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The widespread adoption of whole slide imaging has increased the demand for effective

and efficient gigapixel image analysis. Deep learning is at the forefront of computer

vision, showcasing significant improvements over previous methodologies on visual

understanding. However, whole slide images have billions of pixels and suffer from high

morphological heterogeneity as well as from different types of artifacts. Collectively, these

impede the conventional use of deep learning. For the clinical translation of deep learning

solutions to become a reality, these challenges need to be addressed. In this paper, we

review work on the interdisciplinary attempt of training deep neural networks using whole

slide images, and highlight the different ideas underlying these methodologies.
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1. INTRODUCTION

The adoption of digital pathology into the clinic will arguably be one of the most disruptive
technologies introduced into the routine working environment of pathologists. Digital pathology
has emerged with the digitization of patient tissue samples and in particular the use of digital
whole slide images (WSIs). These can be distributed globally for diagnostic, teaching, and research
purposes. Validation studies have shown correlation between digital diagnosis and glass based
diagnosis (1, 2). However, although multiple whole slide scanners are currently available on the
market, to date only Philips Ultra-fast scanner has been approved by regulatory bodies for the use
in primary diagnosis (3).

Recently, NHS Greater Glasgow and Clyde, one of the largest single site pathology services in
Europe, has begun proceedings to undergo full digitization. As the adoption of digital pathology
becomes wider, automated image analysis of tissuemorphology has the potential to further establish
itself in pathology and ultimately decrease the workload of pathologists, reduce turnaround times
for reporting, and standardize clinical practices. For example, known or novel biomarkers and
histopathological features can be automatically quantified (4–12). Furthermore, deep learning
techniques can be employed to recognize morphological patterns within the specimen for
diagnostic and triaging purposes (13–16).

Successful application of deep learning to WSIs has the potential to create new clinical tools
that surpass current clinical approaches in terms of accuracy, reproducibility, and objectivity while
also providing new insights on various pathologies. However, WSIs are multi-gigabyte images with
typical resolutions of 100, 000 × 100, 000 pixels, present high morphological variance, and often
contain various types of artifacts. These conditions preclude the direct application of conventional
deep learning techniques. Instead, practitioners are faced with two non-trivial challenges. On the
one hand, the visual understanding of the images, impeded by themorphological variance, artifacts,
and typically small data sets, and, on the other hand, the inability of the current state of the
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hardware to facilitate learning from images with such high
resolution, thereby requiring some form of dimensionality
reduction to the images. These two problems are sometimes
referred to as the what and where problems (17, 18). In this
paper, we first discuss important aspects and challenges of WSIs,
and then delve deeper into the different approaches to the two
aforementioned problems.

2. WHOLE SLIDE IMAGES

2.1. Tissue Visualization
Themajority ofWSIs are captured using brightfield illumination,
such as for slides stained with clinically routine haematoxylin
and eosin (H&E). The wider accessibility of H&E stained WSIs,
compared to more bespoke labeling reagents, at present makes
this modality more attractive for deep learning applications. H&E
stained tissue is excellent for the characterization of morphology
within a tissue sample which corroborates to its long use in
clinical practice.

However, H&E stained slides lack in situ molecular data
associated with a cell. In contrast, this is possible with
protein visualization through immunolabeling. The labeling of
multiple cell types and their protein expression can be observed
with multiplexed immunofluorescence (IF) which provides
valuable information in cancer research and particularly in
immunooncology (7, 10, 19). Nevertheless, the analysis of IF
labeled slides using deep learning techniques is impeded by the
limited availability of IF WSI data sets. Potential causes of the
data scarcity include the expense of reagents and of access to
fluorescence scanners, as well as the enormous IFWSI size which
can sometimes exceed 10 gigabytes per image.

2.2. Data Availability
Unlike in numerous other fields which have adopted supervised
deep learning techniques (20, 21), labeled data is more difficult to
obtain in digital pathology, thereby challenging the practicability
of supervised approaches. Despite wider data publication in
the recent years (13, 22–26), much of the published work still
employs proprietary WSI data sets (27).

2.3. Image Format
There are currently multiple whole slide scanners from different
vendors available on the market with the capacity for both
brightfield and fluorescence imaging. Each scanner captures
images using different compression types and sizes, illumination,
objectives, and resolution and also outputs the images in a
different proprietary file format. The lack of a universal image
format can delay the curation of large data sets. The field of
radiology has overcome this issue with the adoption of DICOM
open source file formats allowing large image data sets to be
accessed and interrogated (28, 29). Digital pathology is yet to
widely adopt a single open source file format although work and
discussions are continually progressing toward this end (30, 31).

2.4. Artifacts and Color Variability
To be clinically translatable, deep learning algorithms must
work across large patient populations and generalize over image

artifacts and color variability in staining (32). Artifacts can be
introduced throughout the entire sample preparation workflow
as well as during the imaging process. These can include
ischemia times, fixation times, microtome artifact, staining
reagent variability as well as imaging artifacts from uneven
illumination, focusing, image tiling and fluorescence deposits and
bleed-through. Examples of such artifacts are shown in Figure 1.

Through training, the human brain can become adept at
ignoring artifacts and staining variability, and honing in the
visual information necessary for an accurate diagnosis. To
facilitate an analogous outcome in deep learning models, there
are generally two approaches that can be followed. The first
involves explicit removal of artifacts (e.g., using image filters),
as well the normalization of color variability (33). In contrast,
the second approach takes on a less direct strategy, augmenting
data with often synthetically generated data which captures a
representative variability in artifacts and staining, making their
learning an integral part of the training process. Both approaches
have been employed with some success to correct the variation
from batch effect or from archived clinical samples from different
clinics (34) though this finding has not been universal (15).

3. DEEP LEARNING

3.1. Patch Extraction
Most successful approaches to training deep learning models on
WSIs do not use the whole image as input and instead extract and
use only a small number of patches (6, 23–25). Image patches
are usually square regions with dimensions ranging from 32 ×

32 pixels up to 10,000 × 10,000 pixels with the majority of
approaches using image patches of around 256×256 pixels (6, 25,
35). This approach to reducing the high dimensionality of WSIs
can be seen as human guided feature selection. The way patches
are selected constitutes one of the key areas of research for WSI
analysis. Existing approaches can be grouped based on whether
they employ annotations and at which level (see Figure 2).

3.1.1. Patch Level Annotation
Patch level annotations enable strong supervision since all of
the extracted training patches have class labels. Typically, patch
based annotations are derived from pixel level annotations which
requires experts to annotate all pixels. For instance, given a WSI
which contains cancerous tissue, a pathologist would need to
localize and annotate all cancerous cells.

A simple approach to patch based learning would make use
of all tiled (i.e., non-overlapping) patches. Nevertheless, this
simplicity comes at the cost of excessive computational and
memory overhead, along with a number of other issues, such
as imbalanced classes and slow training. Randomly sampling
patches may lead to an even higher class imbalance considering
how in most cases a patch is much smaller than the original WSI.
It is therefore imperative that sampling is guided.

One way to guide the sampling procedure is with the use of
patch level annotations. For example, on breast cancer metastasis
detection, in multiple papers, patches from normal and tumor
regions were extracted based on pixel level labels that were
provided by pathologists (14, 15, 23, 24, 36–38). Others were able
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FIGURE 1 | Examples of artifact in both fluorescence and brightfield captured images. Images (A–D) are examples of multiplex IF images containing different types of

artifacts. These images were taken from slides labeled with Pan-cytokeratin (green), DAPI (blue), CD3 (yellow), and CD8 (red). (A) Higher intensity of Pan-cytokeratin on

the right region than the left as defined by the dotted white line. (B) White arrows point to high intensity regions in the DAPI channel artificially produced during imaging.

(C,D) White arrows show tears and folds in the tissue that result in out of focus and fluorescence artifacts. Images (E–H) contain examples of artifacts from brightfield

captured images labeled with H&E (E,G,H) or Verhoeff’s elastic stain (F). (E) Black arrow highlights foreign object under coverslip. (F) Red arrow highlights out of focus

region. (G) Black arrow shows tear in tissue. (H) black arrows show cutting artifacts. All images were captured with a 20× objective on a Zeiss Axioscan.z1.

to detect, segment, and classify different types of cell nuclei, colon
glands and other large organs, as well as to classify and localize
a variety of diseases (35, 39, 40). Most successful approaches
also employ hard negative mining, an iterative process whereby
false positives are added to the training data set for further
training (14, 23, 24, 36). Identification of false positives is possible
in such cases due to the availability of patch level annotations.

3.1.2. Slide Level Annotation
Due to practical limitations, in most cases ground truth
labeling is done on the level of WSIs as opposed to individual
patches. Despite this lower granularity of labeling, a number
of deep learning based approaches have demonstrated highly
promising results. Techniques vary and often take on the form of
multiple instance learning, unsupervised learning, reinforcement
learning, and transfer learning, or a combination of thereof.
Intuitively, the goal is usually to identify patches that can
collectively or independently predict the whole slide label.

Preprocessing based on image filters can be employed to
reduce the number of patches that need to be analyzed. Multiple
studies also employ the Otsu, hysteresis, or other types of
threshold as an automatic way of identifying tissue within
the WSI. Other operations such as contrast normalization,
morphological operations, and a problem specific patch scoring
system can also be employed to reduce further the number of
candidate patches and even enable automatic patch localization.

However, verifying that indeed each patch has the same label as
the slide often requires domain-specific expertise and even the
process of coming up with the best image filters requires at the
very least some human intuition.

In order to avoid potential human bias, most approaches
employ unsupervised or multi-instance learning, or a
combination of both. Tellez et al. (18) examined different
methods of unsupervised representation learning for
compressing image patches into a lower dimensional latent
space. It was then possible to train CNNs directly on the
compressed WSIs (18). Others reduced the dimensionality of
patches using traditional dimensionality reduction techniques,
such as principal component analysis, as well as CNNs pretrained
on ImageNet (16, 41). Both Zhu et al. (41) and Yue et al. (16)
subsequently used k-means clustering and found the most
discriminative clusters of patches by training CNNs in a weakly
supervised manner (42). However, the multi-stage structure
of the aforementioned techniques does not allow processes
that come first, i.e., patch compression or patch localization,
to improve following the improvement of later processes, i.e.,
visual understanding.

Several other ideas enable persistent improvement of patch
localization and visual understanding either by iteratively
revising each process or by learning both in an end-to-end
fashion. Hou et al. (43) proposed an expectation maximization
algorithm that enables increasingly more discriminative patches
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FIGURE 2 | (1) Tissue specimen is often investigated as a potential predictor of patient diagnosis, prognosis, or other patient level information. (2,3) Both in clinical

practice and research, in the interest of time, a single tissue slide, or its digital counterpart, is often assessed. Annotations associated with a single tissue section can

be provided such as whether a malignancy is present. (4) Consequent to the gigapixel size of WSIs, image analysis requires further image reduction. Patches are often

extracted based on annotations, if available, or otherwise (see section 3.1.2). Images (3,4) were taken from the public data set of Camelyon17 (24).

to be selected while at each iteration the CNNwas trained further
for 2 epochs. A patch was considered more discriminative if,
when given as an input to the CNN, the prediction was closer
to the slide level label (43). Combalia and Vilaplana (44) instead
of an expectation maximization algorithm, employed Monte
Carlo sampling. One of the most promising emerging directions
aims at incorporating the process of selecting patches within
the optimization of visual understanding (17, 45–49). Courtiol
et al. (45) modified a pretrained ResNet-50 by adding a 1 × 1
convolutional layer after the convolutional layers to get patch
level predictions. A MinMax layer was added on top followed
by fully connected layers to predict the slide level label (45). The
MinMax layer is a type of attention mechanism which gives the
capability of selective training on the most discriminative patches
of both classes.

Instead of extracting features from all or most patches before
selecting a few to learn on, recent work has employed attention
models (17, 47–49). Intuitively, an attention model is initially
as good as random guessing at patch selection but progressively
chooses more discriminative patches that contribute to better
model performance. For example, Qaiser and Rajpoot (47) used

reinforcement learning to train a model in selecting patches at
20× and 10× magnification levels based on a low resolution
image at 2.5× magnification level. Using supervised learning,
BenTaieb and Ghassan Hamarneh (17) employed a recurrent
visual attention network that processes non-overlapping patches
of 5, 000 × 5, 000 pixels at 20× magnification level and
sequentially identifies and analyses different regions within
those patches.

3.1.3. Patient Level Annotation
Usually, multiple WSIs can be acquired for each patient since
the initial tissue occupies a 3D space and therefore multiple cuts
can be made. In this case, the available ground truth can be
specific to the patient, but not to each individual WSI (16, 41).
This is typically addressed based on the same operations that
are used when aggregating patch level predictions to slide level
predictions (16, 41).

3.1.4. Aggregating to a Higher Level
In many cases, training takes place at a lower level, e.g., patch
level, but the end goal resides at a higher level, e.g., slide level.
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For example, in the case of cancer diagnosis, a CNN may be
trained to identify the presence of cancerous cells within a patch.
However, some type of aggregation is needed in order to infer
whether a WSI contains cancerous cells. This may take the form
of a maximum or average operation over some or all patch
predictions. In other cases, traditional machine learning models,
or recurrent neural networks may be employed and trained using
features extracted by a CNN and the ground truth that is available
at a higher level.

3.2. Beyond Patch Extraction
A primary limitation of patch based analysis emerges as
a consequence of analysing a large input image by means
of independent analysis of smaller regions. In particular,
such approaches are inherently unable to capture information
distributed over scales greater than the patch size. For example,
although cell characteristics can be extracted from individual
patches, higher level structural information, such as the shape
or extend of a tumor, can only be captured when analysing
larger regions. Explicitly modeling spatial correlations between
patches has been proposed as a potential solution (36–38).
However, this idea has only been tested with a small number of
neighborhoods and requires patch level annotations. A different
approach involves patch extraction from multiple magnification
levels (15, 27, 43). Others, such as the attention models described
above, consider global context, that is a low resolution image
of the WSI, both when choosing regions to attend to and when
predicting the slide level label (17, 47). Finally, recent work
attempts to ameliorate some of the aforementioned problems
associated with patch based analysis by using much larger patch
sizes (17, 48).

4. DISCUSSION

The aim of computer vision is to create algorithmic solutions
capable of visual understanding. Applications can range from
object identification and detection to image captioning and scene
decomposition. In the past decade most areas of computer vision
have seen remarkable progress, much of it effected by advances in
neural network based learning algorithms (50, 51). The success
of these methodologies, part of the now established field of deep
learning, can be attributed to a number of reasons, with the
transformation of the feature extraction stage often described as
the leading factor.

In the previous decade most approaches focused on finding
ways to explicitly extract features from images for models
subsequently to employ (52, 53). Therefore, feature extraction
and model development were two distinct, independent stages
that were performed sequentially, and where the former was
based on human intuition of what constitutes a good feature.
Automating this process through the use of convolutional
neural networks (CNNs) has been shown to result in more
discriminative features tailored for the problem at hand (13,
23, 25, 26). This is one of the reasons behind the success of
deep learning, and more broadly, neural network based learning,
as feature extraction became a learning process, fundamentally

intertwined with the learning of model parameters. Some of the
other key factors which contributed to the successes of deep
learning include advancements in hardware and software, as well
as the increase in data availability.

The analysis of multi-gigabyte images is a new challenge
for deep learning that has only appeared along the emergence
of digital pathology and whole slide imaging. Building deep
learning models capable of understanding WSIs presents novel
challenges to the field. When patch level labels are available,
patch sampling coupled with hard negativemining can train deep
learning models that in many cases match and even surpass the
accuracy of pathologists (13). For many medical data sets with
patch level annotations, deep learning models seem to excel, and
with the introduction of competitions, such as Camelyon16 and
Camelyon17 (23, 24), this type of deep learning has repeatedly
demonstrated its success in performance and interpretability (6).
Therefore, patch based learning from gigapixel images and patch
level annotations seems to be the closest to clinical employment.
However, in many cases, only labeling with lower granularity can
be attained either because it is very laborious and expensive, or
simply because it is infeasible. In addition, patch level supervision
may be limiting the potential of deep learning models as the
models can only be as good as the annotations provided.

To work with slide or patient level labels, current approaches
focus on thewhere problem, or in other words, on approximating
the spatial distribution of the signal (18). Out of the work we
reviewed, only Tellez et al. (18) has instead simplified the what
problem, i.e., visual understanding, to the point where the where
problem becomes trivial. It would be interesting to see the efficacy
of the work by Tellez et al. on harder problems, such as prognosis
estimation, and with other low dimensional latent mappings. On
the where problem, there are generally two approaches. The first
uses a type ofmeta-learning, where in order to optimize thewhere
problem, the what problem has to first be optimized. The second
approach attempts to optimize both what and where problems
simultaneously in an end-to-end setting. This is done by either
forwarding a set of patches through a CNN and attending on
a few or by localizing and attending to a single patch at each
time step.

Deep learning is already demonstrating its potential across
a wide range of medical problems associated with digital
pathology. However, the need for detailed annotations limits the
applicability of strongly supervised techniques. Other techniques
from weakly supervised, unsupervised, reinforcement, and
transfer learning are employed to counter the need for detailed
annotations while dealing with massive, highly heterogeneous
images and small data sets. This emerging direction away from
strong supervision opens new opportunities in WSI analysis,
such as addressing problems for which the ground truth is only
known at a higher than patch level, e.g., patient survivability and
recurrence prediction.
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