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Abstract—This is the pre-acceptance version, to read the final
version please go to IEEE Geoscience and Remote Sensing
Magazine on IEEE Xplore. Owing to effective and flexible
data acquisition, unmanned aerial vehicle (UAV) has recently
become a hotspot across the fields of computer vision (CV)
and remote sensing (RS). Inspired by recent success of deep
learning (DL), many advanced object detection and tracking
approaches have been widely applied to various UAV-related
tasks, such as environmental monitoring, precision agriculture,
traffic management. This paper provides a comprehensive survey
on the research progress and prospects of DL-based UAV object
detection and tracking methods. More specifically, we first outline
the challenges, statistics of existing methods, and provide solu-
tions from the perspectives of DL-based models in three research
topics: object detection from the image, object detection from the
video, and object tracking from the video. Open datasets related
to UAV-dominated object detection and tracking are exhausted,
and four benchmark datasets are employed for performance eval-
uation using some state-of-the-art methods. Finally, prospects and
considerations for the future work are discussed and summarized.
It is expected that this survey can facilitate those researchers who
come from remote sensing field with an overview of DL-based
UAV object detection and tracking methods, along with some
thoughts on their further developments.

Index Terms—Deep learning, object detection, object tracking,
remote sensing, unmanned aerial vehicle, video.

I. INTRODUCTION

OBJECT detection and tracking, as an important research
topic in the field of remote sensing, has been widely

investigated and applied to various civil and military tasks,
such as environmental monitoring, geological hazard detec-
tion, precision agriculture, and urban planning. Traditional
object acquisition methods derive mainly from satellites and
manned aircraft. Normally, the two types of platforms run on
a fixed rail or follow a predetermined path, or temporarily
change the running route and hover according to a commis-
sioned task, e.g., city planning and mapping, or performing
object observation in a harsh and inhospitable environment,
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Fig. 1. A complex urban scenario for UAV object detection and tracking.
For simplicity, only bounding boxes and class names for certain objects are
drawn in the imagery.

e.g., remote sensing in the cryosphere. However, the cost of
satellites and manned aircraft, and the potential safety issues of
pilots inevitably limit the application scope of such platforms.

With the development of microelectronic software and hard-
ware, navigation and communication technology renewal, and
breakthroughs in materials and energy technology, unmanned
aerial vehicle (UAV) platform already an international research
hotspot in remote sensing has rapidly emerged. A UAV remote
sensing system is a high-tech combination of science and
technology integrated UAVs, remote sensing, global position-
ing system (GPS) positioning, and inertial measurement unit
(IMU) attitude determination means. It is a dedicated remote
sensing system with the goal of obtaining low-altitude high-
resolution remote sensing images. Compared with traditional
platforms, UAV makes up for information loss caused by
weather, time, and other limitations. In addition, the high
mobility of UAVs enables it to flexibly collect video data
without geographic restriction. These data, either in contents
or time, are extremely informative, and thus object detection
and tracking have entered the era of mass UAV [1]–[3],
which has played an increasingly important role in land cover
mapping [4], [5], smart agriculture [6], [7], smart city [8],
traffic monitoring [9], and disaster monitoring [10], among
other topics.

As one of the fundamental computer vision problems, object
detection and tracking employ classic, i.e., statistically-based,
methods [11], [12]. However, today’s massive quantities of
data impact the performance of these traditional methods,
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Fig. 2. Partial statistical analysis results of light and small UAVs currently
in use.

which poses a problem for feature dimension explosion,
yielding higher storage space and time costs. Owing to the
emergence of deep neural network (DL) techniques [13]–
[15], hierarchical feature representations with enough sample
data can be learned with deep and complex networks. Since
2015, the deep neural network has become a mainstream
framework used for UAV object detection and tracking [16],
[17]. Fig. 1 shows an example of object detection and tracking
in an urban areas with UAV remote sensing. Classic deep
neural networks are divided into two major categories: two-
stage and one-stage networks. Among them, the two-stage
networks, such as RCNN [18], Fast RCNN [19], and Faster
RCNN [20], first need to generate a region proposal (RP),
and then classify and locate candidate regions. A series of
work [21]–[23] has demonstrated that a two-stage network is
suitable for applications with higher detection accuracy. A one-
stage network, such as SSD [24] and YOLO [16], [25], [26],
directly generates class probability and coordinate position,
and is faster than a two-stage network. Similarly, there are
some faster light weight networks, such as mobilenet SSD
[27], YOLOv3 [28], ESPnet v2 [29], etc. Therefore, one-stage
and faster light weight networks are the final winners for
UAV remote sensing practical applications with high-speed
requirements. But for low-resolution data, it fails to produce
good results without preprocessing images or modifying the
classic neural network structure.

This paper focuses on UAV with a maximum take-off weight
of fewer than 30 kilograms, and provides a comprehensive
review of deep learning (DL)-based UAV object detection
and tracking methods by summarizing the latest published
work, discussing the key issues and difficult problems, and
delineating areas of future development.

The remainder of this paper is organized as follows. Section
II briefly summarizes the statistics of UAV aircraft and related
publications. Section VI describes the existing UAV-based
remote sensing datasets. Section III-V reviews the existing
DL-based work closely related to UAV-based object detection
and tracking for the three sub-branches. Section VIII discusses
conclusions.

II. RELATED SURVEYS AND BRIEF STATISTICS

A. UAV Aircraft Statistics

Fig. 2 shows the classification of UAVs in present use
through statistical analysis. From the perspective of power
supply, battery power is used more often than fuel power;
for the aerodynamic shape, multi-rotor is more common than
fixed-wing; for the weight of the aircraft, the majority is
under 30 kilograms, which is considered small light UAV;
and the flight time for most UAVs is less than 1 hour. The
quantitative analysis results show that small light UAVs have
become the main type used for study and application, and have
more market weight. In addition, the “Small light UAV remote
sensing development report” published in 2016 [30] shows that
China has more than 3,000 professional small light UAVs for
remote sensing applications. This type of UAV exhibits the
following five main characteristics.

1) Long flight time. As new energy technology, energy
management technology, and lightweight composite material
research technology have developed, UAV flight time has been
continuously extended.

2) Low comprehensive cost and high technical content. On
the one hand, the use of low-cost and lightweight materials
reduces the production cost of UAV and remote sensors.
On the other hand, the increase of mass users promotes the
mass production of components and structural parts, further
reducing the production cost of UAV and remote sensors.

3) Small, light-weight, diversified remote sensing cameras.
All remote sensing loads on small light UAVs are developed
to below 30 kilograms, and optical and infrared loads are
even reduced to less than a half kilogram. In addition, multi-
angle photography, tilt photography, sensor integration, hy-
perspectral imaging interference [31], and other technologies
have been used in UAV remote sensing. Commercial high-
end cameras have been widely used for professional aerial
missions, and popular cameras are used for mass entertainment
and general applications.

4) Real-time data transmission. Advances in wireless com-
munication and information compression technology have
powerfully impelled image resolution with a higher data rate
and longer transmission distance. Almost no-delay data link
transmission makes real-time observation possible.

B. Challenges

Object detection and tracking tasks in the UAV remote
sensing video face many challenges, such as image degrada-
tion, uneven object intensity, small object size, and real-time
problems like perspective specificity, background complexity,
scale, and direction diversity problems in satellite and manned
aircraft objects.

• Image degradation problem. The load that a mini-UAV
platform carries is strictly limited in terms of weight, vol-
ume, and power. Rapid movement changes in the external
environment (such as light, cloud, fog, rain, etc.) cause
aerial images to be fuzzy and noisy, which inevitably
leads to image degradation [32]. In addition, high-speed
flight or camera rotation also increases the complexity of
object detection. Thus, it is necessary to carry out image
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pre-processing, such as noise reduction, camera distortion
correction, etc., to ensure the effectiveness of the object
detection model.

• Uneven object intensity problem. The image acquisition
equipment of a UAV typically uses a large aperture, fixed
focal, and wide-angle lens. In addition, flexible camera
movement results in an uneven density of captured ob-
jects. Some of them are densely arranged and overlap
many times, so that it is easy to repeat detection. Some
are sparse and unevenly distributed, so that it is prone to
missed detection. In addition, most objects occupy a small
number of pixels, which makes it difficult to separate
them from their surroundings.

• Object size problem. UAV remote sensing images can
be acquired at different altitudes, yielding photographs
containing any size of ground objects. This challenges the
classical DL-based method. In addition, ground objects
in UAV remote sensing are primarily shown as images
with an area smaller than 32 × 32 pixels. MS COCO
dataset [33] defines small objects due to their less distinct
features, yielding more false and missed detection targets.

• Real-time problem. Object detection or tracking in a
video obtained by a drone needs to quickly and accurately
locate moving ground objects, so real-time processing
performance is highly essential.

C. Contribution
Up to now, reviews concerning object detection and tracking

from airborne and spaceborne datasets can be found [34],
[35]. For UAV data, several representative surveys have been
published in the literature, which include surveys on the UAV
image processing and application [36], [37], the UAV system
[38]. However, less attention has been paid to the advance
of object and tracking techniques both in image and video
acquired by UAV. Although reviews in [39]–[44] present some
DL-based static object detection for UAV image and the one in
[45] presents traditional object tracking for UAV video, there
still lacks a complete survey for object and tracking and the
most recent advances.

Therefore, it is imperative to provide a comprehensive
survey of DL-based object detection and tracking for UAV
data, focusing on static object detection (SOD), video ob-
ject detection (VID), and multiple object tracking (MOT).
In the following discussion, we limit this review to DL-
based methods based on corresponding publications. We hope
that this survey will provide readers and practitioners with
instructive information. Fig. 3 shows the typical DL-based
learning mode for these three research topics. For the choice
of the DL method, SOD object detection focuses on detection
head design to assign positive and negative samples, such
as RPN+ ROI Pooling in Faster RCNN, detection outputs
is classification and bounding box. VID and MOT are about
UAV video data and the difference between them is how to
use temporal information. The former focuses on modifying
the missed detection results of the current frame by using
temporal context in adjacent frames, while the latter focuses
on predicting the trajectory in the next frame to obtain the
moving state of objects.
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Fig. 3. An illustration of three UAV topics based on deep learning methods.

III. OBJECT DETECTION FROM UAV-BORNE IMAGES

Although deep learning-based object detection methods
for UAV remote sensing images are mainly borrowed from
traditional digital images in the computer vision community,
the limitation of small UAV platform and imaging acquisition
condition inevitably causes problems of particularity perspec-
tive, complex background, scale and direction diversity, and
issues related to small sizes. In the following, some solutions
based on DL methods have been summarized according to
recent publications. Fig. 6 shows the development of typical
methods for SOD. Among them, some methods specially
designed for UAV data are listed in Table. I. Other methods
that can solve the above problem, but not specifically for
UAV data, are briefly introduced in the text. The remainder
of this section introduces DL-based SOD methods to solve
five representative problems, including data processing, scale
diversity, small objects, direction diversity and detection speed.

A. Data Processing

Two types of data processing are typically applied prepro-
cessing before data acquisition and postprocessing after data
acquisition.

The latter is more commonly used in DL-based techniques.
Most of the existing UAV-based remote sensing works present
an experimental dataset and appropriate data processing tech-
niques [46]–[48], and all of them carry out image postprocess-
ing procedure after image acquisition, such as increasing the
number of training samples, enlarging the diversity of sample
size and direction, and expanding the illumination change of
samples. However, their effectiveness is variable.

Due to the limitation of UAV flight altitude and load, there is
inevitably ground object overlapping, coverage, and displace-
ment. Xia et al. [49] took optical cameras as an example,
focusing on various difficulties and problems in the process
of UAV remote sensing data acquisition, and systematically
discussed the key techniques of data processing.

B. Object Detection on Scale Diversity

UAV remote sensing images can be acquired at differ-
ent altitudes and ground objects can be any size, even for
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intraclass. Therefore, solutions to scale diversity are cross-
referenced in this review. There are two main approaches
to solving this problem through deep learning, as illustrated
in Fig. 5(a). The most commonly used is the multi-scale
feature map [23], which is the output of multiple filters on
multiple feature maps (MFM) or multiple filters on a single
feature map (SFM) [22], [24], [50]–[59]. The other is a
dilated/deformable convolution kernel [60]–[63]. It points out
that systematic expansion supports the exponential expansion
of the receptive field without loss of resolution or coverage.

Chen et al. [60] introduced an extended convolution filter to
obtain the ResNeXt-d combination structure on the basis of
ResNeXt [64] architecture, which can expand the receptive
field.

C. Object Detection on Small Objects

The UAV flying altitude inevitably causes most objects
to be shown in scale diversity, small object size and dense
arrangement, resulting in less feature information that can be
extracted. Many work deal with the small object detection
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TABLE I
DL-BASED STATIC OBJECT DETECTION APPROACHES FOR UAV EXCLUSIVE

Static Object Detection
Reference Challenge Dataset Used Journal/Conf. Year Code.link
RRNet [53] Small objects, scale variation VisDrone ICCV Workshops 2019 https://github.com/ouc-ocean-group/RRNet
SlimYOLOv3 [65] Real-time Visdrone ICCV 2019 https://github.com/PengyiZhang/SlimYOLOv3.
Zhang et al [62] Small objects VisDrone ICCV Workshops 2019 -
FS-SSD [66] Small objects Stanford Drone IEEE TCSVT 2019 -
SAMFR [67] Scale variation Visdrone ICCV Workshop 2019 -
ClusDet [57] Scale variation VisDrone, UAVDT ICCV 2019 https://github.com/fyangneil
CenterNet [58] Scale variation VisDrone - 2019 -
Yang et al [59] Scale variation Stanford Drone IEEE Access 2019 -
Wu et al [68] Real-time CARPK DDCLS 2019 -
NDFT [69] UAV-specific nuisances VisDrone, UAVDT ICCV 2019 https://github.com/VITA-Group/UAV-NDFT
MSOA-Net [56] Scale variation UVSD Remote Sens. 2020 -
GDF-Net [61] Scale variation VisDrone, UAVDT Remote Sens. 2020 -
HRDNet [70] Scale variation VisDrone CVPR 2020 -
D-A-FS SSD [63] [63] Scale variation VisDrone ICIT 2020 -
UAV-YOLO [16] Small scale UAV123, Own Sensors 2020 -
SyNet [71] Class imbalance VisDrone ICPR 2020 https://github.com/mertalbaba/SyNet
ComNet [72] Blurred edges, low contrast Own IEEE TGRS 2020 -
MPFPN [73] Small objects VisDrone IEEE Access 2020 -
D2Det [74], Localization, classification UAVDT CVPR 2020 https://github.com/JialeCao001/D2Det.
DAGN [75] Small objects VEDAI IEEE GRSL 2020 -
GANet [76] Small objects UAVDT, CARPK, PUCPR+ MM 2020 https://isrc.iscas.ac.cn/gitlab/research/ganet
DAN [77] Dense distribution, small object Visdrone-det NCC 2020 -
Zhang et al [78] Real-time Stanford drone Neurocomputing 2020 -
DNOD Eifficientdet [79] Dense objects,small objects Visdrone-DET, UAVDT Neurocomputing 2021 -
ECascade-RCNN [54] Scale variation VisDrone ICARA 2021 -
Cas RCNN+FPN [80] Cost Visdrone Transp. Res. Rec. 2021 -
DSYolov3 [55] Scale variation VisDrone, UAVDT J. Vis. Commun. Image Represent. 2021 -
DSHNet [81] Long-tail distribution VisDrone, UAVDT WACV 2021 https://github.com/we1pingyu/DSHNet

problem through the same network designing for scale diver-
sity, including RRNet [53], HRDNet [70], Cascade network
[62], UAV-YOLO [16], MPFPN [73], depthwise-separable
attention-guided network (DAGN) [75], GANet [76], and FS-
SSD [66], ResNeXt-d [60], et al. In these methods, accurate
feature information learned by small objects is highly impor-
tant. In addition, some new networks are based on YOLOv4
or Eifficientdet-D7 networks, e.g., DNOD [79], which are
developed to improve the detection speed.

To further improve the distinguish ability of small objects,
Li et al. [82] proposed a perceptual GAN to generate a
super-resolved representation of small objects. This method
uses the structural correlativity of large and small objects to
enhance the representation of small objects and give them
a similar expression to large objects. Hu et al. [83] found
that the structure of small objects after pooling was typically
distorted, and proposed a new context-aware region of interest
(ROI) pooling method. Chen et al. [60] proposed an ResNeXt-
d combination structure to enhance the perception of small
size objects. There are other methods, including changing the
anchor information, or cropping multiple subset tiles from
the original high-resolution images, to improve the detection
performance of small and dense object. Jadhav et al. [77]
modified the anchor scale and Tang et al. [84] designed a
coarse anchor-free detector (CPEN) to address dense small
object detection. In [85]–[87], the authors proposed effective
solutions to small object detection from high-resolution images
by cropping multiple subset tiles from the original high-
resolution images, and learning them through use of a CNN
network without degrading the resolution.

Alternately, the flexible movement of the camera results in
an uneven density of captured objects. Tightly packed objects
in an image, especially smaller size ground objects, inevitably
overlap. Mekhalfi et al. [88] introduced Capsnets to model the
relationship between objects.

D. Object Detection on Direction Diversity

Objection direction from an optical remote sensing image
is related to its actual parking location. The classic CNNs,
which benefit from using a rectangular convolution kernel, are
sensitive to object direction. Fig. 5(b) shows four commonly
used solutions based on deep learning.

The simplest and most common solution is data augmenta-
tion, which can make CNNs rotation-invariant though rotation
transformation of different angles to extend the training set
[22], [89], [90]. Cheng et al. [89] added regularization con-
straints on the basis of existing CNN architecture to build
a rotation-invariant CNN (RICNN). With further researches,
Fisher discriminative CNN related rotation-invariant network,
called RIFD-CNN, have been proposed to further boost object
detection performance [91], [92]. Laptev et al. [90] added a
rotation-invariant pool operator to the penultimate layer of
output. The shortcoming of data augmentation is the increased
cost of network training and the risk of over fitting.

Some work directly used additional network modules such
as oriented proposal boxes to achieve object detection [93],
[94], or upgraded the general convolutional filter to a direc-
tional channel filter to achieve rotation invariant of texture
[95]. The region proposal network (RPN) [96]–[98] added
to the anchor boxed with multiple angles in order to cover
the oriented object. Additionally, inspired by text detection
methods [99]–[102], Xia et al. [103] designed a direction
insensitive FR-O network by adding a direction box detec-
tion sub-network to Faster RCNN. Li et al. [104] proposed
RADet to acquire a rotation bounding box with a shape mask.
However, the drawback of additional network modules is that
the transform parameter estimation is non-adaptive.

Approaches like, Oriented Response Networks (ORNs)
[105], Polar Transformer Network (PTN) [106], and Equivari-
ant Transformer Networks (ETNs) [107], which were proposed

https://github.com/ouc-ocean-group/RRNet
https://github.com/PengyiZhang/SlimYOLOv3.
https://github.com/fyangneil
https://github.com/VITA-Group/UAV-NDFT
https://github.com/mertalbaba/SyNet
https://github.com/JialeCao001/D2Det.
https://isrc.iscas.ac.cn/gitlab/research/ganet
https://github.com/we1pingyu/DSHNet
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for object detection from natural scenes, also provided a
qualitative or qualitative analysis of rotation invariant features.
On the basis of these techniques, Zhou et al. [108] devel-
oped a rotated feature network (RFN) using encoder–encoder
architecture for object detection in remote-sensing images.
It is worth mentioning that some rotation-invariant methods
based on theoretical analysis can cover the intrinsic properties
of rotations [109], [110] to extract real rotation- invariant
features. Up to now, these methods have have not been widely
used in deep learning.

E. Object Detection on Detection Speed

Limited by flight stability and the load capacity of a micro-
mini UAV, the altitude of an airborne remote sensing sensor
needs to be adjusted quickly and accurately in real time so
that ground objects are always in the monitoring field of
vision. Meanwhile, rapid processing and analysis of high-
quality remote sensing images obtained by a UAV system in
real time is the key for miniature UAV remote sensing.

When considering all the deep learning methods, the most
direct way is to choose the right platform, including an ARM,
mobile, and embedded platform, or to trim up the classic
network architecture to minimize unnecessary channels in the
convolutional layer. In [68], [85], [86], the authors adopted
a YOLO and even a tiny-YOLO network to achieve real-
time object detection. Zhang et al. [65] trimmed the update
YOLOv3, and proposed slimYOLOv3, which balanced the
number of parameters, memory usage, and inference time
to achieve real-time object detection. [78], [87] modified the
feature resolution of the lightweight Pelee network [111] to
meet real-time needs. Due to the efficiency and power of
YOLOv4, many object detection models [44], [112] are based
on this network. Ammar et al. [44] used YOLOv3 and newly
released YOLOv4 to detect vehicles with inference processing
speed from 12 fps for 608× 608 up to 23 fps for 320× 320.
Furthermore, Wang et al. [113] designed a Strip Bottleneck
with YOLO network (SPB-YOLO) based on YOLOv5 for
engineering application.

In addition, real-time object detection from images is also
a necessary condition for detection-based object detection and
object tracking from videos, which will be discussed in Section
IV and V, respectively.

F. Object Detection on Others

Besides the aforementioned main challenges, other prob-
lems in object detection in UAV images are addressed, such as
Nuisance Disentangled Feature Transform (NDFT) [69] for a
large number of fine-grained domains, D2Det [74] for precise
localization and accurate classification, combinational neural
network (ComNet) [72] for blurred edges and low contrast, an
ensemble network (SyNet) [71] for class imbalance problem
and the scaling problem, and Dual Sampler and Head detection
Network (DSHNet) for long-tail distribution.

IV. OBJECT DETECTION FROM UAV-BORNE VIDEO

Video object detection (VID) becomes a hot topic after
ImageNet VID challenge 2015. It is widely used on UAV

data until 2017, and also brings some new challenges, e.g.,
camera change and motion blur in a drone platforms. In
the following, some solutions based on DL methods are
summarized according to recent publications. Fig. 6 shows
the development of typical methods for VID. Among them,
methods specially designed for UAV data are listed in Table
II. Other methods that can solve the above problem, but not
specifically for UAV data, are described in the text.

The main steps of VID are summarized below.

• Single frame image object detection: Static object detec-
tion or object detection from images. Each frame in the
video is an independent image, and the object detection
from the image can be achieved by using a method in
Section III.

• Detection results amendment: The above missed detection
results are compensated by temporal information and
context information of the video.

The early mainstream method for VID is a multi-stage
pipeline method, such as tubeless with convolutional neural
network (TCNN) [122], [123] and sequence non-maximum
suppression (Seq-NMS) [124], which is object detection from
each frame where the modified detection results using a
temporal context are performed separately. With the depth
of research, many approaches have started to cast VID as
a classic object detection problem. For example, a network
model of feature enhancement module integration called SSD
with comprehensive feature enhancement (CFE-SSDv2) [125]
has been proposed to improve the accuracy of small size
VID. F-SSD [114], based on SSD and FCOS, improved the
robustness of the model through decision fusion of each frame
detection result. EODST [126], based on SSD, adopted ECO
tracking methods to associate object detection from a single
frame. Similarly, benefiting from some advanced detectors,
like HRDet [127], Cascade R-CNN [128], CenterNet [129],
RetinaNet [130], and FPN [131], statistical convolutional
neural network (SCNN) [115], several networks specifically
developed for VID have been proposed. Some literature focus
on the performance and real-time of these networks, so as to
develop them on mobile [117] or embedded systems [116].
However, these methods are difficult to cover the context
information for video. Although there are some methods to
integrate Spatio-temporal information, e.g., Spatio-temporal
neural network built on STDnet (STDnet-ST) [121], the prob-
lems of missed and false inspection still persist.

The remainder of this section introduces three mainstream
DL-based VID methods, including optical flow-based network,
memory network-based network and tracking-based network,
which integrate temporal context information into the DL-
based methods to yield a better detection performance of VID
and correct false alarms and missed detection.

A. Optical Flow-based Network

In order to build the relationship between consecutive
frames, some researchers estimate motion information. The
most commonly used motion estimation method is optical
flow.
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TABLE II
DL-BASED VIDEO OBJECT DETECTION APPROACHES FOR UAV EXCLUSIVE

Video Object Detection
Reference Challenge Dataset Used Journal/Conf. Year Code.link
STCA [114] Defocus, motion blur, occlusion VisDrone-VID ICCV Workshop 2019 -
SCNN [115] Temporal and contextual correlation DAC AAAI 2019 -
Nousi et al. [116] Real-time own-recorded RCAR 2019 -
Abughalieh et al [117] Varying resolutions Own Multimed. Tools. Appl. 2019 -
Zhang et al [118] Appearance deterioration, occlusion, motion blur VisDrone-VID MIPR 2020 -
MOR-UAVNet [119] Moving object MOR-UAV MM 2020 https://visionintelligence.github.io/Datasets.html
TDFA [120] Small-scale Okutama, VisDrone-VID Multidim Syst Sign P 2021 -
STDnet-ST [121] Small object USC-GRAD-STDdb,UAVDT,VisDrone-VID PR 2021 -

[118] and [120] used the effective CNN model for optical
flow (PWC-Net) [132] method and spatial pyramid network
(SPyNet) [133] to obtain the motion information of two
neighbor frames, respectively. Zhu et al. [134] designed fusion
feature maps to achieve VID using deep feature flow (DFF)
by learning the feature maps of key frames using feature
extracting and of non-key frames using FlowNet. FlowNet
was 11.8 times faster than Mobilenet, and even the smallest
FlowNet-Xception was 1.6 times faster. The flow guided
feature aggregation (FGFA) [135] proposed by the MSRA
visual computing group is also an early attempt based on
optical flow. FGFA enhances the features of each frame by
aggregating the features of multiple frames, finally using
FlowNet to warp the features to solve video degradation. While
FGFA is helpful for medium and fast speed VID, it is less
effective for slow-speed VID. Subsequently, FGFA+ achieved
better results by merging several data expansion strategies.
Ref. [136] proposed an impression network, that can perform
multi-frame feature fusion between sparse key frames, solving
problems like defocus, motion, blur, and other issues in VID,
while balancing detection speed and accuracy. Built upon
[134], [135], Zhu et al. [137] adapted the flow network to
learn multi-frame features and estimate cross-frame motion.
Zhu et al. [138] subsequently designed a more lightweight

optical flow network on mobiles. The entire network is trained
end-to-end, reaching a mean average precision (MAP) of 60.2
in VID, and running to a speed of 25 frames on a Huawei
Mate 8 cellphone. Due to a large amount of optical flow
calculation using multiple frames, the network cannot perform
back propagation revision during the training phase.

B. Memory Networks-based Network
Since a video sequence has a strong long-term correlation,

researchers introduced a memory network to fully learn the
time information in a video sequence, such as a recurrent neu-
ral network (RNN) [139], long short-term memory (LSTM),
and gated recurrent unit (GRU).

In [140], Lu et al. proposed an association LSTM that fun-
damentally modeled object association between consecutive
frames, and prompted LSTM to supply high quality association
features. Refs. [136] and [141] both used ConvLSTM for ef-
ficient fusion of multi-frame features, improving video object
detection accuracy while ensuring timeliness. In particular,
[141] developed a new cross framework that used two feature
extractors to run on different frames to improve the robustness
of detectors. Liu et al [142] proposed an inter woven recurrent-
convolutional architecture by designing the Bottleneck-LSTM
layer to ensure real-time detection. Inspired by [137] and

https://visionintelligence.github.io/Datasets.html
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[136], Jiang et al. [143] adopted a brain-inspired memory
mechanism to design a locally weighted deformable neighbors
method for video object detection. Tripathi et al. [144] trained
RNN through the content information of adjacent frames to
optimize VID. Unlike the motion information learning of
adjacent frames, Xiao et al [145] proposed a spatio-temporal
memory network (STMN) to model and align the long-term
sequence appearance and motion dynamics of objects in an
end-to-end manner by learning multiple frames information.
Wang et al. [145] proposed a motion-aware network (MANet)
to directly learn motion information over a long period of time
by fusing multiple frame features.

C. Tracking-based Network

In view of the high similarity between VID and object
tracking in video discussed in the next section, there are
still some methods to achieve VID by means of a tracking
method [114] or to achieve object detection and tracking
at the same time [146]. [114] proposed a novel spatial and
temporal context-aware approach based on tracking for drone-
based video object detection. In [146], the authors designed
a scheduler network as a generalization of siamese trackers
determined to detect or track at a certain frame. Actually,
detection and tracking always coexist in actual scenarios.

V. MULTIPLE OBJECT TRACKING FROM UAV-BORNE
VIDEO

Multiple object tracking (MOT) for UAV video attract
increasing research interest in recent years due to the flexibility
of the camera in the drone platform. The popular DL-based
MOT methods are not usually optimal for drone video data,
due to new challenges, e.g., large viewpoint change and scales
in drone platforms. Fig. 7 shows a brief process to clarify
the differences between VID and MOT. Both VID (Section
IV) and MOT need accurate object location,and the difference
in MOT lies in predicting the trajectory in the next frame,
in order to obtain the moving state of objects. In contrast,

VID only needs to modify the detection results of the current
frame by using temporal context in adjacent frames. In the
following, DL-based solutions are summarized according to
recently published literature. Fig. 8 shows the development
of typical methods for MOT. Among them, methods specially
designed for UAV data are listed in Table III. Others methods
that can solve the above problem, but not specifically for UAV
data, are described directly in the paragraph. The remainder
of this section introduce three mainstream DL-based MOT
methods, i.e., tracking-by-detection, single object tracking
assisted method, and memory networks.

A. Tracking-by-Detection

Tracking-by-Detection (TBD) is the mainstream method
of MOT [147], [159], [164]–[167], [167], [168]. The main
steps of TBDs are to first detect all objects of interests for
the current frame, and then perform data associated with the
previous frame for tracking. This method has the virtue of
tracking newly arising objects in the whole video, but detection
accuracy has a decisive effect on tracking results. In the TBD
method, MOT is considered a data-dependent problem.

The commonly used TBD is CMOT [164], MDP [165],
SORT [169] and DSORT [77], [147], [160], GOG [166],
CEM [170], SMOT [167], and IOUT [151], [168]. For these
methods, DL is only responsible for object detection, and
traditional data-related methods are for data association. Re-
cently, many learning-based data association approaches have
been proposed. For example, Schulter et al. [171] designed an
end-to-end network to solve the association problem. Son et
al. [172] proposed a quadruplet convolutional neural network
(Quad-CNN) with learning data association across frames by
quadruplet losses. Feichtenhofer et al. [173] introduced corre-
lation features and produced data association cross frames by
linking the frame-level detection, which could simultaneously
achieve object detection and tracking. Sun et al. [127] adopted
a depth network to realize end-to-end feature extraction and
data association. Jadhav et al. [174] proposed multiple ob-
ject tracking methods by training a custom deep association
network. Zhang et al. [152] developed a UAV tracking sys-
tem, which is an integration of RetinaNet and TrackletNet
Tracker (TNT). Huang et al. [163] proposed a hierarchical
deep high-resolution network (HDHNet) to achieve an end-to-
end online MOT system. Stadler et al. [161] proposed a PAS
tracker that employs a novel similarity measure and Cascade
RCNN to make full use of object representations. Yang et al.
[154] designed dense-optical-flow-trajectory voting to measure
the similarity of objects in adjacent frames, and integrated
YOLOv3 to realize MOT.

Another way to optimize the track association is Siamese
network [175], which is a similarity measurement method that
is especially suitable for object classification when there are
more object classes but small quantities in each class. It has
been widely applied in multiple object tracking [176]–[181].
For example, LEE et al. [176] proposed an on online object
tracking using rule distillated Siamese random forest. Jin et
al. [177] proposed online MOT with Siamese network and
optical flow (Siamese-OF). Shuai et al. [178] proposed MOT
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TABLE III
DL-BASED MULTIPLE OBJECT TRACKING APPROACHES FOR UAV EXCLUSIVE

Multiple Object Tracking
Reference Challenge Dataset Used Journal/Proc. Year Code/Link
Deep SORT [147] Occlusion VisDrone-MOT ICIP 2017 https://github.com/nwojke/deep sort
SCTrack [148] Missed detection, occlusions VisDrone AVSS 2018 -
Zhou et al [149] Occlusion VisDrone-MOT Comput. Electr. Eng. 2019 -
OSIM [150] Orientation, scale UAVDT Remote Sens. 2019 -
Flow-tracker [151] ID Switches, error detection VisDrone-MOT ICCV 2019 -
TNT [152] Camera motion, occlusion, pose variation VisDrone-MOT, Own ACM-MM 2019 -
HMTT [153] Target motion, shape, appearance changes VisDrone-MOT ICCV 2019 -
Yang et al [154] Target position changes Own RS 2019 https://frank804.github.io/
GGD [155] False alarms, missed detections VisDrone-MOT ICCV 2019 https://github.com/hakanardo/ggdtrack
COMET [156] Small object UAVDT, VisDrone-MOT, Small-90 ICCV 2019 -
Self-balance [157] Appearance, motion UAVDT Multimedia Asia 2019 -
Abughalieh et al [117] Low detailed targets DARPA, VIVID, Own Multimed. Tools.Appl. 2019 -
Tracktor++ [158] Occlusions, crowded scenes VisDrone-MOT ICCV 2019 https://git.io/fjQr8
IPGAT [159] Small object, appearance unreliable UAVDT, Stanford Drone PRL 2020 -
Kapania et al [160] Real-time VisDrone-MOT AIMS 2020 -
PAS tracker [161] False detections VisDrone-MOT ECCV 2020 -
DAN [77] Dense distribution, small object VisDrone-MOT NCC 2020 -
DQN [162] Small target UAVDT Electronics 2021 -
Cas RCNN+ FPN [80] Complex background VisDrone-MOT Transp. Res. Rec. 2021 -
HDHNet [163] Small object,class imbalance VisDrone-MOT Multimed. Tools. Appl. 2021 -

with Siamese Track-RCNN. Bea et al. [179] proposed an
updated Siamese network to learn discriminative deep feature
representations for MOT. Leal-Taixé et al. [180] developed
a multi-modal MOT method by learning the local features
of RGB images and optical flow maps using a Siamese
network. Al-Shakarji et al. [148] designed a time-efficient
detection-based multi-object tracking system using a three
step cascaded data association scheme. Dike et al. [162]
proposed a quadruplet network to track prediction objects
from crowded environments. Yu et al. [157] proposed a self-
balance method integrating appearance similarity and motion
consistency. Youssef et al. [80] achieve MOT by cascade
region-based convolutional neural networks and feature pyra-
mid networks.

It should be noted that if we directly use video data acquired
by UAV during the flight for MOT, the detection result often

contain high noise, false alarm’s and missed detection due to
changes in the UAV aircraft’s motion, the inevitable ”jitter”,
and ambient light. Therefore, it is necessary to pre-process the
UAV video. In addition, Tracking-by-Detection would fail to
efficiently match when the front and back frames of the object
in the video move too fast.

B. Single Object Tracking Assisted Multiple Object Tracking

Trajectory prediction can address the failings of Tracking-
by-Detection identified above well, and the most commonly
used method is the single object tracking (SOT) assisted
method [153], [165], [182]–[185]. With significant progress
in this approach recently, SOT has been successfully applied
to complex scenes [186]–[188], but directly applying SOT to
MOT would encounter calculation inefficiency and tracking

https://github.com/nwojke/deep_sort
https://frank804.github.io/
https://github.com/hakanardo/ggdtrack
 https://git.io/fjQr8
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drift caused by occlusion. For this reason, Pan et al. [153] pro-
pose a hierarchical multi-target tracker (HMTT) incorporating
SOT and Kalman filtering to improve the MOT performance.
Li et al. [182] designed an multiple vehicle tracking approach
to effectively integrate SOT based forward position prediction
with IOUT to enhance the detection results in the association
phase. Yan et al. [183] associated detector and SOT track-
ers as candidate objects, and then candidates were selected
through an ensemble framework. Xiang et al. [165] adopted
the Markov Decision Processes (MDP) method to track objects
in a tracked state with optical flow. Chu et al. [184] treated
all detection output as SOT proposals, and designed MOT
network architecture by considering multiple objective interac-
tions, yielding a significant improvement for MOT. Ref. [189]
proposed a novel instance-aware tracker to effectively integrate
SOT in to MOT. In [190], the authors adopted a Siamese-
RPN [191] SOT tracker and re-identification (ReID) network
to extract short-term and long-term clues, respectively. Better
data association method called Switcher-aware classification
(SAC) was then proposed to improve the tracking results
while solving the offset problem. In the above methods,
the SOT tracker is independent of data association, which
raises a potential issue that the two steps do not collaborate
well to reinforce each other. To this end, Zhu et al. [192]
proposed Dual Matching Attention Networks (DMAN) to deal
with intra-class distractors and frequent interactions between
objects though integrating a unified framework by single object
ECO tracking and data association.

In addition, for real-time analysis of the SOT-assisted
method, offline-trained SOT trackers like the Siamese-RPN
can achieve high-speed accuracy of more than 80 frames per
second, while an online SOT update consumes a lot of CPU
resources.

C. Multiple Object Tracking Based on Memory Networks
Similar to the VID, MOT may judge new object status

through historical trajectory information. Therefore, it is a
feasible framework for designing a network structure that can
memorize historical information and learn matching similarity
measurement based on this historical information to enhance
the performance of MOT [193]. Among all the RNNs, the
LSTM network has shown reliable performance on many
sequence problems, and can overcome the gradient disappear-
ance and explosion problems of standard RNNs. The special
structures of LSTM enable it to remember information for
a long time. Recently, some methods [194]–[196] employing
have achieved impressive performances by LSTM networks.
Milan et al. [193] trained an end-to-end LSTM network for
online MOT. Sadeghian et al. [185] integrated appearance,
action, and interaction cues into a unified RNN, and designed
feature fusion based on LSTM to express motion interaction,
so as to learn the matching similarity between the trajectory
history information and the current detection. After designing
and analyzing each gate function in LSTM, Kim et al. [197]
proposed a novel RNN model called bilinear LSTM based on
multiplication so as to improve the learning ability of long-
term appearance models. Yu et al. [159] estimated the individ-
ual motion and global motion by LSTM and Siamese network.

In [190], the short-term clues obtained by the Siamese-RPN
network and the long-term clues obtained by ReID were
introduced to meet complex scenarios and achieved state-of-
the-art tracking performance.

D. Multiple Object Tracking Based on Others

Besides the aforementioned methods, other methods for
multiple object tracking are also available, such as generalized
graph differences (GGD) for network flow optimization [155]
with an efficient representation of differences between graphs,
context-aware IoU-guided tracker (COMET) [156] with offline
proposal generation and multitask two-stream network. There
is also literature focusing on designing MOT patrol [149] or
mobile [117] systems for UAV video.

VI. UAV-BASED BENCHMARK DATASET

With the development of data-driven deep learning methods,
researchers have made a lot of contributions to develop a
variety of reference datasets for object detection (including
images and videos) and tracking in UAV remote sensing, to
help further study and performance comparison. In this sec-
tion, we have reviewed some of the most commonly used open
and classic UAV-based remote sensing datasets for detection
and tracking.

Stanford Drone Dataset [209]1: The Stanford Drone
Dataset is a large-scale object tracking dataset, that was made
public by Stanford University in 2016. These video sequences
were captured in a real campus environment by a 4k camera
on a quadcopter, which hovered above various intersections
on campus with a flight height of about 80 meters. This
dataset contains 10 object types with more than 19,000 objects,
including 112,000 pedestrians, 64,000 bicycles, 13,000 cars,
33,000 skateboarders, 22,000 golf carts, and 11,000 public
cars, all of which can be used for multiple object tracking.
Although this dataset only has videos of a college campus, the
data has enough pluralism to be applied in various scenarios.

UAV123 Dataset [207]2: The UAV123 dataset is a long-term
aerial object tracking dataset, which was designated as public
by King Abdullah University of Science and Technology
in 2016. It contains 123 video sequences and more than
110,000 representative frames. The label information of each
sequence adopts a horizontal bounding box (i.e., upper left
and lower right), and the bounding box size and aspect ratio
show significant differences from the first frame. These video
sequences were captured by three different UAVs: an off-the-
shelf professional-grade UAV (DJIS1000) with a flight height
of 5-25 meters, a small low-cost UAV, and a UAV simulator.
The UAV123 dataset has multiple variations of scenes, objects,
and their corresponding attitudes, making it better suited for
a deep learning framework.

Drone Tracking Benchmark (DTB70) [208]3: The DTB70
dataset includes both short-term and long-term aerial objects,
which were provided by the Hong Kong University of Science

1http://cvgl.stanford.edu/projects/uav data/
2https://cemse.kaust.edu.sa/ivul/uav123
3https://link.zhihu.com/?target=https%3A//github.com/flyers/

drone-tracking

http://cvgl.stanford.edu/projects/uav_data/
https://cemse.kaust.edu.sa/ivul/uav123
https://link.zhihu.com/?target=https%3A//github.com/flyers/drone-tracking
https://link.zhihu.com/?target=https%3A//github.com/flyers/drone-tracking
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TABLE IV
COMPARISON OF CURRENT STATE-OF-THE-ART UAV BENCHMARKS AND DATASETS. THE TASKS SOD, VID, SOT, AND MOT STANDS FOR OBJECT

DETECTION FROM IMAGES, OBJECT DETECTION FROM VIDEO, SINGLE OBJECT TRACKING, AND MULTIPLE OBJECTS TRACKING RESPECTIVELY. S:
SINGLE CAMERA VIEW, M: MULTIPLE CAMERA VIEW, C VIEW: CAMERA VIEW

Object Detection from Image
Attributes

Modality Images Boxes Tasks Image Size Annotation Occlusion Weather C View Year

CARPK [198] RGB 1.5k 90k SOD 1280× 720 HBB S 2017
UAVDT [199] RGB 40k 841.5k SOD 1080× 540 HBB

√ √
M 2018

DAC-SDC [200] RGB 150k - SOD 640× 360 HBB M 2019
VisDrone-2018 [21] RGB 40.0k 183.3k SOD 3840× 2160 HBB

√ √
M 2018

VisDrone-2019 [201] RGB 261.9k 2.6m SOD 3840× 2160 HBB
√ √

M 2019
DroneVehicle [202] RGB + Infrared 31.064k 88.3k SOD 840× 712 OBB

√
M 2020

AU-AIR [203] Multi-modal 32.823k - SOD 1920× 1080 HBB
√

M 2020
BIRDSAI [204] Thermal-IR - 270k SOD 640× 480 HBB M 2020
UVSD [56] RGB 5.8k SOD 960× 540 to 5280× 2970 HBB/OBB M 2020

MOHR [205] RGB - 90k SOD 5482× 3078/7360× 4912 HBB M 2021
8688× 5792

Object Detection from Video
Attributes

Modality Images Boxes Tasks Image Size Annotation Occlusion Weather C View Year

Okutama-Action [206] RGB 77.4k 422.1k VID 3840× 2160 HBB M 2017
UAVDT [199] RGB 80k 841.5k VID 1080× 540 HBB

√ √
M 2018

VisDrone-2018 [21] RGB 40.0k 183.3k VID 3840× 2160 HBB
√ √

M 2018
VisDrone-2019 [201] RGB 261.9k 2.6m VID 3840× 2160 HBB

√ √
M 2019

MOR-UAV [119] RGB 10k 90k VID 1280× 720/1920× 1080 HBB
√ √

M 2020

Object Tracking from Image
Attributes

Modality Images Boxes Tasks Image Size Annotation Occlusion Weather C View Year

UAV123 [207] RGB 110k 110k SOT 720× 720 HBB M 2016
DTB70 [208] RGB - - SOT 1280× 720 HBB M 2017
Stanford [209] RGB 929.5k 19.5k MOT 1417× 2019 HBB

√
S 2016

UAVDT [199] RGB 80k 841.5k MOT 1080× 540 HBB
√ √

M 2018
VisDrone-2018 [21] RGB 40.0k 183.3k MOT 3840× 2160 HBB

√ √
M 2018

VisDrone-2019 [201] RGB 261.9k 2.6m MOT 3840× 2160 HBB
√ √

M 2019
BIRDSAI [204] Thermal-IR 162k 270k MOT 640× 480 HBB M 2020

and Technology in 2017. It contains 70 video sequences. Some
of these video sequences were captured in a real outdoor en-
vironment by a DJI Phantom 2 Vision+ drone, which hovered
over the university campus with a flight altitude of lower than
120 meters. The others were intercepted through YouTube
to increase the diversity of samples. Each frame contains
1280 × 720 and its label information adopts a horizontal
bounding box (i.e., upper left and lower right).

Car Parking Lot Dataset (CARPK) [198]4: The CARPK
dataset is a large-scale vehicle detection and counting dataset,
which was designated as public by the National Taiwan
University in 2017. In particular, it is the first and largest
parking lot dataset acquired by drone views and is used for
vehicle counting parked in a different parking lot. The dataset
was acquired by a Phantom 3 Professional drone with a flight
height of 40 meters, covering nearly 90,000 cars in four
different parking lots. The maximum size of vehicles in the
CARPK dataset is much larger than 64×64, and the maximum
number of cars in a single scenario in the CARPK dataset is
188. The label information of each vehicle adopts a horizontal
bounding box (i.e., upper left and lower right).

Okutama-Action Dataset [206]5: Okutama dataset is a
large-scale human action detection dataset, which was desig-
nated as public by five universities, including Munich Univer-
sity of Technology and the Royal Institute of Technology of
Sweden, in 2017. It contains 43 video sequences with 77,365
representative frames. These video sequences were captured

4https://lafi.github.io/LPN/
5http://okutama-action.org/

at 45- or 90-degree camera angles using two drones with a
flight height of 10-45 meters. In addition, the position and
orientation of the UAV are flexible and changeable in order
to acquire the diversification of the object. This dataset covers
12 action types, such as reading, handshaking, drinking, and
carrying. The speed of recorded videos is 30 frames per second
(fps), and the image size is 3840× 2160.

UAV Detection and Tracking (UAVDT) Dataset [199]6: The
UAVDT dataset is a large-scale vehicle detection and tracking
dataset, which was designated as public by the University
of the Chinese Academy of Sciences in 2018. It contains
100 video sequences with 80,000 representative frames, ap-
proximately 2,700 vehicles with 0.84 million bounding boxes,
covering a range of weather conditions, occlusion, and flying
heights. This dataset presents all sorts of common scenarios,
including squares, arterial roads, toll stations, highways, in-
tersections, and T-junctions. The speed of recorded videos is
30 frames per second (fps), and the image size is 1080× 540
pixels, which can be used for multiple tasks, such as vehicle
detection, single vehicle tracking, and multiple vehicle track-
ing.

DAC-SDC dataset [200]7: The Design Automation Con-
ference (DAC) is a challenging object detection dataset
collected by UAV, which was designated as public by the
University of Notre Dame in 2018. It contains 95 categories
and 150k images captured with different points of UAV
view. Each extracted frame includes 640× 360 pixels.

6https://sites.google.com/site/daviddo0323/projects/uavdt
7www.github.com/xyzxinyizhang/2018-DAC-System-Design-Contest

https://lafi.github.io/LPN/
http://okutama-action.org/
https://sites.google.com/site/daviddo0323/projects/uavdt
www.github.com/xyzxinyizhang/2018-DAC-System-Design-Contest


IEEE GRSM 2021, XX, XX 12

VisDrone2018 Dataset [21]8: The VisDrone2018 dataset
is a large-scale visual object detection and tracking dataset,
which was designated as public by three universities, Tianjin
University, GE Global Research, and Temple University, in
2018. It contains 263 video sequences with 179,264 represen-
tative frames and 10,209 static images. These video sequences
were captured by various camera devices using multiple drones
(i.e., DJI Mavic and Phantom series (3, 3A, 3SE, 3P, 4, 4A,
4P)), which hovered above 14 cities in China. This dataset
covers multiple common objects, such as pedestrians, cars,
bicycles, and tricycles. The maximum image size of each
video are much larger than 2000 × 1500, and they can be
used for multiple tasks, particularly object detection, single
object tracking, and multiple object tracking. There are over
2.5 million objects with their label information in a horizontal
bounding box.

VisDrone2019 Dataset [201]9: Compared to VisDrone2018,
VisDrone2019 added 25 long-term tracking video sequences
with a total of 82,644 frames, of which 12 clips were acquired
in the daytime, and the rest were by night. Therefore, this
dataset contains 288 video sequences with 261,908 represen-
tative frames and 10,209 static images. For each target, the
scaling is much smaller and the disturbance factor is much
greater.

Moving Object Recognition (MOR-UAV) Dataset [119]10:
The MOR-UAV dataset is a large-scale video dataset for mov-
ing object recognition in UAV videos, which was designated
as public by the Malaviya National Institute of Technology
Jaipur in 2020. It contains 30 video sequences with 10,948
representative frames, and approximately 89,783 moving ob-
ject instances, covering various challenging scenarios such
as night time, occlusion, camera motion, weather conditions,
camera views, and so on. MOR-UAV can be used as the
benchmark for both MOR and moving object detection (MOD)
in UAV videos. The videos are recorded at 30 frames per
second (fps) and the image size varies from 1280 × 720 to
1920 × 1080 pixels. The moving objects are labeled using
the Yolo-mark1 tool, and about 10,948 frames are annotated
representing moving vehicles. There are two categories of
vehicles: cars and heavy vehicles.

DroneVehicle dataset [202]11: The DroneVehicle dataset
is large-scale object detection and counting dataset with
both RGB and thermal infrared (RGBT) images captured by
camera-equipped drones, which was designated as public by
the Tianjin University in 2020. It contains 15,532 pairs of
images, i.e., RGB and infrared images, covering challenging
scenarios with illumination, occlusion, and scale variations.
DroneVehicle dataset can be used as the benchmark for
both object detection and counting on the UAV platform.
The images in this dataset were captured over various urban
areas, including urban roads, residential areas, parking lots,
highways, etc., from day to night. The image size is 840×712
pixels.

8https://github.com/VisDrone/VisDrone-Dataset
9https://github.com/VisDrone/VisDrone-Dataset
10https://arxiv.org/abs/2008.01699
11https://github.com/VisDrone/DroneVehicle

AU-AIR dataset [203]12: The multi-purpose aerial dataset
(AU-AIR) is a large-scale object detection dataset from multi-
modal sensors (i.e., visual, time, location, altitude, IMU,
velocity) captured by camera-equipped drones, which was
designated as public by the Aarhus University in 2020. It
contains 8 video sequences with 32,823 extracted frames at
the intersection of Skejby Nordlandsvej and P.O Pedersensvej
(Aarhus, Denmark) on windless days with various lighting
and weather conditions. This dataset contains 8 object types,
including person, car, bus, van, truck, bike, motorbike, and
trailer, all of which can be used for static or video object
detection. Each frame contains 1920× 1080 pixels.

BIRDSAI dataset [204]13: The benchmarking IR dataset
for surveillance with aerial intelligence (BIRDSAI) is a chal-
lenging object detection and tracking dataset collected using
a TIR camera mounted on a fixed-wing UAV in multiple
African protected areas, which was designated as public by
the Harvard University in 2020. It contains 48 real aerial TIR
videos of varying lengths and 124 synthetic aerial TIR videos
generated from AirSim-W. This dataset contains humans and
animals with scale variations, background clutter, large camera
rotations, and motion blur, etc. Each frame contains 640×480
pixels.

MOHR dataset [205]: The benchmarking IR dataset is
a large-scale benchmark object detection dataset collected
at different altitudes by employing three cameras, i.e., DJI
Phantom 4Pro, Sonny RX1rM2, and Nikon D800. The dataset
includes 3,048 images of size 5482 × 3078, 5,192 images of
size 7360 × 4912, and 2,390 images of size 8688 × 5792,
respectively. It contains 90,014 object instances with labels and
bounding boxes were annotated, which includes 25,575 cars,
12,957 trucks, 41,468 buildings, 7,718 flood damages, and
2,296 collapses, covering the challenging of scale variations.

UVSD dataset [210]14: The UAV-based vehicle segmenta-
tion dataset (UVSD) is a large-scale benchmark object detec-
tion, counting, and segmentation dataset. The dataset includes
5,874 images, with 98,600 object instances with high-quality
instance-level semantic annotations. These images are captured
by DJI matrice 200 quadcopter integrated with a zenmuse X5S
gimbal and camera, and image size varies from 960× 540 to
5280× 2970 pixels. In particular, UVSD has multiple format
annotations, including pixel-level semantic, OBB and HBB.

VII. EXPERIMENT RESULTS AND ANALYSIS

In this section, we take four benchmark datasets, includ-
ing VisDrone, UAVDT, Okutama-Action and Stanford UAV
datasets, to illustrate the performance of representative object
detection and tracking methods. Fig. 9 shows examples of
annotated images in these four datasets.

A. Evaluation of Object Detection from UAV-borne Images

For object detection from UAV-borne images, the common
performance metrics are Average Precision (AP) and Average
Recall (AR). AP is used as a global measure. More precisely,

12https://bozcani.github.io/auairdataset
13https://sites.google.com/view/elizabethbondi/dataset
14https://github.com/liuchunsense/UVSD

https://github.com/VisDrone/VisDrone-Dataset
https://github.com/VisDrone/VisDrone-Dataset
https://arxiv.org/abs/2008.01699
https://github.com/VisDrone/DroneVehicle
https://bozcani.github.io/auairdataset
https://sites.google.com/view/elizabethbondi/dataset
https://github.com/liuchunsense/UVSD
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(1) UAVDT -- Camera View (2) UAVDT -- Weather Condition (3) UAVDT -- Occlusion

(1) VisDrone -- Light Condition (2) VisDrone -- Weather Condition (3) VisDrone -- Occlusion

(1) Okutama-Action -- Action1 (2) Okutama-Action -- Action2 (3) Okutama-Action -- Action3

Fig. 9. Visual samples of annotated images taken from benchmark datasets. The first, second, and third rows stand for UAVDT, VisDrone, and Okutama-Action
datasets, respectively.

the value of AP and AR are related to the rate between
the overlap of the detection bounding box and the ground-
truth box exceeds a certain percentages. The most frequently
used is AP IoU=0.50:0.05:0.95, AP IoU=0.50, AP IoU=0.75,
ARmax=1, ARmax=10, ARmax=100 and ARmax=500. Specifi-
cally, AP IoU=0.50:0.05:0.95 denotes the mean average precision
(mAP), that is, the average value of the multiple intersec-
tion over union (IOU) threshold, which is defined as the
geometric overlap between predictions and ground truths,
of all categories with step size of 0.05. AP IoU=0.50 and
AP IoU=0.75 are computed at a certain IOU threshold over all
categories. Moreover, AP s = AP small, APm = APmedium,
AP l = AP large represent the average precision at different
scales. ARmax=1, ARmax=10, ARmax=100 , and ARmax=500

are the maximum recalls number of 1, 10, 100, and 500
detected objects in each image. For more details please refer
to [21], [201].

Table V lists quantitative results of several state-of-the-art
detection methods. Their experiment results are distributed
in different UAV object detection datasets and most of them
just use AP = AP IoU=0.50:0.05:0.95 as the only evaluation
criteria. To be fair, the performance of these works is compared
according to their AP value under a specific dataset.

VisDrone dataset: This dataset has severe sample imbal-
ance and occlusion problems between small objects. NDFT
with domain-robust features, which transfers the learned

NDFT through UAVDT to VisDrone dataset, achieves the best
performance among all comparative methods, i.e., 52.77% AP
score on the VisDrone-DET validation set due to the testing set
has been closed after the ICCV2019 conference. The possible
reason is that NDFT could achieve a substantial gain in robust-
ness to many UAV-specific nuisances, such as varying flying
altitudes, adverse weather conditions, dynamically changing
viewing angles, etc. SAMFR with spatial-refinement module
and receptive field expansion block (RFEB), MPFPN with
parallel branch becomes the second and third with 33.72%
and 29.05% AP scores.

Table V shows the results of 10 baseline methods in the
VisDrone-DET2019 Challenge, i.e., FPN [131], R-FCN [19],
Faster R-CNN (FRCNN) [20], SSD [24], Cascade CNN [128],
RetinaNet [130], CornetNet [211], RefineNet [212], DetNet
[213], and Light Faster R-CNN (Light-RCNN) [214]. The
samples are in strict accordance, with 6,471 for training, 548
for validation and 1,580 for testing. For the parameters of
these networks, we adjust them within a reasonable range or
directly adopted the default values. CornerNet achieves the
best performance, while SSD∗ performs the worst.

UAVDT dataset: With different locations but similar envi-
ronments to the VisDrone dataset, UAVDT has higher com-
plexity due to its images collected from a variety of scenes.
Moreover, the weather condition would increase the difficulty
of single, multiple, or overlapping small object detection.
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D2Det published in CVPR2020 with dense local regression
achieves the best performance among all methods, i.e., 56.92%
AP score on the testing set. NDFT with domain-robust fea-
tures, FPN employed ResNet101 becomes the second and
third with 52.03% and 49.05% AP scores. We also report the
detection results of 8 baseline DL-based networks, including
R-FCN [19], Faster R-CNN (FRCNN) [20], FRCNN plus FPN
[131], SSD [24], Cascade CNN [128], Reverse connection
with Objectness prior Networks (RON) [130], ClusDet [215],
and DMDet [216], are shown in Table VI. Among them, the
image size for UAVDT was 1024 × 540 pixels, while the
sample size of some methods varied. The network parameters
were the same as the VisDrone dataset. FPN achieves the best
performance, while RON performs the worst.

B. Evaluation of Object Detection from UAV-borne Video

For object detection from UAV-borne video, the common
indicators to evaluate object detection methods are the same
as UAV-borne image, including AP IoU=0.50:0.05:0.95,
AP IoU=0.50,AP IoU=0.75, ARmax=1, ARmax=10,
ARmax=100 and ARmax=500. Table V lists the public
quantitative results of some state-of-the-art and baseline
detection works. Among them, four works are the UAV
preserves object detection works, and the experimental results
are mainly focused on the VisDrone dataset. TDFA with a
two-stream refined flowNet (SPyNet) pipeline, which is robust
to small-scale objects and can achieve the best performance
among all comparison methods, i.e., 27.27% AP score on the
VisDrone-VID validation set. MPFPN with parallel branch is
ranked as the second and third with 33.72% and 29.05% AP
scores.

We have also summarized the results of 9 baseline methods
in the VisDrone-VID challenge, including CFE-SSDv2 [219],
FGFA∗ [135], RefineDet [212], [220], RetinaNet [130], de-
tection and tracking (D&T) [173], FPN∗ [131], CornerNet∗

[211], CenterNet∗ [129], and Faster R-CNN∗ [20]. The exper-
iment results were instructed in accordance, with three non-
overlapping subsets, 56 video sequences with 24,198 frames
for the training set, 16 video sequences with 6,322 frames
for testing, and the remaining sequences are for validation.
Obviously, the detection performance of object detection in
video yields better object detection in an image, and detection
results amendment by context information plays a decisive
role. Moreover, a small object is an inevitable problem of
object detection in video. Therefore, CFE-SSD with small
objects friendliness, FGFA assisting the current frame by
adopting the front and back frames information, and D&T
with ROI tracking to associate adjacent frames, obtain a better
detection performance.

Besides the VisDrone dataset, some other datasets are
also used, such as Okutama-Action and UAVDT. Compared
with five baseline works in Table VIII, TDFA experimented
Okutama-Action dataset has achieved the best detection per-
formance, i.e., 87.18% AP 50 value on the Okutama-Action
test dataset. STDnet-ST with Spatio-temporal ConvNet and
STDnet experimented Okutama-Action dataset, have achieved
34.60% AP for objects under 16× 16 pixels.

C. Evaluation of Object Tracking from UAV-borne Video

For object tracking from UAV-borne video, the common
way to evaluate object detection methods, including multiple
object tracking accuracy (MOTA), multiple object tracking
precision (MOTP), identification precision (IDP), identifica-
tion F1 score (IDF1), false alarms per frame (FAF), the number
of mostly tracked targets (MT, more than 80% of trajectories
being covered by the ground truth), the number of mostly lost
targets (ML, less than 20% of trajectories being covered by the
ground truth), the number of false positives (FP), the number
of false negatives (FN), the number of ID switches (IDS), and
the number of times a trajectory is Fragmented (FM).

The IDF1 score is defined as

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (1)

where IDTP is the number of true positive IDs, IDFP is the
number of false positive IDs, and IDFN is the number of false
negative IDs. In addition, some literature have still adopted the
detection evaluation metrics, including AP IoU=0.50:0.05:0.95,
AP IoU=0.25, AP IoU=0.50, AP IoU=0.75.

Tables IX-XII summarize the quantitative comparison of
several multiple object tracking methods on the challenging
public UAV dataset. In Table IX, the average rank of 10
metrics (i.e., MOTA, MOTP, IDF1, FAF, MT, ML, FP, FN,
IDS, and FM) is used to rank these approaches. TrackletNet
Tracker (TNT), wins the VisDrone-MOT challenge dataset
by the highest MOTA, IDF1, FP, IDS. We also report the
accuracy of the trackers in AP as well as different object
categories, including AP car, AP bus, AP trk, AP ped and
AP van in Table X. The PAS tracker followed by the tracking-
by-detection paradigm achieves the best performance, i.e.,
50.80% AP score on the VisDrone-MOT testing set. HMTT
based on SOT achieves a 28.67% AP score on the VisDrone-
MOT validation set. With the exception of VisDrone dataset,
IPGAT achieves the best tracking performance for the UAVDT
and Stanford Drone testing dataset in Tables XI and XII,
in terms of IDF1, MT, ML, and FN, by estimating object
motion and UAV movement as individual and global motions,
respectively.

The rest of Tables IX to XII are the results from baseline
methods for the three MOT datasets. The results are based
on Faster RCNN detection input for convenient comparison.
For VisDrone-MOT dataset consists of 79 video sequences
in total, including 56 video sequences for the training set,
16 video sequences for testing, and the remainder is for
validation. Under these settings, Ctrack with recovering long-
time disappearance objects in the crowded scenes achieves
the best tracking performance among all methods in the
VisDrone testing dataset, in terms of the IDF1, MT, ML, and
FN. For the UAVDT dataset under 50 sequences recorded in
the traffic scenario from UAVs, 60% for training and 40%
for testing. From Table XII, it can be seen that SORT is
superior on most metrics. Although these results are far from
the requirements of practical application, they can provide
feasible direction (e.g., the association of moving objects)
and a reliable theoretical basis for future research. For the
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TABLE V
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE DETECTION NETWORKS AND CLASSIC DETECTION NETWORKS. THE BEST PERFORMERS ARE

HIGHLIGHTED IN BOLD.

Method Network Train/Test Image Size AP AP 50 AP 75 AR 1 AR 10 AR 100 AR 500 Exp. Data
Yang et al [59] VGG-16 3,475/869 - 92.00 - - - - - - Own vehicle
UAV-YOLO [16] YOLOv3 3,776/630 608× 608 90.86 - - - - - - UAV123+Own
FS-SSD [66] VGG16 989/459 512× 512 89.52 - - - - - - CARPK
FS-SSD [66] VGG16 69,673/53,224 512× 512 65.84 Stanford Drone
Yang et al [59] VGG-16 3,500/831 320× 320 90.40 - - - - - - Stanford Drone
MSOA-Net [56] ResNet50 3,564/1,725 1333× 800 77.00 91.50 83.30 UAVDT
GDF-Net [61] ResNet50 11,915/16,580 1200× 675 15.40 26.10 17.00 13.20 23.10 27.60 UAVDT
DSYolov3 [55] Yolov3 24,143/16,592 1200× 540 9.80 23.40 5.00 - - - UAVDT
ClusDet [57] ResNeXt101 23,238/15,069 1080× 540 13.70 25.50 12.50 - - - - UAVDT
DSHNet [81] ResNet50 23,258/15,069 1080× 540 17.80 30.40 19.70 - - - - UAVDT
D2Det [74] ResNet101 23,258/15,069 1, 333× 800 56.92 - - - - - - UAVDT
NDFT [69] ResNet101 23,258/15,069 1, 333× 800 52.03 - - - - - - UAVDT
DSHNet [81] ResNet50 23,258/15,069 1, 080× 540 17.80 30.4 19.7 - - - - UAVDT
DNOD [79] YOLOv4 23,258/15,069 1080× 540 14.20 31.90 11.00 - - - UAVDT
DNOD [79] EfficientDet-D7 23,258/15,069 1080× 540 12.90 32.00 10.90 - - - - UAVDT
FPN∗ [131] FPN 23,258/15,069 1080× 540 49.05 - - - - - UAVDT
RON [217] VGG16 23,258/15,069 1080× 540 5.0 15.9 1.7 - - - - UAVDT
RetinaNet [130] RetinaNet 23,258/15,069 1080× 540 33.95 - - - - - - UAVDT
ECas RCNN [54] ResNet50 6,371/521 1450× 800 28.40 - - - - - - VisDrone-Val
GDF-Net [61] ResNet50 6,471/11,610 1200× 675 18.20 30.80 19.20 8.10 24.10 28.70 VisDrone-Val
HRDNet [70] ResNeXt50+101 3,564/1,725 3800× 3800 35.51 62.00 35.13 0.39 3.38 30.91 46.62 VisDrone-Val
D-A-FS SSD [63] - - - - - - - - - - VisDrone-Val
ClusDet [57] ResNeXt101 6,471/548 2000× 1500 32.40 56.20 31.60 - - - - VisDrone-Val
CenterNet [58] HourGlass-104 3,564/1,725 1024× 1024 21.58 48.09 16.76 12.04 29.60 39.63 40.42 VisDrone-Val
DSHNet [81] ResNet50 6,471/548 2000× 1500 30.30 51.80 30.90 - - - - VisDrone-Val
NDFT [69] ResNet101 6,471/548 2, 000× 1, 500 52.77 - - - - - - VisDrone-Val
DSHNet [81] ResNet50 6,471/548 2, 000× 1, 500 24.60 44.40 24.10 - - - - VisDrone-Val
MPFPN [73] ResNet101 6,471/1,580 1440× 800 29.05 54.38 26.99 0.55 5.81 35.57 45.69 VisDrone-Val
SAMFR [67] DetNet59 6,471/548 512× 512 33.72 58.62 33.88 0.53 3.40 22.60 46.03 VisDrone-Val
DANN [77] RetinaNet 6,471/548 1500× 1000 11.19 25.65 8.78 0.56 4.87 17.19 24.09 VisDrone-Val
Cas RCNN+FPN [80] ResNet101 4,960/1,534 1500× 2000 20.46 38.58 18.83 1.32 11.32 25.82 25.84 VisDrone-Val
DNOD [79] YOLOv4 6,471/1,610 1260× 765 54.88 - - - - - - VisDrone-Val
DNOD [79] EfficientDet-D7 6,471/1,610 1260× 765 53.76 - - - - - - VisDrone-Val
RRNet [53] HourGlass 6,741/1580 512× 512 29.13 55.82 27.23 1.02 8.50 35.19 46.05 VisDrone-Det
DSYolov3 [55] Yolov3 6,471/548 1920× 1080 22.30 44.50 20.30 - - - - VisDrone-Det
SAMFR [67] DetNet59 6,471/1,580 512× 512 20.18 40.03 18.42 0.46 3.49 21.6 30.82 VisDrone-Det
SyNet [71] CenterNet 6,471/1,580 2000× 1500 25.10 48.40 26.20 - - - - VisDrone-Det
SlimYOLOv3 [65] YOLOv3-SPP3-90 6,471/548 832× 832 23.90 - - - - - - VisDrone-Det
Zhang et al [62] ResNet50+RPN 6,471/1580 2000× 1500 22.61 45.16 19.94 0.42 2.84 17.1 35.27 VisDrone-Det
CornerNet∗ [211] CornetNet 6,471/1,580 2000× 1500 17.41 34.12 15.78 0.39 3.32 24.37 26.11 VisDrone-Det
FPN∗ [131] FPN 6,471/1,580 2000× 1500 16.51 32.20 14.91 0.33 3.03 20.72 24.93 VisDrone-Det
Light-RCNN∗ [214] Light-RCNN 6,471/1580 2000× 1500 16.53 32.78 15.13 0.35 3.16 23.09 25.07 VisDrone-Det
Cas RCNN∗ [128] Cascade R-CNN 6,471/1,580 2000× 1500 16.09 31.91 15.01 0.28 2.79 21.37 28.43 VisDrone-Det
DetNet59∗ [213] DetNet-59 6,471/1,580 2000× 1500 15.26 29.23 14.34 0.26 2.57 20.87 22.28 VisDrone-Det
RefineNet [212] RefineNet 6,471/1,580 2000× 1500 14.90 28.76 14.08 0.24 2.41 18.13 25.69 VisDrone-Det
RetinaNet∗ [130] RetinaNet 6,471/1,580 2000× 1500 11.81 21.37 11.62 0.21 1.21 5.31 19.29 VisDrone-Det
R-FCN∗ [19] R-FCN 6,471/1,580 2000× 1500 7.20 15.17 6.38 0.88 5.35 12.04 13.95 VisDrone-Det
FRCNN∗ [20] FRCNN 6,471/1,580 2000× 1500 3.55 8.75 2.43 0.66 3.49 6.51 6.53 VisDrone-Det
SSD∗ [24] SSD 6,471/1,580 2000× 1500 2.52 4.78 2.47 0.58 2.81 4.51 6.41 VisDrone-Det

TABLE VI
OBJECT DETECTION RESULTS ON THE UAVDT-DET TESTING SET. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Backbone Train/Test Image Size AP AP 50 AP 75 AP s AP m AP l Exp. Data
R-FCN [19] ResNet50 23,258/15,069 1080× 540 7.0 17.5 3.9 4.4 14.7 12.1 UAVDT
SSD [24] VGG16 23,258/15,069 1080× 540 9.3 21.4 6.7 7.1 17.1 12.0 UAVDT
FRCNN [20] VGG16 23,258/15,069 1080× 540 5.8 17.4 2.5 3.8 12.3 9.4 UAVDT
FRCNN [20]+FPN [131] ResNet50 23,258/15,069 1080× 540 11.0 23.4 8.4 8.1 20.2 26.5 UAVDT
ClusDet [215] ResNet50 -/25,427 1080× 540 13.7 26.5 12.5 9.1 25.1 31.2 UAVDT
DMDet [216] ResNet50 -/32,764 1080× 540 14.7 24.6 16.3 9.3 26.2 35.2 UAVDT

Stanford Drone dataset, the performance gap of the listed
baseline method is minimal, maybe IOUT slightly better.

D. Estimation of Computation Cost

In this survey, all the reviewed methods have their own
experimental environment, experimental data, and even source
code. Considering the computation cost is directly related to
speed, GPU, and backbone model, we list these three indexes

of the UAV exclusive methods for the above three topics
in Tables XIII- XV. Depending on the computing power of
NVIDIA’s GPU 15, the computation cost can be estimated with
backbone network in the corresponding method.

15https://www.pianshen.com/article/13711825712/

https://www.pianshen.com/article/13711825712/
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TABLE VII
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE DETECTION NETWORKS AND CLASSIC DETECTION NETWORKS FOR THE VISDRONE-VID TESTING

SET. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Framework Train/Test Image Size AP AP 50 AP 75 AR 1 AR 10 AR 100 AR 500 Exp. Data
TDFA [120] FlowNet+Fea Agg 54,503/14,114 720× 1280 - 87.18 - - - - - Okutama
STDnet-ST [121] STDnet+RCN 23,829/16,580 1024× 540 13.30 36.40 - - - - - UAVDT
Zhang et al [118] Cas RCNN+IRR-PWC 17,268/5,397 1280× 720 65.20 88.80 74.60 - - - - VisDrone-VID
STCA [114] F-SSD+FCOS 24,198/6,322 - 18.73 44.38 12.68 - - - - VisDrone-VID
TDFA [120] FlowNet+Fea Agg 24,201/2,819 720× 1280 27.27 50.73 27.94 - - - - VisDrone-VID
STDnet-ST [121] STDnet+RCN 24,201/6,635 1, 920× 1, 080 7.50 22.40 - - - - - VisDrone-VID
FGFA∗ [135], [218] VGG16 24,198/6,322 3840× 2160 18.33 39.71 14.39 10.09 26.25 34.49 34.89 VisDrone-VID
CFE-SSDv2 [218], [219] SSD 24,198/6,322 3840× 2160 21.57 44.75 17.95 11.85 30.46 41.89 44.82 VisDrone-VID
D&T (R-FCN) [173], [218] Hourglass 24,198/6,322 3840× 2160 17.04 35.37 14.11 10.47 25.76 31.86 32.03 VisDrone-VID
FPN∗ [131], [218] ResNet-101 24,198/6,322 3840× 2160 16.72 39.12 11.80 5.56 20.48 28.42 28.42 VisDrone-VID
CornerNet∗ [211], [218] Hourglass-59 24,198/6,322 3840× 2160 16.49 35.79 12.89 9.47 24.07 30.68 30.68 VisDrone-VID
CenterNet∗ [129], [218] Hourglass 24,198/6,322 3840× 2160 15.75 34.53 12.10 8.90 22.80 29.20 29.20 VisDrone-VID
Faster R-CNN∗ [20], [218] VGG16 24,198/6,322 3840× 2160 14.46 31.80 11.20 8.55 21.31 26.77 26.77 VisDrone-VID
RD [212], [220] RefineDet 24,198/6,322 3840× 2160 14.95 35.25 10.11 9.67 24.60 29.72 29.91 VisDrone-VID
RetinaNet s [130], [220] RetinaNet 24,198/6,322 3840× 2160 8.63 21.83 4.98 5.80 12.91 15.15 15.15 VisDrone-VID

TABLE VIII
VIDEO OBJECT DETECTION RESULTS ON THE OKUTAMA-ACTION AND UAVDT TESTING SET. “ #VID” IS THE NUMBER OF VIDEOS THAT SEND TO THE

DETECTOR. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Backbone #vid Image Size AP 50 Exp.Data Method Train/Test Image Size AP AP 50 Exp.Data
SSD [24] VGG 10 960× 540 18.80 Okutama-Action Faster RCNN [199] 23,829/76,215 1080× 540 6.6 26.00 UAVDT
SSD [24] ResNet50 10 608× 608 52.30 Okutama-Action SSD [199] 23,829/76,215 1080× 540 6.0 23.50 UAVDT
R-FCN [19] ResNet50 10 608× 608 53.50 Okutama-Action R-FCN [199] 23,829/76,215 1080× 540 9.2 32.50 UAVDT
Retinanet [130] ResNet50 10 608× 608 56.30 Okutama-Action FGFA [135] 23,829/76,215 1080× 540 6.3 20.70 UAVDT
YOLOv3 tiny [221] DarkNet-53 10 608× 608 52.40 Okutama-Action FPN [131] 23,829/76,215 1080× 540 11.8 29.70 UAVDT

TABLE IX
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE TRACKING NETWORKS AND CLASSIC TRACKING NETWORKS FOR THE VISDRONE-MOT TESTING

SET TAKEN MOTA, MOTP, ETC AS EVALUATION INDEXES. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Framework Train/Test(seq) Image Size MOTA MOTP IDF1 FAF MT ML FP FN IDS FM Exp. Data

TNT [152] RetinaNet50 56/33 3840× 2160 48.6 - 58.1 - 281 478 5,349 76,402 468 - VisDrone-MOT+TrackletNet
HDHNet [163] HRNet+DLA 56/7 3840× 2160 32.9 76.9 42.3 - - - 80,454 35,686 1,056 1,242 VisDrone-MOT
Flow-Tracker [151] IOU+Optical flow 56/7 3840× 2160 26.4 78.1 41.9 - 115 246 9,987 43,766 127 428 VisDrone-MOT
CMOT∗ [164] Faster RCNN 56/16 3840× 2160 31.5 73.3 51.3 1.42 282 435 26,851 72,382 789 2,257 VisDrone-MOT
TBD∗ [222] Faster RCNN 56/16 3840× 2160 35.6 74.1 45.9 1.17 302 419 22,086 70,083 1,834 2,307 VisDrone-MOT
H2T ∗ [223] Faster RCNN 56/16 3840× 2160 32.2 73.3 44.4 0.95 214 494 17,889 79,801 1,269 2,035 VisDrone-MOT
IHTLS∗ [167] Faster RCNN 56/16 3840× 2160 36.5 74.8 43.0 0.94 245 446 14,564 75,361 1,435 2,662 VisDrone-MOT
Ctrack [224] Faster RCNN 56/16 3840× 2160 30.8 73.5 51.9 1.95 369 375 36,930 62,819 1,376 2,190 VisDrone-MOT
CEM∗ [170] Faster RCNN 56/16 3840× 2160 5.1 72.3 19.2 1.12 105 752 21,180 116,363 1,002 1,858 VisDrone-MOT
GOG∗ [166] Faster RCNN 56/16 3840× 2160 38.4 75.1 45.1 0.54 244 496 10,179 78,724 1,114 2,012 VisDrone-MOT

TABLE X
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE TRACKING NETWORKS AND CLASSIC TRACKING NETWORKS FOR THE VISDRONE-MOT TESTING

SET TAKEN AP AS EVALUATION INDEXES. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Framework Train/Test(seq) Image Size AP AP 0.25 AP 0.5 AP 0.75 AP car AP bus AP truck AP ped AP van Exp. Data
PAS Tracker [161] CenterNet+IOU 56/7 608× 608 50.80 66.10 52.50 33.80 62.7 81.20 43.90 30.30 35.90 VisDrone-MOT
HMTT [153] CenterNet+IOU 56/7 608× 608 28.67 39.05 27.88 19.08 44.35 30.56 18.75 26.49 23.19 VisDrone-MOT
DAN [77] RetinaNet+DAN - 1500× 1000 13.88 23.19 12.81 5.64 32.20 8.83 6.61 18.61 3.16 VisDrone-MOT
GGD [155] Faster RCNN 56/33 3840× 2160 23.09 31.01 22.70 15.55 35.45 28.57 11.90 17.20 22.34 VisDrone-MOT
Cas RCNN+FPNCas RCNN+FPN [80] Cascade R-CNN - 2000× 1500 28.51 44.76 30.38 10.40 35.09 34.58 18.20 - 26.18 VisDrone-MOT

TABLE XI
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE TRACKING NETWORKS AND CLASSIC TRACKING NETWORKS FOR THE STANFORD DRONED DATASET

TAKEN MOTA, MOTP, ETC AS EVALUATION INDEXES. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Framework Train/Test(seq) Image Size MOTA MOTP IDF1 IDP MT% ML% FP FN IDS FM Exp. Data

IPGAT [159] LSTM+ CGAN 36/24 1080× 540 99.9 99.9 90.0 90.0 99.8 0.13 3 833 3, 395 905 Stanford Drone+Siamese
CEM [170] Faster RCNN 36/24 1417× 2019 3.0 81.8 5.4 47.6 2.7 90.25 972,646 348,495 3,103 5,997 Stanford Drone
GOG [166] Faster RCNN 36/24 1417× 2019 98.9 100.0 86.3 86.7 100.0 96.2 3 66,625 4,928 2,621 Stanford Drone
IOUT [168] Faster RCNN 36/24 1417× 2019 99.9 100.0 93.2 93.2 98.9 1.04 0 2,497 1,170 949 Stanford Drone
SMOT [167] Faster RCNN 36/24 1417× 2019 99.1 100.0 91.8 91.9 97.3 1.38 17,212 38,846 2,275 3,926 Stanford Drone
SORT [169] Faster RCNN 36/24 1417× 2019 99.5 98.1 95.7 96.0 98.0 1.05 20 32,436 957 952 Stanford Drone
SLSTM [195] Faster RCNN 36/24 1417× 2019 99.3 99.9 89.6 89.6 99.8 0.13 11 841 3, 630 906 Stanford Drone

VIII. DISCUSSION AND CONCLUSION

In this paper, deep learning approached in object and
tracking of the remote sensing field has been systematically
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TABLE XII
PERFORMANCE COMPARISONS OF UAV EXCLUSIVE TRACKING NETWORKS AND CLASSIC TRACKING NETWORKS FOR THE UAVDT DATASET TAKEN

MOTA, MOTP, ETC AS EVALUATION INDEXES. THE BEST PERFORMERS ARE HIGHLIGHTED IN BOLD.

Method Framework Train/Test(seq) Image Size MOTA MOTP IDF1 IDP MT(%) ML(%) FP FN IDS FM Exp. Data

IPGAT [159] LSTM+ CGAN 30/20 1080× 540 39.0 72.2 49.4 63.2 37.4 25.2 42, 135 163, 837 2,091 10,057 UAVDT+Siamese
OSIM [150] YOLOv3 - 1080× 540 88.7 - - - - - 8 610 - - UAVDT
Self-balance [157] LSTM 30/20 1080× 540 38.6 72.1 48.5 61.1 38.9 24.4 44,724 160,950 3,489 11,796 UAVDT
UAV MOT1 [162] Faster RCNN 30/20 1417× 2019 40.3 74.0 55.0 67.0 - - 30,065 150,837 1,091 3,057 UAVDT
RLSTM [225] Faster RCNN 30/20 1080× 540 25.6 69.1 31.3 38.6 36.7 25.7 71,955 180,461 1,333 13,088 UAVDT
SLSTM [195] Faster RCNN 30/20 1080× 540 37.9 72.0 37.2 46.8 38.2 24.4 44,783 161,009 6,048 12,051 UAVDT
SORT [169] Faster RCNN 30/20 1080× 540 39.0 74.3 43.7 58.9 33.9 28.0 33,037 172,628 2,350 5,787 UAVDT
RMOT [226] Faster RCNN 30/20 1080× 540 -39.8 72.3 33.3 27.8 36.7 25.7 319,008 151,485 5,973 5,897 UAVDT
SMOT [167] Faster RCNN 30/20 1080× 540 33.9 72.2 45.0 55.7 36.7 25.7 57,112 166,528 1,752 9,577 UAVDT
CEM [170] Faster RCNN 30/20 1080× 540 -7.3 69.6 10.2 19.4 7.3 68.6 72,378 290,962 2,488 4,248 UAVDT
GOG [166] Faster RCNN 30/20 1080× 540 34.4 72.2 18.0 23.3 35.5 25.3 41,126 168,194 14,301 12,516 UAVDT
IOUT [168] Faster RCNN 30/20 1080× 540 36.6 72.1 23.7 30.3 37.4 25.0 42,245 163,881 9,938 10,463 UAVDT

TABLE XIII
COMPUTATION COST OF STATISTICAL OBJECT DETECTION APPROACHES FOR UAV EXCLUSIVE

Reference Network Pipeline Image Size Exp. environment Times/fps Year
RRNet [53] HourGlass 512× 512 - - 2019
Wu et al [68] YOLOv3 1080× 640 Workstation(NVIDIA Tesla K80/-) 15 2019
SlimYOLOv3 [65] YOLOv3-SPP3-90 832× 832 Workstation(NVIDIA GTX 1080Ti/-) 28.3 2019
NDFT [69] ResNet101 - Workstation(-/-) - 2019
ClusDet [57] ResNeXt101 2000× 1500 Workstation(NVIDIA GTX 1080 Ti/-) 1.3 2019
CenterNet [58] HourGlass104 1024× 1024 - - 2019
Yang et al [59] VGG16 320× 320 Worstation(NVIDIA GTX-1080Ti/12GB) 58 2019
Zhang et al [62] ResNet50 - Workstation(NVIDIA GeForce 1060/6GB) - 2019
FS-SSD [66] VGG16 512× 512 Workstation(NVIDIA TITAN X (Pascal)/12GB) 18.3 2019
SAMFR [67] DetNet59 419× 419 - 10 2019
MSOA-Net [56] ResNet50 1333× 800 Workstation(NVIDIA TITAN-Xp/-) 2020
GDF-Net [61] ResNet50 1200× 675 Workstation(NVIDIA Geforce RTX 2080ti/11GB) 17.9 2020
HRDNet [70] ResNeXt50+101 960× 1360 Workstation(NVIDIA GTX 2080Ti/-) 0.7 2020
D-A-FS SSD [63] - - - - 2020
UAV-YOLO [16] YOLOv3 608× 608 Workstation(NVIDIA GTX Titan XP/64GB) 20 2020
SyNet [71] CenterNet - - - 2020
ComNet [72] YOLOv3 416× 416 Workstation(NVIDIA GTX 1080Ti/12GB) 20 2020
ComNet [72] YOLOv3 416× 416 laptop(Intel Core i5-8300/4GB) 3 2020
ComNet [72] YOLOv3 416× 416 Jason Nano(Tegra X1/4GB) 2 2020
MPFPN [73] ResNets101 1440× 800 Workstation(NVIDIA GTX 1080Ti/-) 2.1 2020
D2Det [74] ResNet101 1333× 800 Workstation(NVIDIA GTX Titan Xp/-) 5.9 2020
DAGN [75] YOLOv3 512× 512 Workstation(NVIDIA GeForce GTX 1080Ti/11GB) 25.1 2020
GANet [76] VGG-16/ResNet50 512× 512 Workstation(NVIDIA GTX Titan Xp/-) - 2020
DAN [77] Resnet-50 1500× 1000 - - 2020
Zhang et al [78] PeleeNet 304× 304 Workstation(NVIDIA TITAN X (Pascal)/12GB) 23.6 2020
DSHNet [81] ResNet50 2000× 1500 Workstation(NVIDIA 1080Ti/11GB) 10.8 2021
DNOD [79] VGG19+CSPDarknet53 608× 608 Workstation(NVIDIA GeForce RTX 2080ti/6GB) 38.3 2021
ECas RCNN [54] ResNet50 1450× 800 Workstation(NVIDIA RTX 2080Ti/-) - 2021
DSYolov3 [55] Yolov3 416× 416 Workstation(NVIDIA GTX 1080Ti/-) 13.7 2021
Cas RCNN+FPN [80] ResNet101 1500× 2000 - - 2021

TABLE XIV
COMPUTATION COST OF DL-BASED VIDEO OBJECT DETECTION APPROACHES FOR UAV EXCLUSIVE

Reference Network Pipeline Image Size Exp. environment Times/fps Year
STCA [114] SSD+FCOS+SiamFC 300× 300 Workstation(NVIDIA GeForce GTX 1080/-) - 2019
Abughalieh et al [117] FAST 320× 240 laptop(Core i7-2670QM/6GB) 26.3 2019
Abughalieh et al [117] FAST 320× 240 Embedded(Raspberry Pi 2/1GB) 10.8 2019
Nousi et al [116] Tity YOLO 288× 288 Embedded(Robot Operating System) 23 2019
SCNN [115] ResNet34 224× 224 Workstation(NVIDIA GeForce GTX 1080/-) 246 2019
Zhang et al [118] Cas R-CNN+IRR-PWC [132] 720× 1280 - - 2020
MOR-UAVNet [119] MOR-UAVNetv14 608× 608 Workstation(NVIDIA RTX 2080 Ti/11GB) 10.5 2020
TDFA [120] FlowNet+ Fea Aggregation 720× 1280 Workstation(NVIDIA GeForce GTX TITAN X/12GB) 3.8 2021
STDnet-ST [121] STDnet+ConvNet 1280× 720 - - 2021
STDnet-ST [121] STDnet+ConvNet 1920× 1080 - - 2021
STDnet-ST [121] STDnet+ConvNet 1024× 540 - - 2021

analyzed according to three UAV topics, i.e., SOD, VID, and
MOT. The conclusions were drawn as follows.

UAV data: The public UAV-borne datasets for object de-

tection and tracking are mainly visible data, and the largest
image size is 3840 × 2160 (VisDrone dataset). There are
only one multiple source data called Vehicle dataset with
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TABLE XV
COMPUTATION COST OF DL-BASED MULTIPLE OBJECT TRACKING FOR UAV EXCLUSIVE.

Reference Network Pipeline Image Size Exp. environment Times/fps Year
Deep SORT [147] Faster R-CNN+ Sort 1920× 1080 Workstation(NVIDIA GeForce GTX 1050/-) - 2017
SCTrack [148] Faster R-CNN+YOLOv3 - - - 2018
TNT [152] Faster-RCNN+ SVO+MVS+3d loc - - - 2019
Zhou et al [149] Faster RCNN+ SPHP 1080× 540 Workstation(NVIDIA RTX 2080Ti/-) - 2019

OSIM [150] YOLOv3+Kalman filtering
2720× 1530

Workstation(NVIDIA GeForce GTX 1080 Ti/-) 30 2019+deep appearance feature Workstation(Intel UHD Graphics 630/-)
Self-balance [157] LSTM 1080× 540 Workstation(NVIDIA Titan X/32GB) - 2019
Flow-tracker [151] Optical Flownet+IOU - Workstation(NVIDIA GTX 1080Ti/-) 5 2019
HMTT [153] CenterNet+IOU+OSNet - - - 2019
Yang et al [154] YOLOv3 + dense-trajectory-Voting 1920× 1080 Workstation(NVIDIA GeForce GTX1080Ti/6GB) 8.6 2019
GGD [155] Faster RCNN+GGD - Workstation(NVIDIA GTX 1080/-) - 2019
COMET [156] ResNet-50+Two-stream network 1080× 540 Workstation(NVIDIA Tesla V100/16GB) 24 2019
Abughalieh et al [117] FAST 320× 240 Laptop(Core i7-2670QM/6GB) 26.3 2019
Abughalieh et al [117] FAST 320× 240 Embedded(Raspberry Pi 2/1GB) 10.8 2019
IPGAT [159] SiameseNet+LSTM+CGAN - Workstation(NVIDIA Titan X/32GB) - 2020
Kapania et al [160] YOLOv3+RetinaNet - - - 2020
PAS tracker [161] Cascade R-CNN+Similarity - - - 2020
DAN [77] RetinaNet+DeepSORT 1500× 1000 - 2020
DQN [162] Faster R-CNN - - - 2021
Youssef et al [80] Cascade R-CNN+FPN 2000× 1500 Workstation(NVIDIA Quadro RTX5000/16GB) - 2021

HDHNet [163] HDHNet+DeepSORT+Cas RCNN 1280× 720 Workstation(NVIDIA TITAN RTX/24GB) 4.3 2021
2880× 1620 2.1

visible-thermal infrared cameras equipped with drones. In
label terms, the bounding box is not limited to horizontal
bounding box strongly dependent on robustness to direction,
even have oriented bounding box, e.g., in the Vehicle Dataset.

DL Method: This survey reviews DL-based object detection
and tracking methods for UAV acquired data from three topics.
In general, most classical DL methods, by appending extra
modules available to UAV challenges, can be applied to these
three topics. Specifically, considering different requirements
for precision and speed, the existing static object detection
methods especially for UAV are mainly based on YOLO (e.g.,
UAV-YOLO, ComNet, SlimYOLOv3, DAGN, etc), Faster
RCNN (e.g., Dshnet, NDFT, D2det, etc), and SSD (e.g., FS
SSD). Among them, YOLO, and SSD based methods are
advantageous in speed. For VID and MOT, there are few
methods especially designed for UAV data. Most literature
are still about classical methods for natural scene data, such
as Flownet, LSTM for VID, and DeepSort, SiamRPN for
MOT. As a consequence, their performance is far from perfect,
e.g., the highest AP for VisDrone-VID is just 65.2%, and for
VisDrone-MOT is just 50.80%. Further effort is needed to
solve the interaction of ground objects and the complexity
of the tracking scenes. As for systems, the existing UAV
object detection and tracking systems are mainly based on
the classic DL method, where the speed can be guaranteed
but the accuracy still needs to be improved.

Computer platforms: The image/video acquired by UAV in
this review mainly belongs to the remote sensing community.
In this community, DL-based methods are mainly carried
out on various NVIDIA series GPU, e.g., TITAN Xp, RTX
2080Ti, GTX 1080Ti, etc. Their processing speed is roughly
within the range of 0.2fps ∼ 50fps with different image
size. Although the research reviewed in [116], [117] designs
object detection and tracking system using a Raspberry Pi 2
minicomputer process for object detection with 11fps, or using
a Jetson TX2 embedded platform for object detection with

8.5fps, even 4.5fps [227] and object tracking with 15fps, but
lacks generality.

Object detection with tracking reflects a perfect union
in engineering practice. With tracking assistance, detection
becomes stable and exhibits no jitter. Meanwhile, fine labels
and ID information of objects with the same class are also
given. Through automatic analysis and extraction of trajectory
features, false and missed detection rates can be significantly
reduced. In the near future development of object detection
and tracking in UAV remote sensing is expected and new
techniques will emerge to improve these metrics even further.
In addition, efficiently processing massive multi-source UAV
remote sensing data are worth consideration. UAVs equipped
with different sensors, e.g., visible, infrared, thermal infrared,
multispectral, hyperspectral sensors, can integrate a variety
of sensing modalities to make use of their complementary
properties, which further realizes more robust and accurate
object tracking and detection.
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