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Abstract

Background: CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in

target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target

knockout efficacy of CRISPR/Cas9 system with high sensitivity and specificity. However, when CRISPR/Cas9 system is

operating, unexpected cleavage may occur at some sites, known as off-target. Presently, a number of prediction

methods have been developed to predict the off-target propensity of sgRNA at specific DNA fragments. Most of

them use artificial feature extraction operations and machine learning techniques to obtain off-target scores. With

the rapid expansion of off-target data and the rapid development of deep learning theory, the existing prediction

methods can no longer satisfy the prediction accuracy at the clinical level.

Results: Here, we propose a prediction method named CnnCrispr to predict the off-target propensity of sgRNA at

specific DNA fragments. CnnCrispr automatically trains the sequence features of sgRNA-DNA pairs with GloVe

model, and embeds the trained word vector matrix into the deep learning model including biLSTM and CNN with

five hidden layers. We conducted performance verification on the data set provided by DeepCrispr, and found that

the auROC and auPRC in the “leave-one-sgRNA-out” cross validation could reach 0.957 and 0.429 respectively (the

Pearson value and spearman value could reach 0.495 and 0.151 respectively under the same settings).

Conclusion: Our results show that CnnCrispr has better classification and regression performance than the existing

states-of-art models. The code for CnnCrispr can be freely downloaded from https://github.com/LQYoLH/CnnCrispr.
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Background
CRISPR/Cas9 system [1–4] (Clustered regularly inter-

spaced short palindromic repeats /CRISPR-associated 9

system) originally derived from the immune defense

mechanism of archaea, it is one of the most popular

gene editing technology in recent days. Compared with

zinc-finger nucleases [5, 6](ZFNs) and transcription

activator-like effector nuclease [6–8](TALENs) technolo-

gies, CRISPR/Cas9 system has a pellucid mechanism,

simple operation and high efficiency, thus gradually re-

placing the earlier methods and presently being applied

to the fields of biology and clinical medicine, etc.

CRISPR/Cas9 system requires three important compo-

nents in the process of gene editing: Cas9 protein, guide

RNA and PAM motif (protospacer adjacent motif) [9].

Among them, the guide RNA that recognizes a target

DNA sequence through complementary base pairing is

generally referred to as an sgRNA [10, 11] (single guide

RNA, generally an RNA sequence of 20 nt in length).

The PAM [11–13] is a 3 nt motif on the target sequence

and a prerequisite for Cas9 protein cleavage at a speci-

fied site. A common type of PAM is NGG [14–16] (N

represents any base of A, T, C, G). During the editing

process, the Cas9 protein cleaves the target DNA at the

site three bases upstream of the PAM under the guid-

ance of the sgRNA sequence, and performs subsequent

gene editing operations: Introduction of an insertion/de-

letion (indel) base to cause mutation of a gene at a target

position by nonhomologous end-joining (NHEJ); or

utilization of the “donor template” provided by foreign

DNA to recombine with a mutant target to achieve

DNA-based editing of the genome by homology-directed

repair (HDR) [17–19].

Some studies have found that when CRISPR/Cas9 sys-

tem operates, several mismatch sites may appear in the
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complementary matching of sgRNA to the target DNA

sequence, therefore resulting in unintended cleavage of

the DNA sequence, which is called “off-target” [16, 20,

21]. Fu et al. [20] have confirmed that sgRNA allows 1–

5 base mismatches during the guiding process, which in

turn causes unintended sequences to be erroneously edi-

ted. The existence of off-target phenomenon has greatly

hindered the clinical application and further promotion

of CRISPR technology. How to assess the off-target pro-

pensity of specific sgRNAs and minimize the risk of off-

target has become the focus of the CRISPR/Cas9 system

study.

Presently, a variety of off-target detection methods

have been developed, such as the GUIDE-Seq [22–24]

method created by Tsai et al., which can effectively iden-

tify 0.1% of mutations in cells and predict the cleavage

activity of the system based on sequencing results. The

HTGTS [25] method utilizes fusion of known DNA

double-strand breaks with other cleavage DNAs to de-

tect DNA breaks by PCR amplification techniques and

further detect off-target sites. On this basis, Frock et al.

[26] further developed a higher throughput off-target de-

tection method. The BLESS [27] technique further

speculate on off-target sites by detecting DNA double-

strand breaks. However, this method is complicated to

operate and it is impossible to detect a break site that

has not occurred or has already been repaired. In

addition, the IDLV [28, 29] method can detect off-target

sites within the genome-wide range without bias, but

with an accuracy of only 1%.

The above detection method cannot detect all off-

target sites of a specific sgRNA, and has disadvantages

such as high cost, difficult operation, and low detection

accuracy. As the core of artificial intelligence, machine

learning and deep learning can effectively analyze empir-

ical data and provide important technical support for

bioinformatics. To this date, machine learning has been

gradually applied to off-target site prediction [14, 30],

sgRNA activity prediction [14] and sgRNA design

optimization [31, 32], etc. Various machine learning

based sgRNA design models [30, 33–36] have been de-

veloped and put into application. Their main design idea

is to introduce sgRNA sequence features and secondary

structure features, rank all possible sgRNA for specific

target DNA sequences by scores of off-target effect, and

selecting the sgRNA with high cleavage efficiency and

low off-target propensity.

The above machine learning methods were based on

sequence features. At the time this paper is written, only

three existing prediction models have introduced the

idea of deep learning into the sgRNA off-target propen-

sity prediction problem.

DeepCpf1 [31], based on the convolutional neural net-

work (CNN), introduced sgRNA sequence features and

chromatin accessibility to predict the editing efficiency of

sgRNA corresponding to Cpf1. This method does not

have to construct the feature artificially, further simplify-

ing the model, and is convenient for researchers to use.

DeepCrispr [37] introduced four epigenetic features in

addition to DNA sequence features and automatically ex-

tracts valid information using the principle of Auto-

encoder. Several models including sgRNA target cleavage

and off-target propensity prediction were established.

However, it is still unknown whether the four epigenetic

characteristics will have a positive impact on the model

prediction results. CNN_std [38] only used sequence fea-

tures to construct two-dimensional input matrix by means

of “XOR” coding design and utilized CNN for prediction.

This deep learning method also received a higher accuracy

in the CRISPOR dataset [39]. In addition, Dimauro, G

et al. proposed a model named CRISPRLearner [40] for

predicting sgRNA on-target knockout activity. Although

its purpose is different from ours, its application of deep

learning to prediction tasks related to sgRNA provided us

with ideas.

Most of the existing prediction methods are still

based on machine learning methods and model pre-

diction through complex manual feature extraction

[41–46]. However, the internal mechanism of CRISPR

gene editing technology is not presently clear and ex-

plicit. Manual design of sgRNA features may have a

negative impact on the prediction results. Therefore,

we would like to present CnnCrispr, a novel compu-

tational method for prediction of sgRNA off-target

cleavage propensity utilizing the deep learning

method. In CnnCrispr, the GloVe embedding model

was introduced to extract global and statistical infor-

mation of input sequences by constructing the co-

occurrence matrix of sgRNA and its corresponding

DNA sequence. Further integrating with the deep

neural network model, the off-target propensity of a

given sgRNA at a specific DNA fragments can be pre-

dicted. We trained CnnCrispr with the data set used

by DeepCrispr [37], and proved that CnnCrispr has a

better competitive advantage in predicting sgRNA off-

target propensity through performance comparison

with four state-of-the-arts models, therefore it is ex-

pected to become a potential tool to help on the re-

search of CRISPR system.

Results
Model structure and prediction

In our initial conception, we combined biLSTM with

CNN framework at the final prediction model and the

model structure is shown in Fig. 1. We also constructed

several similar but different models by removing differ-

ent network parts to compare the test results and select

the final prediction model. All pre-selected network
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frameworks for model selection are briefly described in

Table 1.

The structure of the benchmark framework of

CnnCrispr is described in detail below:

The first layer of CnnCrispr is an embedding layer, which

is used for input of the vector obtained by GloVe model.

Since the vector dimension of the GloVe model is set to

100, the input of embedding layer is a two-dimensional

matrix with the size of 16 × 100. We called the mittens

package in Python to train the GloVe model on the basis of

the realization of GloVe co-occurrence matrix.

The second layer is a biLSTM network, which is

mainly used to extract the context features of input in-

formation. Five convolution layers are subsequently con-

nected to the model, and each layer has a different

kernel number and kernel size. Then the full connection

layers are introduced behind the last convolution layer,

having the sizes of 20 and 2 respectively.

In addition to the framework mentioned above, Batch

Normalization and Dropout layers are added between

each layers to prevent model overfitting. The parameters

of the Dropout layer are set as 0.3. For the output layer,

Fig. 1 The structure diagram of CnnCrispr. The other four pre-selected models were obtained by adding some parts on the basis of this frame. a

Rules for setting index values for different r-d pair, and an example of index representation for a sgRNA-DNA sequence pair. b Based on index

representation, the unsupervised GloVe model was used to train the embedded vectors and embed the sequence information into the new

input matrix. c biLSTM layer was used to capture context information in input information. d CNN containing 5 layers with different kernels,

scanning the above results to obtain different features. The last fully connected layers were used to obtain the final result

Table 1 Brief network framework description of several pre-selected models

Model_Name Description

CnnCrispr The final model including all units we mentioned

CnnCrispr_NoLSTM Without biLSTM layer

CnnCrispr_Conv_LSTM Reverse the order of the convolution layer and the recurrent layer

CnnCrispr_NoBatchNor Without Batch Normalization layer

CnnCrispr_NoDropout Without Dropout layer

CnnCrispr is the benchmark model. On this basis, some parts were removed to obtain the comparison models. With the exception of parts mentioned in the

description, the structure of the contrast model was completely consistent with the benchmark model. The CnnCrispr_Conv_LSTM model replaced the sequence

of convolutional layers and recurrent layer to compare the influence of network sequence on the prediction results
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softmax and sigmoid functions are used as activation

functions respectively to obtain the prediction results of

classification model and regression model.

In the training process, the initial learning rate was set

as 0.01, and we used Adam algorithm to optimize the

loss function. Furthermore, we set the batch size as 256

in consideration of the requirements of potential infor-

mation extraction from negative data and avoiding the

occurrence of over fitting. Too large of a batch size may

increase the risk of multiple occurrence of some positive

data in a single batch during training, while too small of

a batch size may reduce the training speed of a model

and extend the training time.

Our experiment was divided into two parts. First, we

compared the performance of different models. Then,

the final prediction model was compared with the exist-

ing models with better performance to evaluate the prac-

tical application ability of our model. Detailed network

descriptions can be found in Additional file 2.

Model selection

Experimental data are from the attachment provided

by DeepCrispr article, and the relevant data descrip-

tion is detailed in “Data sources” section. During the

process of training, 20% of the data in the Hek293t and

K562 data sets were randomly selected to compile the

test sets (Hek293t test set, K562 test set and Total test

set respectively). Different prediction models were ob-

tained by training with all the remaining data, and the

prediction performance of each model in the three test

sets were evaluated. During the training process, we

generated the batch training data using the data sam-

pling method mentioned in “Sampling for training

data” section.

We built two models for classification and regression

prediction, respectively. The first three models mentioned

in Table 1 were trained in order to verify the influence of

different parts on the prediction performance of the

model. The structure of the benchmark model CnnCrispr

is introduced in “Model structure and prediction” section.

And the model CnnCrispr_No_LSTM was obtained by re-

moving the LSTM part from the basis of CnnCrispr,

CnnCrispr_Conv_LSTM was obtained by adjusting the

order of Convolution layers and Recurrent layer on the

basis of CnnCrispr. Among them, the purpose of the latter

two models was mainly to illustrate whether CNN layer

and RNN layer have improved the performance, as well as

whether the order of the two frameworks will affect the

performance.

We initially trained the three models mentioned above

and obtained the prediction results. The model perform-

ance is shown in Table 2.

Due to the highly unbalanced nature of the data set, it

was easy for the model to obtain a high auROC value.

Therefore, we gave up the comparison of auROC values

and focused on the comparison results of auPRC and

Recall value on the test set. The results in Table 2 were

used to draw the histogram (Fig. 2), from which it can

intuitively be seen that CnnCrispr has better predictive

performance. Therefore, we took the CnnCrispr as the

benchmark network framework and further well-tuned

the network structure.

Based on CnnCrispr, the Dropout layer and Batch

Normalization layer were removed respectively to verify

the influence of the two parts on performance. A brief de-

scription of the network structure is given in Table 1. The

recall value of CnnCrispr_No_Dropout was 0.810 in the

total test set, which was a little lower than that of

CnnCrispr, this showed that the Dropout layer does have

improved performance and prevented over-fitting, al-

though the degree of improvement is not very noticeable.

However, after adding the Dropout layer, the training pa-

rameters of the model were greatly reduced, which further

saved time for model training, hence we kept the Dropout

layer in the final model. Then we trained the model with-

out the Batch Normalization layer several times and ana-

lyzed it on the test set, but every time the entire test set

were all classified as negative samples. This indicated that

the model without the BN layer has lost its ability of classi-

fication prediction. Therefore, the BN layer is essential in

the final model. In addition, we also mentioned the import-

ance of BN layer for neural network model in “Convolu-

tion neural network and batch normalization” section,

hence we reserved it in our final model.

Table 2 The prediction results in Model Selection

Test Set Model Recall ROC_AUC PRC_AUC

Total test set CnnCrispr 0.857 0.975 0.679

CnnCrispr_NoLSTM 0.611 0.987 0.651

CnnCrispr_Conv_LSTM 0.643 0.986 0.67

CnnCrispr_NoBatchNor – 0.5 0.504

CnnCrispr_NoDropout 0.810 0.985 0.625

Hek293t test set CnnCrispr 0.864 0.971 0.686

CnnCrispr_NoLSTM 0.631 0.988 0.658

CnnCrispr_Conv_LSTM 0.660 0.988 0.694

CnnCrispr_NoBatchNor – 0.5 0.504

CnnCrispr_NoDropout 0.816 0.988 0.636

K562 test set CnnCrispr 0.826 0.995 0.688

CnnCrispr_NoLSTM 0.522 0.985 0.589

CnnCrispr_Conv_LSTM 0.565 0.981 0.57

CnnCrispr_NoBatchNor – 0.5 0.503

CnnCrispr_NoDropout 0.783 0.973 0.597

CnnCrispr had the best comprehensive performance in the three test sets, and

the calculated recall value was higher than other pre-selected models. The

numbers in boldface indicate the highest scores for each metric
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Model comparing

We selected four sgRNA off-target propensity prediction

models for model comparison, namely CFD [33], MIT

[16], CNN_std [38] and DeepCrispr [37].

CFD is short for Cutting Frequency Determination. As

a scoring model for evaluating the off-target propensity

of sgRNA-DNA interaction, CFD specified different

scores for the location and type of mismatch between

sgRNA and corresponding DNA sequence. When mul-

tiple mismatches appear in the sequence pair, the corre-

sponding scores are multiplied to obtain the final score.

For example, if the sgRNA-DNA sequence has a rG-dA

mismatch in position 6 and a rC-dT mismatch in pos-

ition 10, it will receive a CFD score of 0.67 × 0.87 =

0.583. Haeussler et al. [39] compared the performance of

CFD with that of MIT, and proved that the prediction

performance of CFD was slightly better than that of

MIT in CRISPOR data set. CNN_std is a CNN-based

sgRNA off-target propensity prediction model developed

by Jiecong Lin. The combination of sgRNA and corre-

sponding DNA sequences was encoded by “XOR”

principle and predicted by multi-layer convolution net-

work. DeepCrispr is a deep learning method which com-

bines sgRNA-DNA sequence information with genomic

epigenetic characteristics as the input. DeepCrispr used

the largest data set available to conduct model training

and introduced the auto-encoder to automatically ac-

quire potential features of the sgRNA-DNA sequence,

which was a good attempt at deep learning in sgRNA re-

lated prediction problems.

In order to make a more comprehensive comparison

with the four models above, we tested the performance

of the classification and regression models in two test

patterns. We downloaded the prediction models of CFD,

MIT and CNN_std from relevant websites and obtained

the prediction results on the same test set as CnnCrispr.

Due to the fact that the training methods were consist-

ent between CnnCrispr and DeepCrispr, we just used

the test results given by DeepCrispr to make the

comparison.

Test pattern 1 -- withheld 20% as an independent testing

set

Consistent with the training method of “Model Selec-

tion” section, we randomly divided the data sets of

each cell line in the proportion of 8:2. We compared

the performance of CnnCrispr with the current pref-

erable prediction models. Fig. 3 shows the comparison

results under the classification schema. CnnCrispr

achieved an auROC value of 0.975 and an auPRC

value of 0.679 at the total test set. Which were both

higher than the value of CFD, MIT and CNN_std

(there were similar trends in the Hek293t test set and

K562 test set, CnnCrispr achieved the auROC of

0.971 and 0.995 on Hek293t test set and K562 test

set, respectively. And auPRC of 0.686 and 0.688 on

Hek293t test set and K562 test set, respectively). The

AUC values of ROC curve and PRC curve of

CnnCrispr on the three test sets were all higher than those

of CFD, MIT and CNN_std, which proved that CnnCrispr

had more advanced prediction ability. In addition, the

PRC curve obtained by CnnCrispr on the total test set and

Hek293t test set completely contained the PRC curve ob-

tained by the other three models, CFD, MIT and CNN_

std, while on the K562 test set, only a small portion of the

curve was covered by the CNN_std. Comprehensive com-

parison showed that the overall performance of the

CnnCrispr was better than the other three models, and

since the training and test sets were extremely unbal-

anced, the PRC curve and the area under it were more im-

portant measures for model evaluation, where CnnCrispr

had a strong competitive advantage. In addition to the

Fig. 2 Visualization of auPRC and Recall value in three test sets. CnnCrispr had higher auPRC and Recall values in the three test sets. Although the

performance of CnnCrispr_NoDropout was similar to CnnCrispr, the addition of Dropout layer can reduce the network parameters, shorten the

training duration and prevent over-fitting of the model to some extent, hence we finally chose the CnnCrispr with Dropout layer

Liu et al. BMC Bioinformatics           (2020) 21:51 Page 5 of 15



comparison with the above three models, we further com-

pared the testing performance of CnnCrispr with Deep-

Crispr. Since the training methods and data sets were

consistent, we directly compared the test results given in

ref. [37], and the results are shown in Table 3. The auROC

values of DeepCrispr were slightly better than those of

CnnCrispr (shown more intuitively on Hek293t test set),

but the auPRC values obtained by CnnCrispr on all three

test sets were higher than those of DeepCrispr. By com-

prehensive comparison, CnnCrispr showed better per-

formance than DeepCrispr under test pattern 1.

Unlike the classification schema, the Pearson correl-

ation coefficient and Spearman rank correlation coeffi-

cient of the prediction results were mainly used as

Fig. 3 ROC curves and PRC curves of CnnCrispr and three state-of-the-arts prediction models including CFD, MIT and CNN_std under test

pattern 1
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evaluation measures for regression schema. From the

comparison results, the Pearson correlation coefficient

between CnnCrispr’s prediction results and the real la-

bels was strictly superior to the three comparison

models (Since the Pearson coefficient was not selected

as the evaluation measure in DeepCrispr, we only

compared the Spearman values of CnnCrispr with

DeepCrispr.).

In Fig. 4, The Pearson value of CnnCrispr on Hek293t

test set reached 0.712(higher than 0.371 obtained by

CFD, 0.153 obtained by MIT, 0.33 obtained by CNN_

std). In the entire test set, CnnCrispr also demonstrated

its better predictive ability, with Pearson value reaching

0.682, higher than 0.343 of CFD, 0.150 of MIT and

0.321 of CNN_std. For Spearman correlation coefficient,

the negative data in the test set was much larger than

the positive data (about 250:1), therefore, a high Spear-

man value cannot be achieved. Nevertheless, the predic-

tion ability of CnnCrispr was still better than those of

the four models above (the test results of CnnCrispr on

Hek293t, K562 and Total test set were 0.154, 0.160 and

0.134 respectively, while the Spearman correlation coef-

ficients of CFD on the three test sets were 0.140, 0.143

and 0.128 respectively; Spearman correlation coefficients

of MIT were 0.085, 0.084 and 0.086 respectively; Spear-

man correlation coefficients of CNN_std were 0.141,

0.144 and 0.132 respectively; Spearman correlation coef-

ficients of DeepCrispr were 0.136, 0.126 and 0.133 re-

spectively). In addition, we also compared the AUC

values under ROC and PRC curves of the five models by

referencing the CRISTA’s evaluation method and

considering the predicted results as the probability of

the classification labels. The auROC value and auPRC

value obtained by CnnCrispr on the total test set were as

high as 0.986 and 0.601 respectively, which were super-

ior to 0.942 and 0.316 of CFD, 0.947 and 0.208 of CNN_

std, and the same results were obtained on Hek293t and

K562 test sets. Based on the above performance results,

we concluded that CnnCrispr had better prediction

ability.

Test pattern 2 – “leave-one-sgRNA-out”

In order to examine the accuracy and generalization

ability of CnnCrispr for the prediction of off-target pro-

pensity of new sgRNA, we set up the “leave-one-sgRNA-

out” experiment, which is a good evaluation method for

the prediction of off-target propensity. During the train-

ing, a sgRNAs and its corresponding off-target se-

quences (with true cleaved propensity or the potential

sites obtained from whole genome) were completely ex-

tracted for model testing. According to the difference of

sgRNAs, model training and performance evaluations

were conducted a total of 29 times. Through this 29-fold

cross-validation method, we were able to comprehen-

sively evaluate the generalization ability of CnnCrispr

and avoid over-fitting or under-fitting of the model

when predicting for some special sgRNAs.

For classification, CnnCrispr achieved an average

auROC of 0.957 and auPRC of 0.429, which were both

higher than the results of the four models above (CFD

achieved an average auROC of 0.903, auPRC of 0.319,

MIT achieved an average auROC of 0.848, auPRC of

Table 3 Performance comparison with states-of-the-art models under test pattern 1

Test Set Model auROC auPRC Pearson value Spearman value

Total test set CnnCrispr 0.975 0.679 0.682 0.154

CFD 0.942 0.316 0.343 0.140

MIT 0.77 0.044 0.150 0.085

CNN_std 0.947 0.208 0.321 0.141

DeepCrispr 0.981 0.497 – 0.133

Hek293t test set CnnCrispr 0.971 0.686 0.712 0.160

CFD 0.936 0.318 0.371 0.143

MIT 0.756 0.048 0.153 0.084

CNN_std 0.939 0.204 0.330 0.144

DeepCrispr 0.984 0.521 – 0.136

K562 test set CnnCrispr 0.995 0.688 0.426 0.134

CFD 0.965 0.322 0.336 0.128

MIT 0.814 0.033 0.057 0.086

CNN_std 0.983 0.287 0.319 0.132

DeepCrispr 0.953 0.41 – 0.126

We downloaded the prediction models of CFD, MIT and CNN_std from relevant websites and obtained the prediction results on the same test set as CnnCrispr.

Since the training process of CnnCrispr was consistent with DeepCrispr’s, we directly used the test results in Additional file 2 given by DeepCrispr for performance

comparison. The numbers in boldface indicate the highest scores for each metric
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0.115, CNN_std achieved an average auROC of 0.925,

auPRC of 0.303; and DeepCrispr achieved an average

auROC of 0.841, auPRC of 0.421). In the 29-fold cross

validation, CnnCrispr’s comprehensive competitive ad-

vantage was more significant, and the auPRC results

were higher than results yielded by the other four

models, which was essential to prevent the model from

missing the actual off-target sites (see Fig. 5).

In order to make a more comprehensive evaluation,

we also considered the distribution of the values of

auROC and auPRC obtained by “29-fold” cross-

validation, and drew the violin plot (Due to the fact that

we weren’t able to get the test data of DeepCrispr, we

were unable to draw a violin plot for it.). Violin plot is

characterized by the kernel density estimation of the

basic distribution, and the external shape of the violin

plot is the kernel density estimation. First of all, Fig. 6

shows that the auROC values of CnnCrispr were gener-

ally higher and the AUC values of CnnCrispr were more

concentrated, 75% of the prediction results were greater

than 0.9. On the other hand, there were obvious abnor-

mal points in the prediction results of auROC by the

other three models, indicating that they cannot play a

good role in predicting the off-target propensity of

individual sgRNA. In addition, the distribution of

CnnCrispr’s auROC values was more concentrated,

while the auROC values of CFD and CNN_std had ob-

vious discrete values (the whiskers on the lower side

were longer). With the increase of auROC values, the

horizontal distance of the violin plot plotted by

CnnCrispr was larger, which showed that more auROC

values were distributed on this interval, further indicat-

ing the good prediction performance of CnnCrispr. For

auPRC values, the median of prediction results

obtained by CnnCrispr was significantly larger than

that of the other three models, which showed that

CnnCrispr had a higher overall score and 75% of

auPRC values obtained by CnnCrispr were greater than

0.2. CnnCrispr was more distributed at higher scores,

indicating that the overall predictive performance of

Fig. 4 Performance comparison results of CnnCrispr and states-of-the-arts prediction models under test pattern 1. The two figures above show

the Pearson and Spearman values obtained by regression schema, the two figures below show the AUC values under ROC and PRC curves by

referring to the CRISTA’s evaluation method
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CnnCrispr was indeed better than that of CFD and

CNN_std (see Fig. 6).

We further compared the 29-fold cross-validation

results in regression schema and organized the per-

formance visualization results in Fig. 5-6. We first

compared the average value of Pearson correlation

coefficient and the Spearman correlation coefficient

(see Fig. 5). CnnCrispr achieved a higher mean Pear-

son value and Spearman value, this showed that

CnnCrispr had better fitting ability. Furthermore, we

drew 29 sets of Pearson values and Spearman values

into violin maps. As shown in Fig. 6, Pearson values

obtained by CnnCrispr were more distributed in the

high score range. In addition, the Spearman scores of

all four models were lower, but despite this, the dis-

tribution of CnnCrispr scores was significantly better

than that of the other three models. Concluding with

the fact CnnCrispr had a higher probability of obtain-

ing highly fitting prediction results for off-target pro-

pensity (Detailed results are in Additional file 1).

Discussion
As a kind of classical neural network algorithm, RNN

has the following features: memory ability, Shared pa-

rameters and Turing completeness. Therefore, it has ad-

vantages in learning the nonlinear features of sequences

and plays an important role in the study of sequence

problems with time characteristics. In the relevant stud-

ies of CRISPR editing technology, it has been shown that

the base types at different positions have a certain influ-

ence on the cleavage propensity of sgRNA [11, 21, 41,

42, 47]. Therefore, we considered introducing an RNN

framework into the prediction model to extract context

information for sgRNA-DNA pairs.

The convolution kernel size of the CNN was smaller

than the input matrix, so the convolution operation can

extract more local features -- which is consistent with

the image processing. In fact, it is not necessary for each

neuron to perceive the global image, but only need to

perceive the local image, and then integrate the local

information at a higher level to obtain the global

Fig. 5 Leave-one-sgRNA-out comparison of sgRNA off-target propensity prediction with auROC, auPRC, Pearson correlation coefficient, and

Spearman correlation coefficient. The bar chart shows the mean value obtained by 29-fold cross validation. The two figures above show the

performance comparison results in classification schema and the two figures below shows the performance comparison results in

regression schema
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information. The parameter sharing mode of CNN can

also greatly reduce the computation. In addition, we set

convolution kernels of different sizes for different levels

in the convolution part, and used multiple convolution

kernels to convolve the input images, to extract local

features as comprehensively as possible in this way. Fur-

thermore, GloVe method utilized the statistical informa-

tion of global word co-occurrence to learn word vectors,

so as to combine the advantages of statistical informa-

tion with the local context window method. We used

this method to replace the traditional “one-hot” repre-

sentation method hence allowing the input sequence of

CnnCrispr to have better characteristic representation

ability.

In the initial structural design of the model, we compre-

hensively considered the necessity of extracting sequence

context information and local region information, so we

integrated RNN and CNN model to improve the ability of

feature extraction, and the excellent prediction ability of

the final network model CnnCrispr was proved by com-

paring with the performance of different pre-selected

models. The final network structure is shown in Fig. 1.

After the GloVe model, the biLSTM was connected to

extract context features, and the two-dimensional matrix

information was further extracted by using 5 convolu-

tional layers. In the output layer of the network, the model

was divided into classification schema and regression

schema by setting different activation functions (softmax

or sigmoid functions).

In “Model Selection” section, we also intuitively saw

that the order of RNN and CNN had a great impact on

the test performance, and the model CnnCrispr_Conv_

LSTM cannot play a very good role in feature extraction

and data prediction (see “Model selection” section and

Fig. 6 Leave-one-sgRNA-out comparison of sgRNA off-target efficacy prediction with auROC, auPRC, Pearson correlation coefficient, and

Spearman correlation coefficient. The 29 test results were plotted as the violin plots. The two figures above show the performance comparison

results in classification schema and the two figures below shows the performance comparison results in regression schema. It is worth noting

that the article of DeepCrispr did not offer the detailed test results of leave-one-sgRNA-out validation, as a result we did not draw the

corresponding violin plot. It is anticipated that this comparison process can further improve upon future works
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Table 2). We briefly analyzed the following reasons: the

RNN can fully extract the contextual text features of in-

put sequences, while the convolution operation will ini-

tially break the internal connection of sequences and

affect the function of RNN. Firstly, the RNN operation

was carried out to extract the context features of the se-

quence, and then the CNN was used to extract the local

features, and the local information was integrated at a

higher level to obtain the global feature information, so

as to improve the prediction ability of CnnCrispr.

In comparison with the performance of the existing four

state-of-the-arts prediction models, CnnCrispr had better

prediction ability in highly unbalanced test sets from

DeepCrispr. In the “leave-one-sgRNA-out” experiment,

the mean auPRC of 0.471 and mean Pearson value of

0.502 were achieved, which showed that CnnCrispr has a

better competitive advantage. In addition, CnnCrispr only

used the sequence information between sgRNA and corre-

sponding potential DNA segments, giving up the

construction of artificial features, thus avoiding the intro-

duction of invalid or interfering information and making

the prediction results more convincing.

We hope that CnnCrispr can help clinical researchers

narrow down the screening range of off-target site test

and save researchers more time and energy.

Since 2014, the number of open source data sets and

online resources available for studying of the application

of machine learning on CRISPR/Cas9 system has been

increasing. As of the day this composition is written, the

data set used by the author for model training is the

largest data set presently available. However, with the

continuous development of biological research technol-

ogy, the number of available open source data sets will

gradually increase, this will further improve the

generalization ability of CnnCrispr in the future.

Conclusion
In this paper, we built a novel sgRNA off-target propen-

sity prediction model, CnnCrispr. With introduction of

the GloVe model, CnnCrispr attempted new feature

representation methods to embed sequence information

into the deep learning model, combined RNN with

CNN, and only used sequence information to predict

the off-target propensity of sgRNA at specific sites. By

comparison with existing prediction models, the super-

ior prediction ability of CnnCrispr was further con-

firmed. Our model used deep learning to comprehend

the automatic learning of sequence features between

sgRNA and corresponding potential off-target site,

avoiding the unknown influence of artificial feature con-

struction process on model prediction results, which is a

new attempt at deep learning in the direction of sgRNA

off-target propensity prediction.

Methods
Data sources

So far, there is no public website to integrate off-target

data, and most studies still use various detection

methods to obtain the data of potential off-target sites

and off-target propensity of specific sgRNA at specific

site. We used the off-target data that has been published

in the DeepCrispr article as our training data. The off-

target data set contains a total of 29 sgRNA from two

different cell types: 293-related cell lines and K562 t. For

all 29 sgRNAs, a total of more than 650 positive data

have been identified as off-target sites, and Guohui C

et al. [37] obtained more than 160,000 possible loci

across the whole genome similar to the corresponding

sgRNA using bowtie2. The whole dataset was highly un-

balanced, it was likely to affect model fitting precision in

the process of training, we will further describe the con-

crete solution in the “Sampling for Training data” sec-

tion. For the classification model, the labels of off-target

sites were set to “1”, and the labels of other sites were

set to “0”.For the regression model, the labels of off-

target site were set to the targeting cleavage frequency

detected by different detection assays and other sites

were set to “0”.

Data preprocessing and encoding

The sgRNA sequence and its corresponding DNA se-

quence are each composed of 23 bases. Considering that

the combination of the two bases at the same site is a

feature, since the DNA sequence is composed of four

types of bases: A, C, G and T, there are altogether 4 ×

4 = 16 possible situations for this feature. Therefore, we

set a unique index value for each combination, and

encoded the original sgRNA-DNA sequence with an

index vector of 23 for subsequent GloVe model embed-

ding (showed in Fig. 1a).

GloVe model for data embedding

As an unsupervised word representation method, the

GloVe [48] model enables vectors to contain as many

hidden features of input data as possible through

vectorization of the original data, which can eliminate

the disadvantages of the one-hot coding method. In this

model, the input vector was obtained by multiplying the

one-hot coding of the original “vocabulary” by a trained

weight matrix. When training the GloVe model, the co-

occurrence matrix X should firstly be calculated accord-

ing to the original “corpus” (here it refers to the original

data set composed of our original sgRNA and corre-

sponding off-target sequences). An element xi, j in

matrix X is the sum of the times that the word wj

appears in the context box of the word wi.
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X i ¼
P

N

j¼1

xi; j , represents the sum of the times that

appear in the context box of word wi for all words in the

word list.

Pi;k ¼
xi;k
X i

, represents the probability that word wk

appears in the context box of word wi.

ratioi; j;k ¼
Pi;k

P j;k
, represents the correlation of words wi,

wj, wk (Table 4). We can notice that the value of ratioi, j,

k is calculated according to the co-occurrence times in

the co-occurrence matrix X = (xi, j). Now we hope to

construct a word vector for each word and reproduce

the value by using the word vector vi, vj, vk and a specific

function g(•). If such a word vector vi can be found, it in-

dicates that the word vector will definitely contain the

information in the co-occurrence matrix.

In order to make the value of g(vi, vj, vk) as close as

possible to ratioi; j;k ¼
Pi;k

P j;k
, we considered to build a cost

function:

J ¼
X

N

i; j;k

Pi;k

P j;k

−g vi; v j; vk
� �

� �2

;

and obtained the final cost function expression:

J ¼
X

N

i; j

f xi; j
� �

vi
Tv j þ bi þ b j− log xi; j

� �� �2

through a series of hypothesis derivation.

In order to implement the GloVe embedding model,

we called the Python extension package mittens, and

used the GloVe model to train the preprocessed co-

occurrence matrix. Finally, the embedded word vector

representation was obtained. Global Vector integrated

the global statistics of Latent Semantic Analysis (LSA)

with the advantages of local context window. By inte-

grating the aforementioned statistical information in its

entirety, the training speed of the model can be acceler-

ated and the relative weight of words can be controlled.

Recurrent neural network and LSTM variant

As a special neural network model, the recurrent neural

network (RNN) adds the horizontal connection of each

neuron node in the same layer on the basis of the multi-

layer feedforward network.

Ot ¼ g VStð Þ
St ¼ f Uxt þWSt−1ð Þ

RNN is mainly used to process time series. The output

layer performs a full connection operation with the adja-

cent hidden layer. V is the connection matrix of the out-

put layer, and g is used as an activation function to

obtain the final output result. For the hidden layer at

time t, neuron node first receives the network input

from that moment by weight U and receives the hidden

layer output from time t − 1 by weight W. And further

operations on the sum of the two are taken. It can be

seen that RNN has only one hidden layer, and the hid-

den layer is called multiple times during the training

process to realize the information extraction function of

the input information context. RNN implements the

memory function but this memory function is limited

because there will be a phenomenon of gradient dis-

appearance or gradient explosion. Therefore, Hochreiter

and Schmidhuber [49] proposed the LSTM network to

solve the above mentioned problems by introducing a

memory cell, the key to which is the cell state, which re-

ceives or rejects input information by a well-designed

structure called a “gate”. Although many LSTM variants

have been proposed, we have only described the forward

recursion of a most basic LSTM model. The basic for-

mulas were given below:

Input gate: ft = σ(Wf · [ht − 1, xt] + bf).

Forgetting gate: it = σ(Wi · [ht − 1, xt] + bi)

~Ct ¼ tanh WC � ht−1; xt½ � þ bCð Þ

Output gate: ot = σ(Wo · [ht − 1, xt] + bo).

For the model input at time t, the input gate controls

the selection of information and adds it to next step.

The value of the input gate is usually between [0, 1] as

the degree of information selection. The purpose of for-

getting gate is mainly to prevent the introduction of too

much information to relieve the burden of memory C.

Therefore, some useless information is discarded by set-

ting forgetting gate. As a deformed structure of RNN,

LSTM adds memory units to each neuron in the hidden

layer. Through the setting of several controllable gates

on the neuron, it can control the memory and forgetting

degree of current information and previous information,

thus achieving the function of long-term memory.

In order to get the characteristic representation of for-

ward and backward information of RNA sequences, the

bidirectional LSTM (showed in Fig. 1c), a variant of

LSTM, was used, which consists of two parallel LSTM:

one input forward sequence and one input reverse se-

quence. Here’s how it works:

Table 4 Different ratios indicate the possible relationship

between three words, wi, wj, wk

ratioi, j, k wi is related to wk wi is not related to wk

wj is related to wk Tends to 1 Very small and tends to 0

wj is not related to wk Greater than 1 Tends to 1
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y2 ¼ g VA2 þ V
0

A
0

2

� �

And,

A2 ¼ f WA1 þUx2ð Þ

A
0

2 ¼ f W
0

A
0

3 þ U
0

x2

� �

For output y2, its input mainly comes from the

weighted sum of two parts, A2 and A
0

2 . Therefore, two

values should be stored in the hidden layer of LSTM,

which are respectively A participating in forward calcula-

tion and A' participating in reverse calculation.

Convolution neural network and batch normalization

CNN (showed in Fig. 1d) mainly uses image data as

network input, which avoids the complex process of

feature extraction and data reconstruction that often

occurs in traditional recognition algorithms. There-

fore, it has great advantages in 2D image processing.

In the training of CnnCrispr, due to the small number

of samples available for training and testing, the samples

in the training set will be over-trained, which will lead to

overfitting problem and the insufficient generalization

ability of the model in the test and other related data

sets. Therefore, we need to reduce the over-fitting

phenomenon of the model as much as possible by

adjusting the model structure. Batch Normalization is a

good tool for solving this problem. With the deepening

of network depth or in the training process, the distribu-

tion of the activated input value before the nonlinear

transformation will gradually shift or change the deep

neural network, and the gradient of the low layer neural

network will disappear in the backward propagation

process, hence the convergence speed of the deep layer

neural network will decrease. Batch Normalization for-

cibly transforms the input value distribution of any

neuron into the standard normal distribution with a

mean value equaling to 0 and variance equaling to 1, en-

suring that the input value of each layer of network is

uniformly distributed in the training process of the

model, so as to avoid the gradient disappearance prob-

lem and further accelerate the training speed. In

addition, the Batch Normalization layer, as an alternative

operation to Dropout, avoids the inactivation of some

input nodes and thus reduces the loss of effective

information.

Sampling for training data

The samples in the entire data set is extremely unbal-

anced: the number of negative samples is about 250

times that of positive samples. A highly unbalanced

data set may make the gradient update process un-

stable, increase the difficulty of training, and even

lead to the failure of model training. In order to solve

this problem, we designed a data sampling method

for model training: we set the batch size as m for

model training, and divided the negative sample set

into N subsets according to this value (if the negative

set has M samples, batch size is m, then N =[M /

m]), and N random oversampling operations are fur-

ther performed on the positive training set, therefore

generating N training batches. In the data sampling

process, almost all negative data are traversed, and

the potential information of the negative data can be

searched more reliably. However, one thing to note is

that oversampling may over-emphasize the effects of

some positive data on the training results, resulting in

the model overfitting. So, the choice of batch size is

very crucial.

Model evaluation and performance measures

In this paper, we investigated the classification and re-

gression models for prediction of off-target propensity.

For the classification model, the confusion matrix M of

the predicted results can be obtained.

M ¼
TP FN

FP TN

� 	

Among them, TP (True Positive) and TN (True Nega-

tive) were expected prediction results, while FP (False

Positive) and FN (False Negative) would reduce the pre-

diction accuracy of our model.

For the prediction of off-target propensity, we

should pay more attention to whether the actual off-

target site is correctly predicted as “off-target” -- that

is, whether the label value is 1. Therefore, ROC

curve, PRC curve and Recall value were selected as

the performance measures. The Recall value is defined

as follows:

Recall ¼
TP

TP þ FN

The recall value can well describe the proportion of

the actual off-target sites that are correctly classified,

that is, the larger the recall value is, the better the pre-

diction ability of the model will be.

ROC and PRC curves [50] are widely used in classifica-

tion model, it is important to note that since the predic-

tion problem of category has highly unbalanced

characteristics, compared with the AUC value under the

ROC curve, the area under the PRC and its curve is

more worthy of attention, the higher the value, proves

the model has better performance in class imbalance

problems.

For the regression model, the Pearson and Spear-

man correlation coefficients are mainly considered as
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metrics. The two measures are continuous variable

correlation evaluation indicators, between that two,

the Pearson value pay more attention to whether it

has a linear relationship between two variables, while

Spearman value is a nonparametric statistical method

to do the linear correlation analysis by using the rank

of each variable.
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1186/s12859-020-3395-z.

Additional file 1. Detailed comparison results for sgRNA off-target pro-

pensity prediction.
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model selection.
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