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Purpose: To investigate whether a deep learning-assisted contour (DLAC) could provide

greater accuracy, inter-observer consistency, and efficiency compared with a manual

contour (MC) of the clinical target volume (CTV) for non-small cell lung cancer (NSCLC)

receiving postoperative radiotherapy (PORT).

Materials and Methods: A deep dilated residual network was used to achieve the

effective automatic contour of the CTV. Eleven junior physicians contoured CTVs on 19

patients by using bothMC andDLACmethods independently. Comparedwith the ground

truth, the accuracy of the contour was evaluated by using the Dice coefficient and mean

distance to agreement (MDTA). The coefficient of variation (CV) and standard distance

deviation (SDD) were rendered to measure the inter-observer variability or consistency.

The time consumed for each of the two contouring methods was also compared.

Results: A total of 418 CTV sets were generated. DLAC improved contour accuracy

when compared with MC and was associated with a larger Dice coefficient (mean ± SD:

0.75± 0.06 vs. 0.72± 0.07, p< 0.001) and smaller MDTA (mean± SD: 2.97± 0.91mm

vs. 3.07 ± 0.98mm, p < 0.001). The DLAC was also associated with decreased inter-

observer variability, with a smaller CV (mean ± SD: 0.129 ± 0.040 vs. 0.183 ± 0.043,

p < 0.001) and SDD (mean ± SD: 0.47 ± 0.22mm vs. 0.72 ± 0.41mm, p < 0.001). In

addition, a value of 35% of time saving was provided by the DLAC (median: 14.81min

vs. 9.59min, p < 0.001).

Conclusions: Compared with MC, the DLAC is a promising strategy to obtain superior

accuracy, consistency, and efficiency for the PORT-CTV in NSCLC.

Keywords: non-small cell lung cancer, postoperative radiotherapy, clinical target volume, deep learning, automatic

contour
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INTRODUCTION

Accurate delineation of the clinical target volume (CTV) is
one of the most crucial aspects of treatment planning in
radiotherapy. The quality of this process depends on the
expertise of the individual observer and is associated with quality
outcomes in lung cancer care (1–4). However, significant inter-
observer variation, even among experts in clinical trials with
specific protocols, has been reported (4–6). In less-developed
countries that lack a sufficient number of facilities and training
opportunities for radiation oncologists, there is even greater
disparity in clinical expertise among physicians from different
areas (7).

Computer-aided tools can potentially improve contour
accuracy and reduce variation. Recently, deep learning methods
have been increasingly involved in the field of radiotherapy (8–
19). Our group has also previously established a series of auto-
segmentation models in breast cancer and rectal cancer that
use big data and deep learning (10, 11). As a state of the art
technique, deep learning has manifested superior performances
by enabling self-taught discovery of informative representations
and using hierarchical layers of learned abstraction to accomplish
high-level tasks efficiently (10). Another important advantage
of deep learning methods is that they are suitable for various
patient body sizes and shapes. Even if input images show huge
differences in body size or shape, deep learning can increase
knowledge from a sufficient number of examples and produce
excellent segmentation results (10, 11).

With regard to lung cancer, deep learning-related published
data have predominantly focused on organs at risk (OAR) or
gross tumor contouring (14–18, 20, 21) and have consistently
outperformed the existing solutions in most settings but still
require final manual modification before the eventual clinical
implementation (14, 20, 21). However, few studies have explored
the role of this cutting-edge technique for CTV contouring in
patients who received postoperative radiation therapy (PORT).

In this study, we established a robust deep learning algorithm
to segment the CTV for non-small cell lung cancer (NSCLC)
receiving PORT and determined if the assistance of deep learning
could provide greater accuracy, inter-observer consistency, and
contouring efficiency than those of manual delineation.

MATERIALS AND METHODS

Patient Selection
We selected 250 pN2-NSCLC patients who received PORT in our
department between 2012 and 2016 to build the deep learning
model, with 200 patients randomly assigned to a training set and
50 to the validation set. We then selected 19 patients treated
between 2016 and 2018 in our department as the test cohort
to generate the automatic delineation of the CTV. All patients
were simulated in the supine position with both arms raised
above the head. The thickness of all scanned slices was 5mm,
and all computed tomography (CT) images were transferred
using the Digital Imaging and Communications in Medicine
(DICOM) format. The CT data were acquired on a Somatom
Definition AS 40 (Siemens Healthcare, Forchheim, Germany)

or on Brilliance CT Big Bore (Philips Healthcare, Best, the
Netherlands) systems.

Deep Learning for Segmentation
We introduced a robust deep learning algorithm based on
ResNet-101 to segment the CTV for PORT patients, which has
been proven to provide high performance in CTV delineation
(11). An end-to-end segmentation framework was able to predict
pixel-wise class labels in the CT images. The dilated module
with different atrous rates was able to extract multi-scale features
from the CT, which led to a more robust model. The training,
validation, and testing were implemented in Caffe by using the
GeForce R© GTX 1080 Ti graphics card (22). The inputs to the
deep learning model were the two-dimensional CT images, and
the outputs were the corresponding labels of the CTV. The
training set (comprising CT images and manual segmentation
labels) was used to tune the parameters of the network. Data
augmentation methods, such as random cropping, rotation,
scaling, and contrast adjustment, were adopted to enlarge the
training set. The following training strategy of the network was
used: batch size of 1, momentum of 0.9, weight decay of 0.0005,
learning rate policy of poly, initial learning rate of 0.001, power
of 0.9, and training iterations of 80K. The model with the
highest performance on the validation set was selected as the
final model.

Ground Truth Contours
Three senior radiation oncologists (ZZ, NB, and JW with work
experience > 10 years) also contoured the CTV in accordance
with the protocol of a randomized phase III trial of the PORT
study primarily investigated by our institute (NCT00880971)
while blinded to the others’ work on the same set of PORT
images. The majority voting was used to generate the ground
truth (GT).

Contour Methods
Eleven junior radiation oncologists (working experience ≤ 5
years) from 11 institutions with various volumes of radiation
oncology departments (detailed information of the departments’
volumes is presented in Supplementary Table 1) were selected
to independently contour the CTV on the same set of PORT
images. Each radiation oncologist created two contour sets of
the CTV in this study: (1) a manual contour (MC) and (2)
a deep learning-assisted contour (DLAC). All MC tasks were
performed in the treatment planning system (TPS) Pinnacle 9.10
(Philips Radiation Oncology Systems, Fitchburg, WI). In terms
of the DLAC, the physicians first ran the auto-contouring script,
which could enable the automatic delineation of the PORT-
CTV on the CT images using the previously trained model,
and then wrote the contours into the DICOM RT structures file
of the TPS. Afterwards, the physicians manually adjusted these
automatic contours in the TPS at their discretion to generate
the DLAC. For each contouring task, the starting and ending
time was recorded by using an in-house script. The interval
time between them was defined as the contouring time, with an
accuracy of 1 s.
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Accuracy Assessment
The accuracy of the junior radiation oncologists’ delineation was
evaluated by using the Dice coefficient and mean distance to
agreement (MDTA) with the GT as a reference (14, 23–25). The
Dice coefficient is defined as:

Dice coefficient = 2(VJ∩VGT)/(VJ + VGT)

where VJ represents the CTV contoured by each junior physician,
and VGT represents the ground truth CTV created by the three
senior physicians. A value of 1 indicates a perfect concordance
between two contours. MDTA is the mean distance between the
surfaces of both volumes, with a value of 0 representing perfect
agreement. Both Dice coefficient and MDTA were generated in
MIM software (version: 6.9.2, Cleveland, OH).

Inter-observer Consistency Assessment
The inter-observer consistency was assessed using both volume
and spatial metrics. The coefficient of variation (CV) was
defined as the standard deviation (SD) divided by the mean
CTV volume of all observers for each patient contoured with
each delineation method, where a larger CV indicates greater
variability or lower consistency. For the spatial metrics, the
standard distance deviation (SDD) was used to measure the
dispersion of the centroid distribution of CTVs contoured by the
11 junior radiation oncologists, which represents the standard
deviation of the distance of each point from themean center (26):

Xc =

∑n
i=1 Xi

n

Yc =

∑n
i=1 Yi

n

Zc =

∑n
i=1 Zi

n

SDD =

√

∑n
i=1 (Xi− Xc)2 +

∑n
i=1 (Yi− Yc)2 +

∑n
i=1 (Zi− Zc )2

N

where Xi, Yi, and Zi represent the coordinates of the centroids
of the CTVs created by the junior radiation oncologists and
can be obtained from the MIM. Xc, Yc, and Zc represent the
coordinates of the mean center of a set of centroids of CTVs
for each patient delineated by the 11 junior radiation oncologists
using one specific contour method. The unit of SDD is cm and
a larger SDD indicates a greater systematic shift across all of the
radiation oncologists.

Statistical Analysis
The continuous variables were presented as the mean ± SD or
median (interquartile range), which depended on the normality
of the data. Correspondingly, the t-test or Mann–Whitney U-
test were used to compare the variables between two contouring
methods. These analyses were all performed in SPSS version 19.0
(SPSS, Inc. IBM, Armonk, NY, USA). All tests were two sided, and
p≤ 0.05 was considered to be indicative of statistical significance.

RESULTS

General Characteristics of Study Patients
General characteristics of the patients in the test cohort are
demonstrated in Table 1. The median age was 52 and the
dominant pathology was adenocarcinoma. Primary location of
tumors included 42.1% in upper lobe, 10.5% in middle lobe, and
47.4% in lower lobe. All patients had N2 stage and 52.6% had
T2 stage of disease. More than half of the patients carried ≥ 3
stations of lymph node involvement and the median number of
metastatic lymph node was 6.

Descriptive Statistics of CTV Volume
As shown in Figure 1A, the mean volume of the deep learning
contour-based CTV (DLC) and GT-CTV was 94.30 cc (SD: 25.06
cc) and 93.78 cc (SD: 24.70 cc), respectively (p = 0.43). As for
juniors’ contour, a total of 418 unique CTV sets were generated,
with 209 sets (19× 11= 209) for theMC andDLAC, respectively.
The volume measures for each junior radiation oncologist with
DLAC andMC are shown in Figure 1B and no volume difference
was observed between two methods (p = 0.49). Figure 2 shows
the CTV contours of the 11 junior radiation oncologists with the
DLAC and MC and the GT contours for a representative patient.

Accuracy Analysis
Using GT contours as the reference, the Dice coefficient of each
junior radiation oncologist for the DLAC and MC is graphed
in Figure 3A, which revealed a greater Dice coefficient for the
DLAC than for the MC (mean± SD: 0.75± 0.06 vs. 0.72± 0.07;
p < 0.001). Similarly, the DLAC also presented a smaller MDTA
per individual CTV set than that of the MC performed by the
junior radiation oncologists (mean ± SD: 2.97mm ± 0.91mm
vs. 3.07mm± 0.98mm; p < 0.001), as shown in Figure 3B.

TABLE 1 | General characteristics of study patients.

Characteristics Number (n = 19)

Age Median (Range) 52 (35, 66)

Gender Male 10 (52.6%)

Female 9 (47.4%)

Pathology Adenocarcinoma 18 (94.7%)

Squamous cell carcinoma 1 (5.3%)

Primary Lobe Upper 8 (42.1%)

Middle 2 (10.5%)

Lower 9 (47.4%)

T Stage T1 6 (31.6%)

T2 10 (52.6%)

T3 2 (10.5%)

T4 1 (5.3%)

Number of involved nodal station 1 3 (15.8%)

2 6 (31.6%)

≥ 3 10 (52.6%)

Number of resected lymph node Median (Range) 19 (10, 40)

Number of involved lymph node Median (Range) 6 (1, 17)
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FIGURE 1 | (A) Scatter plots of the volume measurements of the senior radiation oncologists’ contours for each patient with a DLC (black triangle) and MC (yellow

square) and (B) summary of the junior radiation oncologists’ contours for each patient with a DLAC (blue boxes) and MC (yellow boxes), with whiskers from the 5–95th

percentiles. DLC, deep learning contour; DLAC, deep learning-assisted contour; MC, manual contour.

FIGURE 2 | Clinical target volume delineated by the 11 junior radiation oncologists and GT contours (blue bold line) for a representative patient with an MC (A) and a

DLAC (B). DLAC, deep learning-assisted contour; MC, manual contour; GT, ground truth contour.

Inter-observer Consistency Analysis
For volume metrics of inter-observer variability, the DLAC
introduced a remarkably lower CV than that of the MC (mean±

SD: 0.129± 0.040 vs. 0.183± 0.043; p< 0.001; Figure 4A), which
resulted in a 30% reduction of the CV. With regard to spatial
metrics, the DLAC was associated with a significantly smaller
SDD than that of the MC (mean ± SD: 0.47 ± 0.22mm vs.
0.72 ± 0.41mm; p < 0.001), which led to a 35% decrease in the
SDD (Figure 4B).

Contouring Time Analysis
Figure 5 shows the contouring time of the two methods for each
patient. The median contouring time of the junior radiation

oncologists when using the MC and DLAC for one patient
were 14.81min (interquartile range: 11.88, 18.64) and 9.59min
(interquartile range: 7.64, 11.91), respectively, which resulted in
a 35% reduction (absolute: 5.22min) in time consumption with
assistance of the DLC (p < 0.001; Figure 5).

DISCUSSION

Accurate delineation of the CTV is one of themost crucial aspects
of treatment planning in radiation therapy, whereas the quality
of CTV delineation largely depends on the academic expertise
of the individual physician. In our country, with a shortage of
facilities and workforce, there is inevitably a great disparity in
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FIGURE 3 | (A) Dice coefficient of the contours with a DLAC (blue boxes) and MC (yellow boxes) and (B) Mean distance to agreement (MDTA) of the contours with a

DLAC (blue boxes) and MC (yellow boxes), compared with the GT contour for each junior radiation oncologist with whiskers from the 5–95th percentiles. DLAC, deep

learning-assisted contour; MC, manual contour; GT, ground truth contour.

FIGURE 4 | (A) Coefficient of variation (CV) of the clinical target volume and (B) Standard distance deviation (SDD) of centroids for each patient with the DLAC (blue

bars) and MC method (yellow bars). DLAC, deep learning-assisted contour; MC, manual contour.

clinical expertise across physicians from different areas (7). The
introduction of an advantageous automatic contouring tool has
been strongly expected to improve contour accuracy as well
as reduce contour discrepancy and time consumption. To the
best of our knowledge, this is the first study to evaluate the
performance of a DLAC of CTV for patients receiving PORT.
As hypothesized, our results demonstrated superior accuracy and
inter-observer consistency, and time saving resulted from the
introduction of deep learning.

For pN2 NSCLC patients receiving a complete resection,
the role of PORT is still open to debate. Notwithstanding the
paucity of randomized data, a majority of evidence suggests that
selected high-risk patients could benefit from PORT in terms
of both local control and OS (27–33). For a target-generating
study, the contours delineated by experienced expert physicians
from high-volume institutions is generally considered GT as the
reference (13, 14). Therefore, the increased consistency between
the evaluated contours and the GT indicates an improvement
in the contour accuracy. In the present study, the GT contours

were generated based on the contemporary re-delineation by
the three senior radiation oncologists as per the protocol of a
randomized phase III trial of a PORT study primarily investigated
by our institute, rather than by simply using the previous
contours administered in clinical practice. This merit would be
meaningful in avoiding the potential inter-observer variation
among multiple senior physicians who created those contours
for clinical practice. The MDTA and the Dice coefficient are
widely accepted parameters for the evaluation of consistency
between different segmentations (12, 14). The MDTA is a
distance parameter, whereas the Dice coefficient is a volume
overlap index, with a smaller MDTA and higher Dice coefficient
indicating a greater contour accuracy. In our study that
used senior radiation oncologists’ contours as the benchmark,
contours of the DLAC by junior radiation oncologists from
11 centers achieved a higher Dice coefficient and smaller
MDTA than those achieved by the MC, which indicated that
the assistance of deep learning improved the accuracy of
their contours.
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FIGURE 5 | Contouring time of the DLAC (blue boxes) and MC (yellow boxes), with whiskers from the 5–95th percentile displayed for each individual patient. DLAC,

deep learning-assisted contour; MC, manual contour.

Regarding the automatic segmentation of a target specifically
for lung cancer, we noted that all of the published studies assessed
the contour accuracy of the gross tumor on the basis of MR
or PET, with the reported Dice coefficient ranging from 0.71 to
0.93 (15–18). To the best of our knowledge, the present study
is the first to evaluate the performance of a DLAC of the CTV
in the context of planning the CT. By using a DLAC on the
planning CT, our study revealed a favorable Dice coefficient of
0.75 for the CTV, which showed an improvement compared to
the Dice coefficient of the MC. This moderate Dice coefficient
may be explained by the following reasons. First, PORT-CTV
generally encompasses the high-risk nodal regions and bronchial
stump, which cannot be simply identified by discriminating
tissue density as it was for GTV. Second, CT-based postoperative
changes may augment anatomical diversity, such as a blurred soft
tissue boundary, shifted target location resulting from different
lobectomies, and a wide variety of individual patient’s lung
volume. Third, the PORT-CTV definition is more complex
than an anatomical issue. With the development of more
sensitive diagnostic techniques and modern conformal radiation
techniques, there is a trend toward a smaller PORT volume,
which only includes high-risk draining lymph node regions
plus the bronchial stump (34). As a result, PORT-CTV may
vary with the position of the primary tumor and the examined
nodal regions because of differences in nodal drainage, which
would inevitably affect the agreement of the training data and
consequently decrease the performance of the deep-learning
model. The accuracy of the DLAC is expected to increase with
an enlarged training dataset and multimodality images.

Inter-observer variability in the CTV contour has been
considered to be the decisive source of uncertainty in
radiotherapy treatment planning (35, 36). Such variability
has become increasingly critical in the context of precision
radiotherapy because other sources of error are minimized

through advances in radiation technique (37). In the setting of
the postoperative CTV contour for NSCLC, significant inter-
clinician variations have been observed even among experts
(34). The auto-contoured target volumes have been found to be
more consistent than the manually contoured volumes in many
contexts (13, 38–40). In the present study, with the assistance of
DLC, we gained significantly improved consistency of contours
across observers. The inter-observer variability among the junior
radiation oncologists was decreased significantly in terms of both
volumetric and spatial metrics, with the variability reduction rate
ranging from 30 to 35%.

Another important issue in target delineation is time
consumption. With a prophylactic intent of radiation, the
contouring time for PORT depends mainly on three factors:
visualization of the boundary of the target, anatomical knowledge
of the lymph node regions, and comprehension of the regions
with a high-risk of failure. When comparing the DLAC directly
with the MC, it should be equally easy to visually distinguish the
high-contrast edges, whereas the latter two factors may be better
contemplated through the DLAC. The most evident advantage
of the DLAC is that it directly offers a possible delineation
solution, and the physician only needs to edit the contour rather
than to manually contour by slice. In our study, employment
of DLAC achieved a 35% reduction of the time consumption
for the CTV contour, leading to a considerable improvement in
working efficiency.

We acknowledge several limitations in our study. First, the
patients enrolled for model establishment were treated over
a certain time span, during which there might be certain
changes throughout the process of the treatment planning. For
instance, several anatomical protocols for the mediastinal lymph
node region have been proposed within the recent decade,
such as the IASLC lymph node map, Japan consensus, and
Michigan atlas (41–43), which would have caused uncertainty
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in the CTV design to a certain extent within these years
and consequently affected the model performance. Second, the
planning CT images were collected retrospectively. The CT
data could have been better with a thinner slice thickness and
the inclusion of breathing information provided by 4D CT.
Additionally, all sets of the junior radiation oncologists’ contours
were completed within 1 month, so a memory bias from the
previous contour might have been introduced and could have
further affected the delineation of CTV for patients with the
latter sequence.

CONCLUSIONS

The DLAC is a promising strategy offering superior accuracy,
consistency, and time saving for PORT-CTV delineation, which
leads to higher quality and efficiency of radiotherapy for
NSCLC after complete resection. These results indicate that deep
learning-based automatic segmentation is promising for assisting
CTV delineation, particularly for junior physicians from low
patient volume institutions.
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