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1 | LOOKING BACKWARDS

One of the things that we learn from the history of science is that,

with some notable exceptions beloved of philosophers of science,

knowledge and understanding progress over time. Looking back, we

see that understanding of the natural world has (mostly) progressed.

Sometimes alternative theories have awaited experimental confirma-

tion; sometimes a new experimental technique has led to significant

theoretical advances. We hope, of course, to see some of that pro-

gression, and to make a contribution to it, over the time scale of our

own careers in science. It is therefore somewhat disconcerting to have

something you wrote more than 30 years ago cited (in Nearing

et al., 2020) as if the comments were relevant today. Things should

have changed, even in hydrology.

The context is that of the availability of the new techniques of

machine learning and deep learning and their application to hydrologi-

cal data. Nearing et al. (2020) suggest that in many respects not much

has actually changed, since I wrote about the need for a new paradigm

in hydrological modelling in 1987 (Beven, 1987). They go on to sug-

gest that machine learning and deep learning can produce models that

perform just as well, if not better, than conceptual models and

process-based hydrological models, including for catchments treated

as ungauged (see also Kratzert, Klotz, Shalev et al., 2019; Kratzert,

Klotz, Herrnegger, et al., 2019).

Should this be considered surprising? Not necessarily in the case

of individual catchments—if there are consistent anomalies or episte-

mic uncertainties in catchment data that mean, for example, that

water balance constraints are not well met, then a deep learning

(DL) model can compensate for those anomalies in ways that a

conceptual model, constrained by water balance cannot. If there are

consistent anomalies between the conceptual structure of a hydrolog-

ical model in a particular catchment and the nature of the hydrological

processes in that catchment then again a DL model might well be able

to capture that behaviour better than a deficient process description

(although it is worth noting that DL models are also subject to choices

in structure and multiple hidden parameters; that is what gives them

flexibility in fitting the training data). Nearing et al. (2020) point out

that there are techniques for incorporating conservation constraints

into physically constrained DL models (see also Wang, Zhang,

Chang, & Li, 2020), but given the epistemic uncertainties in water and

energy balances, then this might not necessarily be advantageous in

obtaining better DL predictions if, for example, the observational data

do not themselves provide consistent mass and energy balance clo-

sure. Indeed, recognizing this, and how to respond to it, might already

represent an advance (e.g., the discussion of Beven, 2019).

2 | DEEP LEARNING AND THE UNGAUGED

CATCHMENT

Somewhat more interesting is the result that for catchments treated

as ungauged, a DL model can provide better hydrograph predictions

than the types of methods traditionally used in such situations, at

least given enough training data sets. In fact, Kratzert, Klotz, Shalev,

et al. (2019) suggest that the DL methods seem to perform better

when many quite different catchment data sets are used in training.

They can also be made specific to particular types of catchment char-

acteristic and forcing data inputs (e.g., using modelled precipitation

Received: 8 May 2020 Accepted: 11 May 2020

DOI: 10.1002/hyp.13805

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Author. Hydrological Processes published by John Wiley & Sons Ltd.

3608 Hydrological Processes. 2020;34:3608–3613.wileyonlinelibrary.com/journal/hyp

https://orcid.org/0000-0001-7465-3934
mailto:k.beven@lancaster.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hyp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhyp.13805&domain=pdf&date_stamp=2020-06-19


inputs or radar products rather than that observed from raingauges).

Should this also not be considered surprising? DL trained on a wide

range of catchment conditions and responses does have the potential

to reduce the impact of anomalies in the data set, which could lead to

overfitting in the case of conceptual models calibrated on single

catchments and the extrapolation of overfitted parameters to the

ungauged case. In doing so they might be able to identify what

Young (2013) calls the dominant modes of response in the application

of his data-based mechanistic modelling strategy. The dominant

modes of response for catchments are, after all, rather simple. It rains

and, if the antecedent conditions are wet enough, there is a conse-

quent hydrograph. The difficulty in all hydrological modelling is in the

identification of how the processes that control the volume of that

hydrograph change with the rainfall (or snowmelt) inputs and anteced-

ent conditions. Timing of the hydrograph seems to raise less difficul-

ties (though see the discussion of Beven, 2020). In this respect,

therefore, the problem has not really changed since the introduction

of the Rational Method by Mulvany (1851) and Kuichling (1889). The

coefficient of the rational method could equally be the predictand of a

machine learning analysis using catchment characteristics and ante-

cedent states as inputs. As pointed out by Nearing et al. (2020) that

could also be set up as a data assimilation exercise to improve the pre-

dictions of the next event.

Kratzert, Klotz, Shalev, et al.. (2019), Kratzert, Klotz, Herrnegger,

et al. (2019) and Nearing et al. (2020) have reported that the only

catchment characteristics that seem to have predictive capability are

vegetation type and seasonality, while it has been difficult to detect

(and therefore predict) any changes in response, since the past data

do not necessarily contain the information relevant to expected future

changes. Something does seem surprising here. A priori we would

expect the geology of an ungauged catchment to have an important

effect on its response characteristics, especially the recession charac-

teristics and relationship between storage and runoff coefficients. It is

also clear that this is not simply a matter of proximity or regional

catchment characteristics; recession characteristics can vary dramati-

cally over short distances and with scale in some regions, depending

on changes in geology and soils (e.g., Oudin, Kay, Andréassian, &

Perrin, 2010; Jencso & McGlynn, 2011; Bergstrom, Jencso, &

McGlynn, 2016; and the study using the correlation and regression

tree data analysis method of Fang & Shen, 2017). This information is

not available to their DL algorithms (other than something called “geo-

logical permeability”), so how does it do so well on predicting the

responses of ungauged basins where the geological characteristics are

not well defined?

There would appear to be two answers to this question. One is

that, in fact, it does not do that well. The distribution of nash-sutcliffe

efficiency values for predictions of catchment treated as ungauged

case ranges from <0 to >0.95 for the best long-term short-memory

network (LSTM) DL model (Kratzert, Klotz, Herrnegger, et al., 2019;

Kratzert, Klotz, Shalev, et al., 2019). So DL has not solved the

ungauged catchment problem, but it did show better performance

than the two conceptual models that were compared (and that will be

subject to similar problems of the input data and, from the choice of

conceptual assumptions, the potential to have quite the wrong struc-

ture for specific catchments). Clearly there must be other issues at

play here.

Secondly, the sensitivity coefficients for the DL show distinct var-

iations in behaviour across the catchments in the training data set.

This reflects the range of hydrological responses across catchment

characteristics and scales (although there is no need to specify classes

using this methodology; Kratzert, Klotz, Herrnegger, et al., 2019 also

show that the LSTM model performs somewhat better than a k-means

clustering algorithm for several hydrological signatures). The essence

of predicting an ungauged catchment is then to map that catchment

into the DL model space. This is analogous to the mapping suggested

by Beven (2000) as a way of assessing the uncertainty in parameteri-

zations of a conceptual model (and then thinking about how that

uncertainty might be further constrained). Such a mapping is neces-

sarily based on the catchment characteristics that are available to the

DL as indices. But most catchment indices are only surrogate variables

and geology, for example, is one characteristic that is not very well

reflected in indices that can be used for prediction (a base flow index

cannot serve that purpose, since it will not be available a priori for

ungauged catchments but must itself be predicted). In this respect the

use of a DL approach might indeed be advantageous because the

nature of the training data can compensate for the lack of direct

hydrological relevance of such indices (and in doing so have more flex-

ibility than, e.g., the multiple regressions to estimate the model param-

eters used in other more traditional regionalization approaches).

3 | MAPPING UNIQUE CATCHMENTS

INTO A MODEL SPACE

This idea of mapping a catchment (gauged or ungauged) into the

model spacewas originally raised byBeven (2000; 2001; 2002a; 2002b)

in the context of uniqueness of place in hydrological simulation. It was

extended in Beven and Freer (2001) in the application of a conceptual

hydrological model. The idea was that, given our limited knowledge of

catchment characteristics and understanding of catchment responses,

it would be impossible to map that catchment to a single point in the

model space (this could apply to both model structures and parameter

sets). The uncertainty in model predictions does not then come from

the model space itself (even if providing stochastic rather than deter-

ministic outputs), it comes from the mapping of an area of reality into

the model space given the available information. The concept then

allows consideration of how that mapping might be made more pre-

cise, perhaps by applications of likelihoods, hypothesis testing and

model rejection, and the collection of additional data.

It is interesting to consider the application of a similar concept to

DL models. Kratzert, Klotz, Brenner, Schulz, and Herrnegger (2018)

give an example of these where a pre-trained LSTM model based on

regional data (effectively defining a generalised model space) can be

refined by more limited data for an individual basin; this gives better

results than only training on the limited data for the catchment itself,

even though the regional model might include catchments with a wide
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range of behaviours. In addition, as Nearing et al. (2020) suggest, DL

models, given enough training data, can be trained to represent not

only deterministic responses but also the parameters of the uncer-

tainty in outputs (variances or quantiles). The DL model space might

also therefore be deterministic or stochastic, but the range of out-

comes is well defined given a set of inputs. The nature of that space

will, however, be dependent on how the DL has been trained and

what objective functions have been used.

In predicting an ungauged catchment, with its unique characteris-

tics, we then have the problem of mapping that catchment, for which

we have limited knowledge, into that model space. We should surely

not expect that the mapping will be to a precise point in that space,

but that there will be some uncertainty associated with our lack of

knowledge. This is one way of structuring our understanding of how

that catchment might function when that mapping is applied in a

thoughtful way. To some extent a stochastic DL should be able to

reflect the variation seen for somewhat similar gauged catchments in

the training data set, given a big enough sample, even though all those

gauged catchments have their own uniqueness of place poorly

reflected in characteristic indices. This will be the case for those

ungauged catchments that are similar in the way defined by the train-

ing process (remembering that for all machine learning methods

extrapolating beyond the range of the training data for nonlinear sys-

tems may not be well constrained). In this sense therefore DL models

provide a model space constrained by the training data into which the

characteristics of some new ungauged catchment can be mapped with

the aim of predicting the response of that catchment without worry-

ing about any process information. Nearing et al. (2020) posit that DL

might be able to do this better than the hydrologist, though again

information about the effect of geology on hydrological response

might be particularly limited (for both!).

More process information could, of course, be used if it was avail-

able in some form for all the training data catchments and the catch-

ment of interest. In applying process-based models we have

traditionally expected the right sort of response to be predicted by

specifying the physical parameters of a catchment. That this has

proven rather difficult should not actually be surprising, it was already

underlying my call for a new paradigm in modelling in 1987. Since

then, computational power has hugely increased, but knowledge of

catchment processes and characteristics in most catchments has not

(with some notable research catchment and critical zone observatory

exceptions). The difficulty in predicting the future responses of catch-

ment management strategies that might change those characteristics

should therefore be even less surprising. It is evident that DL can then

only help us in that when such changes are reflected in the indices

used to control the pathways through the DL network (and when

there are informative relevant cases in the training data).

4 | LOOKING FORWARDS

The success of DL over conceptual models and process-based hydro-

logical models (and the continued failure to get acceptable simulation

results for some catchments, see also Oudin, Andréassian, Perrin,

Michel, & Le Moine, 2008 using more conventional methods) would

then appear to pose a number of important questions for the future

of hydrological science.

1. Why are some catchments so consistently poorly simulated?

2. How far can DL results be interpreted to derive inferences about

processes and scale in particular catchments? Can we learn about

a more “correct,” possibly scale dependent, physics using ML/DL

methods?

3. What process information might prove useful in improving DL

(and other) models, particularly in making predictions about a

changed future?

4. How best to allow for local information reflecting uniqueness of

place?

Question 1 points again to lack of knowledge. That might be lack

of knowledge about inconsistencies in the data or lack of knowledge

about how to represent processes. That DL models are not able to

compensate for that lack of knowledge in some catchments suggests

that the data issues might be the first thing to look at (see also

Beven, 2019; Beven et al., 2019). Indeed, experience suggests that

applying data learning methods can reveal anomalies of interest in a

data set (e.g., Iorgulescu & Beven, 2004). We need to do better in

assessing actual catchment inputs, observed outputs and evaluating

the importance of data uncertainties and unmeasured fluxes in fitting

models of any type. DL models might be informative in this respect, in

that they might suggest where data inconsistencies are most signifi-

cant relative to the constraints of water and energy balances.

The importance of such data inconsistencies also means that we

should be careful about inferences made in addressing Question

2. Inconsistencies and anomalies will affect such inference, even if we

might be prepared to accept that DL might yield better scale-

dependent functional descriptions than conceptual model formula-

tions. Of course, if all we need is to have better forecasting models,

then this is not important. We can simply take advantage of the better

predictive capability. It is more important if we want to learn about

processes with a view to predicting how those processes will change

in future (and particularly when there may be no representative surro-

gate of the future in the training set). I think that there are situations

where this might be possible. For example, it might be possible to

learn about a generalized form of hysteresis in storage discharge rela-

tionships directly from analysis of the data. Both observational data

(e.g., Beven, 2006) and model predictions (e.g., using the MIPs model

in Davies & Beven, 2015) suggest that the hysteretic behaviour might

be complex and state dependent, especially in catchments with large

storage volumes, but might provide more insight than using a simple

functional relationship between storage and discharge (e.g., the vari-

ability that is neglected in doing so in figure 6 from Kirchner, 2009).

It might also be that making inferences from DL models might be

easier if process information about catchment responses could be

incorporated more directly (Question 3). Indeed, Nearing et al. (2020)

(in a section called “Skip the hydrologist?”) suggest that it needs to be
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demonstrated that any form of process information can actually bene-

fit prediction models based only on DL. This has long been discussed

in the context of conceptual models, but there is then a significant

problem of incommensurability of observed and predicted variables.

Incommensurability is less of a problem for DL models, it is only

required that there should be useful information that can be extracted

from whatever process information could be made available. How

that information is used (or not) would be useful making inferences

about process (if, of course, we have already addressed the issues of

Question 1).

But what process information might be useful (given the resources

to make it available)? Experience suggests that point information on

either states or characteristic parameters is not so very useful (e.g., the

distributed water table information of Lamb, Beven, Myrabø, and

S. (1998), Blazkova, Beven, Tacheci, & Kulasova, 2002; Freer, McMillan,

McDonnell, & Beven, 2004). More integrative measures such as pat-

terns of saturation (Blazkova, Beven, & Kulasova, 2002; Güntner,

Uhlenbrook, Seibert, & Leibundgut, 1999), bulk subsurface storage

(e.g., Güntner et al., 2017), connectivity of hillslopes (Bergstrom

et al., 2016; Hopp & McDonnell, 2009; Jencso & McGlynn, 2011;

Tetzlaff, Birkel, Dick, Geris, & Soulsby, 2014) or residence time distribu-

tions (Benettin et al., 2017; Harman, 2019) might be more useful. They

require considerable effort, but perhaps this effort would be justified if

we really want to improve our predictive models and learn more by

inference from DL approaches. It would be interesting, for example, to

see a DL study of a catchment where the time scales of hydrographs

and water table responses (and also residence times over time) are

quite different to see what insights could be gained (see Beven, 2020;

McDonnell & Beven, 2014).

But in addressing how to generalize in this way, in Questions 1–3,

we will not entirely escape the issues of Question 4. How to deal with

uniqueness of place in creating models of everywhere, to my mind at

least, is one of the most interesting questions in hydrology

(Beven, 2000, 2007; Blair et al., 2019). Others will not agree of

course. Focusing on uniqueness of place is not a way to understand

any universal laws of hydrology (in so far as they might exist, see

Dooge, 1986). It might rather be viewed as trying to understand the

anomalies of those laws. But there may be significant process

(or data) information in those anomalies.

5 | UNIQUENESS OF PLACE AND

HYDROLOGICAL UNDERSTANDING

I am writing this in Mallerstang, the upper Eden valley in Cumbria. In

the last few days I have walked over both sides of the valley. There is

an elevation difference of about 500 m between valley bottom and the

broad peaks on either side. The geology is Carboniferous, with lime-

stones and gritstones predominating, but it also shows plenty of evi-

dence of the remnants of the last glaciation with valley bottom and

lateral moraines and occasional erratics sitting on limestone pavement.

Streams and springs appear from the limestone under very wet condi-

tions, but the response is generally flashy. The limestone does not here

provide large storage volumes that give large volumes of baseflow,

but might still mean that the subsurface divide might differ from the

surface divide. Between the villages of Ravenstonedale and Newbiggin-

on-Lune, at the divide between the valleys of the Eden and the Lune,

there is limestone overlain by glacial drumlines: the divide is difficult to

locate and it is quite possible that it changes location with the sequence

of wetting and drying.

The Eden in Mallerstang has mostly a mobile gravel bed, with

some bedrock outcrops and is underfit with respect to its overbank

areas, suggesting larger discharges in the post-glacial period. Tribu-

taries are incised into the valley bottom moraines in places. There is a

sharp change in direction of the river in the headwaters from south

west to northerly flowing, suggesting that these headwaters were

captured from the River Ure and Wensleydale at the end of the last

glaciation. Vegetation is mostly rough pasture, with some improved

pasture in the valley bottoms, and eroded peat up on the fells. Large

areas of the valley sides have been planted with young trees in the

last couple of years. These areas are fenced, keeping out the sheep,

so that the moorland grasses and reeds have grown much denser

(increasing storage and roughness and making the walking harder!).

Because of changes in farming subsidies, stocking densities of sheep

on the fells have also declined. The hydrology will, therefore, be

changing, depending on the variability of the inputs (and how many of

the young trees survive on the fells).

So this is a typical upland catchment of the English Pennines,

complex in its history and characteristics, and a bit different from

adjacent and similar catchments. It suffers from similar problems of

not knowing exactly what the patterns of inputs are. The most

upstream flow measurement site (apart from the small Fellside Beck)

is an Environment Agency compound Crump weir at Kirkby Stephen

where the catchment area is 65.8 km2. The sub-catchment at Fellside

Beck is currently being monitored in one of the areas planted with

young trees. There are other, “similar,” tributaries along the valley,

that are not being monitored and will differ in detail in their shape,

topography, surficial and subsurface geology, soils and patterns of

tree planting. Only some of the relevant spatial characteristics can be

assessed from terrain maps and remote sensing. But we want to make

predictions about the future responses of those catchment areas

without (as yet) really having sufficient information to do so.

One approach to the problem is to try and build in what informa-

tion we do have into a distributed model of the processes. As Nearing

et al. (2020) point out, however, there have been millions of dollars

invested in such models without real demonstration that this

approach is successful (this was already the case in 1987 but much

more has been spent since). As I pointed out in Beven (2006), I do not

think that is only a matter of a lack of local information in applying

such models; there remain issues about how the processes are repre-

sented. DL can certainly bypass this problem. We can monitor at dif-

ferent scales (plot to first order to higher order streams); we can use

the resulting data with DL (once we have enough data at least) to

define a predictive model. The smaller scale might contain information

useful at predicting the larger scale (at least under current conditions),

but as we know only too well, other processes and sources of
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variability also come into play. Given sufficient (good quality) data we

might indeed be able to identify which sites, or periods of time, stand

out as anomalous and that need further investigation of their unique-

ness. And where there is the possibility of collecting additional data,

there may be the potential to evaluate which data would be most

valuable in defining uniqueness and testing models and parameter

sets as hypotheses about that place (e.g., Beven, 2018).

6 | LEARNING FROM DEEP LEARNING

The question then is whether this will make process models redun-

dant (as suggested by Nearing et al., 2020) or whether we can analyse

the structure of DL models to make inferences about what improved

local process models should look like? The first may well prove to be

the case when all we are interested in is prediction. But to predict the

impacts of scenarios for future water management, where in some

cases spatial patterns of implementation might be important

(e.g., avoiding synchronicity of sub-catchment peaks in flood manage-

ment), the first would require that the training data incorporate exis-

ting information about what those future scenarios might look like,

though this will necessarily be at catchments with somewhat different

characteristics. That suggests that there will still be a role for the

second strategy of using DL models to improve process information

and understanding. And, clearly, this is essential to being within scope

for Hydrological Processes!

This could prove to be a fascinating, but rather difficult, area of

research. Attempts to learn from DL models have, to date, been rather

crude (e.g., the correlations between DL states and conceptual model

states in Kratzert et al., 2019 do not really yield much in the way of

process understanding). There is also the question of having multiple

approaches to DL available (e.g., Shen, 2018), and different ways of

training their (many) parameters. Training does not, after all, differ all

that much from optimization and calibration strategies other than in

name. There will be similar problems of data uncertainties, parameter

uncertainties and equifinality. But there is real potential to provide

new insights about how catchments work by the use of DL methods.

Given the limitations of the data we have, however, it remains to be

seen how far that potential can be realised.
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