
correspond to background (i.e., no building) and high values
correspond to foreground (i.e., building).

We binarized these values by setting a threshold θ and
assigning 1 if the value is bigger than the threshold θ and 0
otherwise.

To address noise in the background we perform a
morphological opening (as provided by OpenCV Bradski,
2000) with a radius of 1, that is an erosion (which chooses the
minimum value of a neighborhood) followed by a dilation (which
chooses the maximum value). This also helps separate closely
connected buildings.

In the initial experiments, we tried to apply CRF for post-
processing (Krähenbühl and Koltun, 2012), as those have been
successfully used for semantic segmentation before. In CRF,
the output values are made dependent directly on
characteristics in the input image, such as edges. Efficient
inference on fully-connected CRF models leads to much
finer structure in the output. While in many applications
this allows recognition of small details, it did not help us in
our use case of detecting buildings in aerial images. In fact, the

FIGURE 8 | Example outputs from probability map to polygonized prediction compared with the ground truth (Fast Learnings for Fast Mapping, Section 6).

TABLE 2 | An overview of experimental results: Shown is performance of the

different architectures when using different loss functions during training (for

the adapted U-Net architecture, Section 8).

Net. Config. Loss Avg. Precision (IoU) Avg. Recall (IoU)

Net6 Binary 0.814 0.891

Net6 Binary + dice 0.828 0.899

Net8 Binary 0.878 0.919

Net8 Binary + dice 0.889 0.925

Net10 Binary 0.899 0.932

Net10 Binary + dice 0.888 0.924

Net12 Binary 0.911 0.941

Net12 Binary + dice 0.912 0.942
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FIGURE 9 | Architecture of the Deeper U-Net model (described in Section 7).

FIGURE 10 | Learning curves showing loss and IoU over training time for the Deeper U-Net model (Section 7).
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results were worse when applying CRF. After looking closely at
the dataset, we noticed that the desired output maps do not
contain particularly fine structures, but are instead fairly
regular and in most cases contain rectangular buildings.

Aerial images, by contrast, contain fine details (e.g., created
by shadows), which a CRF-based post-processing tries to
integrate. This seemed to damage the overall performance
in our case. Instead, for post-processing, it proved to be

FIGURE 11 | Comparing constructed masks, drawn by a human (A) and predicted by the Deeper U-Net model (B).

FIGURE 12 | Figure 15: Schematic representation of our U-Net-based network architecture (Net10): A sequence of encoding blocks (in blue) on the left and a

corresponding sequence of decoding blocks (in green) on the right, with skip connections (dashed arrows) between them. Inside each block, we indicate the size of the

internal representation at that stage. We show the setup of all encoding and decoding blocks at the bottom. (Comparing an adapted U-Net architecture for Varying

Depths).
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more important to establish the general structure of buildings,
which meant filling in small holes inside of larger areas that
have been recognized as a building and which might appear as
a result, for example, from occlusion.

8.3. Network Architecture
Our network consists of a series of encoding blocks, followed by
as many decoding blocks (see Figure 12). We tried networks with
6, 8, 10, and 12, which we refer to as Net6, Net8, Net10,
and Net12, respectively. The deeper the network, i.e. the more
blocks it contains, the better it performs. For this particular work,
our best evaluated results were from Net12.

The composition of individual blocks always follows the same
structure:

• Encoding blocks consist of a 5 × 5 convolution layer
(padded with a stride of 1 × 1) with an increasing
number of 64, 128, 192, 256, and 320 filters, followed
by a Rectified Linear Unit. The resulting features are then
normalized using batch normalization (Ioffe and
Szegedy, 2015), and downsampled by a 2 × 2 max
pooling operation.

• Decoding blocks are symmetric to the encoding blocks, also
using a 5 × 5 convolution (padded with a stride of 1 × 1),
followed by a Rectified Linear Unit, batch normalization
and a 2 × 2 upsampling operation, where the low
dimensional features of the previous layer are resized.
Additionally, a dropout layer (Srivastava et al., 2014),
omitting 30% of the neurons, is added in the decoding
blocks.

Additionally, we integrate skip connections (Ronneberger
et al., 2015). For this, the outputs of corresponding (see
Figure 12) encoding and decoding blocks are concatenated
and fed as inputs to the next block. The introduction of skip
connections improved results greatly, even during our initial
experiments with the downsampled data. In particular, skip
connections helped bringing out more detailed structures of
buildings.

Our approach is similar to Segnet (Badrinarayanan et al.,
2015) which is also using block-wise encoders and decoders,
as well as upsampling on the decoder side. In contrast to our
approach, they are always applying multiple convolutions, but of
a smaller size. In addition, during decoding, the convolutions are
applied before the upsampling step. Furthermore, in SegNet, the
indices of the max-pooling layer are used during upsampling,
while in our approach, information flows using the skip
connections, much like U-Net.

As the overall goal was the detection of buildings within the
input images, we set up the network as a binary classifier.
Therefore, after the last convolution, we use a sigmoid
activation function, to obtain pixel-wise pseudo-probabilities,
as discussed above.

In order to match input and output size after downsampling
and upsampling, we use zero padding and cropping padding
when necessary.

8.4. Training
For the implementation and training of our approach, we used
keras (Chollet, 2015) while using tensorflow (Abadi et al.,
2016) as the backend framework for training our models on
multiple GPUs. The same procedure was followed to train
different network configurations Net6, Net8, Net10, and Net12
that differ in depth. The task for all the variations of the
architecture was to map the 3-channel training data to the
corresponding 1-channel ground truth annotation. We
adopted the ADAM (Kingma and Ba, 2014) optimizer with
the default settings: beta_1 of value 0.9 and beta_2 of value
0.999 using mini-batch gradient descent. For the network
configuration Net6, Net8, and Net10, the initial learning
rate was set to α � 10− 3. At every training-step t, the
learning rate was decayed according to α←α · (1 + δα · t)

− 1

with a decay rate of δα � 5 × 10− 5. For Net12 the learning
rate was also set to an initial value of α � 10− 3, but no decay
was applied. The batch size was varied as 32 or 64 based on the
network configuration with the maximum utilization of 2 ×

NVIDIA Tesla p100 or 2 × GeForce GTX 1080 Ti GPUs
respectively. The replicated network’s weights were merged
on the local CPU on end of each epoch.

For the first 50 epochs all networks were trained using the
binary cross-entropy. For further refinement, the networks were
trained for 10 additional epochs with the dice coefficient loss
(Milletari et al., 2016).

Using the setup that was described in this section, the average
training time for each network Net6, Net8, Net10, and Net12 took
about 2.2 days.

As we considered this challenge as a binary classification
problem (buildings and non-building classes), the binary
cross-entropy will be defined as

L � −yt logyp − (1 − yt)log(1 − yp),

where yt is the target and yp the predicted class.

8.5. Experiments and Results
The four in this section presented network architectures of
varying depths were trained on the provided dataset according

TABLE 3 | Precision and recall per epoch at detection (NMS THRESHOLD � 0.5

for the full validation set).

Epoch Average precision Average recall

1 0.8989 0.9240

2 0.9020 0.9274

3 0.9137 0.9381

4 0.9233 0.9443

5 0.9350 0.9514

6 0.9359 0.9528

7 0.9367 0.9546

8 0.9370 0.9554

8 (TTA) 0.9374 0.9574

(0.4 Thres)

8 (TTA) 0.9438 0.961

(0.5 Thres)
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to the training procedure described in Section 8.4. To find the
optimal parameters, the threshold (θ) value was varied from 0.2 to
0.95 with respective squared shape morphology kernel size (k)
between 0 and 5. Even though the pixel-wise accuracy was high
because of the dominating background class, the mis-classified
pixels lead to decrease in precision and recall.

An overview of the final results are reported in Table 3 with
morphology for dilation and erosion set to 1. In the table,
evaluation results are shown as scored on the official test data
set for all networks of varying depths.

The network configurations Net6, Net8, Net10, and Net12 are
evaluated with θ � 0.5. The listed results in Table 3 show that the
precision of the network was improved when the number of used
encoding and decoding blocks is increased. This might indicate
that a further improvement of the precision in the detection of
buildings can be achieved by again enlarging the network
architecture with more blocks.

The additional training with the dice coefficient did only
slightly enhance the performance of the networks Net6, Net8
and Net12, but not in the case of Net10.

FIGURE 13 | Mask R-CNN stages with modifications introduced for the Mapping challenge (see Section 9 for detailed explanation of architecture and

modifications).
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As reported in Table 3, our final performance on the held-out
test set was an APIoU ≥ 0.5 of 0.912, and a ARIoU ≥ 0.5 of 0.942.

9. INSTANCE SEGMENTATION USING
MASK R-CONVOLUTIONAL NEURONAL
NETWORKS

In this section, we explore the use of Mask R-CNN, a two-stage
object detection architecture to detect a single class (buildings).
Here, we consider Mask R-CNN in contrast to U-Net based
approaches, as an IoU threshold of 0.5, helps to not warrant the
high semantic accuracy that U-Net based pixel classification
approaches provide. On the other hand single stage object
detection architectures such as SSD (Liu et al., 2016), simply
learn bounding box regression and its class probabilities. They
have faster inference times, but Mask R-CNN has consistently
shown better accuracies, and includes semantic output.

Mask R-CNN builds up on the Regional Proposal Networks as
proposed in Faster RCNN (Ren et al., 2015). This first stage
proposal network (illustrated in Figure 13) selects the regions of
interest from a pre-determined set of anchors, and feature-maps

from a bottom-up Resnet-101 backbone (He et al., 2016), and a
top-down feature pyramid network (Lin et al., 2017). It matches
Anchors of different sizes and aspect ratios, computed from a set
of scales, to objects in an image. For implementing the
modifications upon Mask R-CNN, we start off with open
source implementation of Mask R-CNN (Matterport, Abdulla,
2017).

For the task of instance segmentation on satellite imagery, we
considered anchor scales of 8, 16, 32, 64, 128. We considered
smaller anchor sizes as the dataset had a significantly higher
distribution of “small” instances, and at the same time the input
images had a maximum size of 300×300 pixels. The distribution
of instances in the training and the validation set includes 60% of
the instances were medium sized instances (area between 1,024
and 9,216 pixel2), and 37% instances were small instances (area
less than 1,024 pixel2). 19% of the total annotations had an area
less than 256 pixel2 (in many cases � 16%, because of tile borders
intersecting the edges of the buildings). The changed anchor size
ensures that the regional proposal network appropriates anchors
suitable, specifically for small objects. A montage containing the
generated anchors, refined anchors with small deltas, ground
truth, and prediction for an image is shown in Figure 14.

FIGURE 14 | Intermediate anchor generation from region proposals and final mask predictions from the detection stage for the Mask R-CNN approach.
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The second stage of detection in Mask R-CNN, RoIAlign, a
novel feature introduced inMask R-CNN aligns the feature-maps
from first stage to the input image, resulting in better localization
of output masks.

Mask R-CNN implementation creates a placeholder for the
ground-truth masks that can consume a large amount of
memory. Up-sampling the image, will create a placeholder
for masks with the up-sampled dimension. Instead changing
the stride as mentioned, means lesser memory requirements. At
the same time, with the reduction in down-sampling, the overall
compute overhead increases. On an Amazon AWS P3 instance
(p3.2xlarge), which uses a single Nvidia V100 T GPUwith 16 Gb
GPU memory, an epoch with a batch size of 4, takes roughly
16 h.

In the Mask R-CNN implementation, negative anchors out of
the ROIs, are assigned when IoU is less than 0.3 and positive
when IoU is greater than or equal to 0.7, compared to the ground-

truth boxes. To generate targets for Stage 2 classifier and mask
heads, without using the RPN head, the default implementation
uses 0.5 threshold to distinguish between negative ROIs and
positive ROIs. Assigning negative values to ROIs with IoU of
0.1–0.5, ensures that there is some minimum intersection with
the ground truth. ROIs that have less than 0.1 IoU are discarded.
Doing so introduces hard example mining, as even to form
negative samples, there is some minimal intersection criteria.
We padded the images by 10 pixel on each side to create the final
input image of 320×320 pixels. Padding ensures that at the border
there are more valid anchors available to select the best matching
ROIs, including the elongated instances that have a small width or
height.

One potential avenue to improve small object detection is to
use dilation (Yu and Koltun, 2015), which enlarges the
receptive field without losing resolution, and so can provide
a context for detecting small buildings. We set the dilation rate

TABLE 4 | Overview and comparison of results for each model.

Metric Model 1 Model 2 Model 3 Model 4 Model 5

(AP) @[ IoU � 0.50:0.95 — area � all — maxDets � 100 ] 0.839 0.720 0.799 0.679 0.665

(AP) @[ IoU � 0.50 — area � all — maxDets � 100 ] 0.930 0.900 0.938 0.889 0.937

(AP) @[ IoU � 0.75 — area � all — maxDets � 100 ] 0.886 0.780 0.865 0.752 0.817

(AP) @[ IoU � 0.50:0.95 — area � small — maxDets � 100 ] 0.662 0.441 0.560 0.398 0.501

(AP) @[ IoU � 0.50:0.95 — area � medium — maxDets � 100 ] 0.959 0.897 0.924 0.860 0.741

(AP) @[ IoU � 0.50:0.95 — area � large — maxDets � 100 ] 0.943 0.923 0.965 0.911 0.752

(AR) @[ IoU � 0.50:0.95 — area � all — maxDets � 1 ] 0.109 0.094 0.113 0.090 0.094

(AR) @[ IoU � 0.50:0.95 — area � all — maxDets � 10 ] 0.750 0.678 0.709 0.650 0.608

(AR) @[ IoU � 0.50:0.95 — area � all — maxDets � 100 ] 0.905 0.810 0.819 0.773 0.722

(AR) @[ IoU � 0.50:0.95 — area � small — maxDets � 100 ] 0.776 0.588 0.601 0.541 0.599

(AR) @[ IoU � 0.50:0.95 — area � medium — maxDets � 100 ] 0.982 0.940 0.946 0.908 0.794

AR) @[ IoU � 0.50:0.95 — area � large — maxDets � 100 ] 0.980 0.970 0.978 0.963 0.819

Model 1 - Instance segmentation using Deeper U-Net (Section 7); Model 2 - Instance Segmentation using Mask R-CNN (Section 9); Model 3 - Adapted U-Net architecture of Varying

Depths (Section 8); Model 4 - Fast Learnings for Fast Mapping Using U-Net (Section 6); Model 5 - Instance Segmentation Using Customized U-Net (Section 5).

FIGURE 15 | Comparison of precision and recall for different object sizes when using the Mask R-CNN approach detailed in Section 9.
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to 2 on all combination of stages in the Resnet backbone. This is
a dataset for a single object detection, so discriminative
information from context could not perhaps be as useful but
providing the context, in general, is a valuable means in
detecting small objects.

To train on the Mapping Challenge Dataset, we used the pre-
trained model (trained on MS COCO dataset) to initialize the
Mask R-CNN network. Then we used the Mapping Challenge
Dataset to train the model for eight epochs, as shown in Table 4.
Epoch 1 to 4 minimized the loss using Stochastic Gradient

FIGURE 16 | Inference results of each model on a few sample images: Model 1 - Instance segmentation using Deeper U-Net (Section 7); Model 2 - Instance

Segmentation using Mask R-CNN (Section 9); Model 3 - Adapted U-Net architecture of Varying Depths (Section 8); Model 4 - Fast Learnings for Fast Mapping Using

U-Net (Section 6); Model 5 - Instance Segmentation Using Customized U-Net (Section 5).
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Descent, at a learning rate of 0.001 and Epoch 5 to 7 used learning
rate of 0.0001. On epoch 8, we used half the samples to train at a
learning rate of 0.0001 but the other half used learning rate of
1e − 5. We also applied an augmentation of horizontal flip and a
vertical flip during training.

Epoch 2 to 4 were trained on a smaller subset of the training
set, obtained by filtering the dataset so that at least one object of
area less than 256 pixel2 appeared in any given image. Medium
and large objects already had high precision and recall at epoch 1,
as shown in Figure 15.

Nevertheless, We can see in Figure 15 that from epoch 1 to
epoch 8 small object precision improved from 0.706 to 0.82
while medium object improved marginally from 0.9857 to
0.9874. An explanation can be attributed to the fact that the
smallest anchor scale used for the MS COCO dataset was 32,
while in ours, the smaller anchor scale of 8. While the
hierarchical representation learned by the ResNet backbone
on the COCO dataset, especially in the bottom layers were
useful, the Mask R-CNN model had not seen many small
object samples, so the whole pipeline required more training to
be as effective for the smaller objects. Weights trained from
samples with mask loss weight set to 10 was also kept as part of
the final model. A straightforward approach that might result
in a better model would be to train for four epochs with a
learning rate of 0.001, another 4 with a learning rate of 0.0001
and 1 epoch with learning rate of 1e − 5, with no sub-setting
and with no changes to mask loss weights. At validation and
test time, predictions from the annotated images, flipped
vertically and horizontally is merged with the regular
prediction. Then non-max-suppression is applied to obtain
the final prediction annotation.

The multi-task loss in Mask R-CNN includes loss from the
region proposal stage and the detection stage. The regional
proposal loss consists of, class loss, for positive and negative
ROIs and associated bounding box loss. The detection stage
consists of, object class loss, bounding box loss and mask loss.
Weighting a particular loss can affect its contribution to the
overall loss. In this implementation, we increased the weight of
the mask loss by 10 folds, near the end of training, for better
semantic segmentation.

Our final performance on the held-out test set was an
APIoU ≥ 0.5 of 0.937, and a ARIoU ≥ 0.5 of 0.959.

10. CONCLUSION

In this work, we explore different flavors of U-Net and Mask
R-CNN on a task of instance segmentation on high resolution
satellite imagery to detect buildings. The dataset used, was a
derivative of the SpaceNet (Spacenet on aws, 2018) dataset, and
was post processed to enhance ease of accessibility for a broader
set of Deep Learning researchers who may or may not be familiar
with the handling and manipulation of raw satellite imagery. The
evaluation metric used for all the experiments was designed to
incentivize loose segmentation (an IoU ≥ 0.5 was considered a
correct detection) of buildings of various shapes and sizes.

In the previous sections, four U-Net implementations were
presented, each coming with its own specificities, and one Mask
R-CNN approach, which was finally found to be the best
performing model. A comparison of some example results for
all these different architectures is shown in Figure 16 and detailed
results on a test data set are given in Table 5.

The task presented two major difficulties arising from the
evaluation metric choice: the designed model had to detect small
instances as effectively as larger ones, and had to distinguish thin
separation areas between closely located buildings. The first U-Net
approach, presented in Section 5, relied on a custom weighted loss
function to alleviate these difficulties, penalizing more
misclassification of pixels located on small instances or in the
separation areas of two close buildings. At testing time, several
images were generated by rotating and flipping the original ones, and
a gradient-boosting algorithm—Light-GBM—was used to construct
the final prediction mask, based on the aggregated U-Net outputs.
Although this approach allowed to reach high performance scores
(APIoU ≥ 0.5 of 0.938, ARIoU ≥ 0.5 of 0.946), another U-Net approach,
presented in Section 7, achieves similar scores without performing
any data augmentation, introducing custom weight coefficients in
the loss, nor using boosting algorithm on top of the results. The new
U-Net proposed was however modified to become one layer deeper
compared to the original U-Net implementation, which increased

TABLE 5 | Explanation of computational steps of the U-Net pipeline (see Figure 2).

Step name Description

Input RGB images of 300 × 300 pixels

Specs Meta-data that serves as second input file

xy_inference Step that extracts all paths to the input data form the meta-data

tta_generator Step that prepares test time augmentation (tta) routines

Loader PyTorch loaders, that compute batches of data

Unet Neural network that is being trained

tta_aggregator Step that aggregates tta results

prediction_renamed Trivial step that change input names

mask_resize Step that resizes masks from 256×256 to (original) size 300×300

category_mapper Step that assigns class to the mask

mask_erosion Step that performs masks erosion

Labeler Step that applies label to instances

mask_dilation Step that performs masks dilation

score_builder Step that calculates scores needed for the submission purposes

Output Output from the pipeline with all masks
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the training time needed. One approach that originated from an
auto-encoder-like structure systematically analyzed the influence of
the depth of a U-Net like architecture in Section 8. It further
investigated additional improvements on top of the auto-encoder
network as the use of some image processing tools, like the
morphological opening filter and CRF. Deeper U-Nets showed to
further improve the performance, but not only is training time
increasing, but the impact grew smaller. This might be further
enhanced through introducing data augmentation as done in the
first approach and which might become more important with a
growing number of layers and parameters. In Section 6, another
U-Net is presented, applying other adaptations during training: it
was trained following customized learning rate and momentum
schedules, allowing to reduce the time needed to train the model
until convergence. Both these two U-Net approaches allowed to
reach high scores similar to the ones that were attained with the two
approaches presented first. Finally, the best performing model is the
one presented in Section 9, which proposes an implementation of
Mask R-CNN to solve the segmentation task. To improve detection
of small instances, the anchor sizes were lowered compared to the
original implementation. This model, once trained, reached a
APIoU ≥ 0.5 of 0.937, and a ARIoU ≥ 0.5 of 0.959.

All the approaches presented in this paper were found to be
efficient ways of solving the building segmentation task proposed
on satellite images. Interestingly, each approach came with its
own adaptations, and the scores attained by the different
proposed models reached similar APIoU ≥ 0.5 and ARIoU ≥ 0.5 scores.
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